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1. Introduction

“Le plus court chemin entre deux vérités dans le domaine réel passe par le domaine
complexe.! ”

J. Hadamard.

The above quote captures the depth analysis can bring when one is confronted by number
theoretic questions. The oldest and most fundamental of such questions is the study of prime
numbers. The first question to be answered is: Are there an infinite number of primes? This can
be answered by a number of simple proofs (several other proofs are given in [7]):

— Euclid: Assume there are a finite number of primes pq,...,p,, then pipo---p, + 1 is not

divisible by any of the p;’s, so any of its prime divisors yields a new prime number (Euclid
only considered the case n = 3).

Pélya: The Fermat numbers F,, = 22" + 1 are pairwise relatively prime, so the set of their
prime divisors must be infinite.

Erdés: Fix 2 and consider the primes py,...,p, < z. Since every integer is the product
of a perfect square and a squarefree number, one can write every integer m < z as m =
pit - pir@?, where e; € {0,1} and Q% < z. There are 2" choices for the e; and \/z choices

for @, so it follows that n > 21?158)

Fuler: One has the formal identity

I H 1
s 1— p—s
n n p prime p
which in fact holds for R(s) > 1. As s — 1, the left hand side of (1) tends to oo since the
harmonic series diverges, so there must be an infinite number of factors on the right.

This proof can be modified by noting that ((2) = 72/6, where ((s) = > 1/n°. If there
were only a finite number of primes, then (1) would imply that 72 is rational, proved false by
Legendre in 1797, see also [6].

A stronger version of this is due to Mertens: The finite version of (1) gives

1 1
1;[$ > Zg Nhl(a?),

n<x

! “The shortest path between two truths in the real domain passes through the complex domain.”
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and taking logs will give

(2) Z 1 ~ Inln(z),

p<z P
and so there are an infinite number of primes.

Which of these is the “best” proof? One argument would say that it is the one which allows the
best generalisation. For example, Euclid’s proof easily shows that there are an infinite number of
primes of the form 4k 4 3 (consider 4p; - - - p, — 3), but seems to fall flat when trying to prove that
the same holds for primes of the form 4% + 1 (one has to consider 4(py -+ -p,)* + 1). In general, one
wants to demonstrate Dirichlet’s assertion (that he proved in 1837, in [3]) “there are an infinite
number of primes of the form ak + b, where a and b are relatively prime.” It turns out that the
proof of this deep fact uses a generalisation of Euler’s method, i.e., equation (2):

1 e . .
Z — = 00 < there are an infinite number of primes in ak + g.
p=amodgq

2. Dirichlet’s Theorem

Let y be a multiplicative character, with period ¢, that it is to say a complex valued function
x(n) satisfying x(mn) = x(m)x(n), x(1) = 1 and x(0) = 0 (this implies that if x(n) # 0, then it is
a root of unity and so has norm one). An example is the Legendre (or Jacobi if ¢ is not a prime)
symbol

0 if ¢q|n,
x(n) = (ﬁ) =<1 if 22 = n mod ¢ for some =,
—1 otherwise.

In fact, for any ¢ power of an odd prime number, there are exactly ¢(¢) multiplicative characters
with period ¢, all given by y(n) := e2*™(%)/¢(9) for 0 < k < ¢(g) — 1 and where v(n) is such that
n = ¢*(") mod ¢ for any generator of the group of invertible elements of Z /qZ. When ¢ is a power of
2, the definition is little more cumbersome (linked to the “factorisation” n = (—1)*1("52(") mod ¢),
and for general g, it is the product of characters of the factors of g. The importance of characters
is seen by the following orthogonality relation:

1  whenever n = a mod g,
(3) ZX {

0 otherwise,

where the sum is over all the characters (the two real ones and the other complex characters). The
orthogonalily relation allows one to pick out an arithmetic progression. For his proof, Dirichlet
introduced what are nowadays called Dirichlet L-functions, defined by

[TERUPD SR N, |y R S

2w o

Taking logarithm leads to In L(s, x) = >°, —In(1 — x(p)p~*), thus one has

ZX )n L(s, x) ! ZX Z—hl(l_X(P)P_S)

o(q)

