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Framework

On (2, F, P), we will work in dimension 2 with two independent
GFFs X, Y on a domain D and associated "smooth” cut-off
approximations X, Y. We suppose that the family of centered
Gaussian processes (X:(x))ycre is such that:

e Variance: E[X.(x)?] = In1 +In C(x, D) + o(1) where C(x, D)
conformal radius.

e Covariance: E[X:(x)X:(y)] ~ In m
e Filtration FX = {X|(x); x e R?, ¢ < I}

e Forall e <&, (Xo(x) — Xr(x))xere independent from FZ%

We define (Yz(x))xcge similarly.



Framework

Notations:

e Filtration F. = FXUFY
o M7 (dx) = eCCIHY0ax, .5 > 0

2 2
. (577_% MZ28(dx))eso is a F.-martingale.



Other Frameworks: universality

In fact, working with any log-correlated field in any dimension and
with other "smooth” cut-offs leads to similar results:

e Kahane, (1985): theory based on o-positivity of the
logarithmic kernel

e Robert, V.(2006, 2008): theory based on convolutions of any
log-correlated field in any dimension.

e Duplantier, Sheffield (2008): theory based on the H*
decomposition of the GFF in dimension 2

For these questions, see our review with R. Rhodes (2013).



2-dimensional quantum gravity

In this talk, we consider the continuous model first considered by
Polyakov in 1981: Quantum geometry of bosonic strings, Phys.
Lett B. The continuous model is parametrized by v and p
(cosmological constant).

The KPZ relation (Knizhnik, Polyakov, Zamolodchikov, 1988) was
derived within this framework by David (1988) and Distler, Kawai
(1989).



2-dimensional quantum gravity

It is conjectured to be the limit of random planar maps weighted

by a statistical physics system (CFT with central charge ¢ <1)
and conformaly mapped to a domain D:

e Ambjorn, Durhuus, Jonsson (2005): Quantum geometry: A
Statistical Field Theory Approach

e Duplantier, Sheffield (2008): Liouville Quantum gravity and
KPZ

e Sheffield (2010): Conformal weldings of random surfaces: SLE
and the quantum gravity zipper



2-dimensional quantum gravity

Within this framework:

e Background metric g and curvature R

Liouville action:

LX) = 4= [ (€70 X ()X (x)+ QRX (x) ™) [l

e /1 cosmological constant (set to 0 here)
v = 7V25_f/_6 VIZ¢ (KPZ relation) with ¢ < 1.

Random metric: e?Xg
Liouville measure: e7X/|g|d?x
_ 2 o
RQ==+3
In this talk, the background metric will be flat, i.e. g will be the
standard Euclidean metric.



2-dimensional quantum gravity

Can one define
e Random metric: e?X®) for v <27

o Liouville measure: e"Xd?x for v < 2?

We will discuss in this talk the construction of the Liouville
measure (and other Tachyon fields). One must distinguish 2 cases:

o v <2 eXd%x
o v =2 —Xe*Xd?x and e*Xd?x. Are these measures the
same?



The Liouville measure for v < 2

Theorem ( , 1985)

There exists a random measure M such that following limit
exists almost surely in the space of Radon measures:

2
e M?O(dx) — M"O(dx).
e—0

M7 js called Gaussian multiplicative chaos associated to the
Green kernel in D.



The Liouville measure for v < 2

Theorem ( , 1985)

The measure M"? is different from O if and only if v < 4.

Theorem ( , 1985)

For % < 4, the measure M""° "lives” almost surely on a set of
2
Hausdorff dimension 2 — %-.



CFT with central charge ¢ = 1 coupled to Gravity

e Polyakov action on a domain D
1 1
S(X,Y) = / |VY(X)|d2x—|—/ IVX(x) >4+ QR(x)X (x)d?x,
47T D 47T D

R is the curvature and Q@ =2

e Equivalence class of random surfaces:
(X,Y) = (Xoy+2Inj|, Y o),

where ¢ : D — D is a conformal map. See Ginsparg, Moore
(1993), Lectures on 2D gravity and 2D string theory or
Duplantier, Sheffield (2008).



Critical Gaussian multiplicative chaos: Liouville measure

for v =2

Theorem ( , 2012)

There exists a random measure M such that following limit exists
almost surely in the space of Radon measures:

1 /
2 1 2,0
£%(21In 8 Xe(x))MZ(dx) e M (dx).

The measure M has no atoms. M’ is called critical Gaussian
multiplicative chaos associated to the Green kernel.



Critical Gaussian multiplicative chaos: Liouville measure
for v =2

Theorem ( , 2012)

The following limit exists almost surely (along suitable
subsequences) in the space of Radon measures:

\/In 152M20(dx) — 2M(dx)
e—0

Theorem ( , 2013)

The measure M’ lives on a set of Hausdorff dimension Q.



Looking for other Tachyon fields

2 2
We want to study the limit of (5%7% Mg’ﬂ(dx))oo.
We introduce the following phase

P={y+8<2yelL2[fu{?+p <2}



Complex Gaussian multiplicative chaos: Phase diagram

Figure: Phase diagram



Looking for other Tachyon fields

Theorem ( , 2013)

There exists p > 1 such that for ~, 5 in phase P:

For all compactly supported bounded measurable function f,
the martingale

(5% / F(x) M2 (dx)).
D

is uniformly bounded in L.
The D'(D)-valued martingale:

72

2
M2P e [ oM
Rd

converges almost surely in the space D5(D) of distributions of
order 2 towards a non trivial limit M5,



Looking for other Tachyon fields

We denote

i

My (o) = XCIHBY ()= FEX (P T ELY (02 ¢ (. D)2~ ol

where C(x, D) is the conformal radius. This is because we do not
renormalize by the mean!



Looking for other Tachyon fields

Under the above equivalence class (¢ : D — D)

M%B ( ) —_ ’w/ o ¢—1‘27—L22+§—2M%5 ( o w—l)
Xow+2In[y/], Yo\ P X, y\¥ ;

for every function ¢ € C2(D)

Tachyon Fields are conformally invariant. One must solve

72 52
2 -5+ —2=00y£6=2 7eL2]



Liouville Brownian motion for v = 2

The Liouville Brownian motion for v = 2 can be thought of as the
solution of the following formal SDE

BX:() =X
{ d;?); = e X(B) dB,. )

where B is a Brownian motion. By the Dambis-Schwarz theorem
(or rather the Knight theorem in dimension 2) we can rewrite (1)
as /
aw
B;( = X+ B<Bx>t,
where (B;),>0 is another two-dimensional Brownian motion and

the quadratic variation (B*) of B is given by:

s
(BX)t :=inf{s >0 : / eXOHBu) gy > ¢
0



Liouville Brownian motion for v = 2

Of course, the above considerations are formal but it is natural to
consider the regularized field X; and to take the limit as ¢ — 0 of
B> where B is given by:

B?X la:W X + B<Be,x>t , (2)

where (B;),>0 is another two-dimensional Brownian motion and
the quadratic variation (B*) of B“* is given by:

s
(B)¢ :=inf{s >0 : y/|In 6]52/ e2XeOFBu) gy > 1}
0

Finally, we introduce the following notation

t
Fe(x,t) =+/|Ine 62/ e2X=(x+Bu) 4.
0



Liouville Brownian motion for v = 2

Theorem ( , 2013)

Almost surely in X, for M" all y (and all y € Q>N D), the family
(F<(y,-))e converges in law under PB in C(R.) equipped with the
sup-norm topology towards a continuous increasing mapping
F(y,-). Let us define the process t — (BY): by:

VE>0, Fly,(B)) =t

The law of the Liouville Brownian motion BY starting from y is
then given by

B! =y + By,

The process BY is reversible with respect to M.
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