—sk
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and a simple application of relation (3) gives

—sk

1
(4) @EX:X( In L(s,x) = Z Z pk = Z po+0(1), s—1%.

p k>1 p=amodgq
p¥=amodg

Then, by splitting the sum in real and complex characters, one gets

(5) Yot g X X Y M@ +on)

p=amodyg X=X0 X:< ) x complex
q

Xo is called the principal character and equals 1 whenever n Z 0 mod ¢ and 0 otherwise. The first
sum (over xo) is +00, as L(s, xo) = ((s) [I,,(1 — p~*). This infinite term should imply that there
are an infinite number of primes in the arithmetic progression. The only problem is that one of
the other terms could cancel this one by being —oo at s = 1. The Abel summation criterion shows
that L(1, x) is finite. One therefore has to show that L(1, x) # 0.

This is definitely true for complex characters since otherwise, by setting ¢ = 1 and taking the
exponential in (4), one has Hx |L(1,x)| > 1 which is incompatible with a zero of order at least 2
(coming from L(1,x) = 0 and L(1,X) = 0) versus a single pole in s = 1. Hence the last sum in
relation (5) is bounded.

The real problem is then to bound the middle sum in relation (5), that is to say to show that
L(1,(-/q)) # 0. Dirichlet proved this result by a very ingenious method: He evaluated this number
in closed form! This is now known as Dirichlet’s class number formula:

h_ when ¢ = 1 mod 4
0# L(1,(-/0) = {;{
Va

where h is the class number of Q(1/(—1)(4+1)/2¢) and e its fundamental unit and w the number of
roots of unity in this field (see the canonical reference [2]). Since each of these quantities counts
something, they are positive, the result now follows:

Z p_1 = +o0.

p=amodyg

when ¢ = 3 mod 4

Simpler proofs using only complex analysis are also possible. The idea is to use Landau’s theorem
that a Dirichlet series with positive terms has a pole at its abscissa of convergence and apply it to
Hx L(s,x) which has just been shown to have positive coefficients.

3. Prime Number Theorem

The distribution of primes is quite irregular, so it is easier to study their statistical behaviour. In
this direction, let 7(z) be the number of primes < z. Gauss conjectured that 7(z) ~ [ £ =: Li(2).
This assertion simply says: “the probability that n is prime is about 1/Inn.” This result was
finally proved by Hadamard and La Vallée Poussin in 1896. Both of them used fundamental ideas
of Riemann who was the first to introduce complex analysis in the study of the distribution of
prime numbers.

Using Perron’s formula, namely

ctioo ot sd
Z In(p 1 ¢'(s) x®ds

e ~ 2in c—ico C(s) s
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and using residues, Riemann essentially found what is perhaps the most important formula in
analytic number theory (the von Mangoldt explicit formula):

(6) Z In(p) ==z — 4;58; — 4(2); % =z —In(27)— Z 2 %ln(l — 7Y,

R(p)>0 P

where sum on the right is over the zeroes of the Riemann ( function. These zeroes can be split
up into two types: The trivial zeroes at —2,—4,—6, ..., and the zeroes with 0 < R < 1 (the right
hand side of (6) reflects this dichotomy). This formula has many interesting properties and reflects
the following principles of analytic number theory:

1. Primes should always be counted with weight In(p);

2. Primes and prime powers should be counted together;

3. There are much less prime powers than primes;

4. The zeroes of the { function are the “fundamental frequencies” of the primes, and in this sense
are dual to the primes.

Following Chebyshev, one defines 6(z) = > . In(p) and ¢(z) = > ... In(p) = >, .. Aln),
where A(n) = In(p) when n = p™, and zero otherwise. A fairly straightforward partial summation
shows that the prime number theorem is equivalent to ¥(z) ~ z (note that trivially, ¥(z) =

6(z) + O(\/z)), and that more generally,
P(z) =2+ R(z) < 7(z) ~ Li(z) + O(R(z)/In(z)).

One can then see from the explicit formula (6) that the prime number theorem would follow if one
can bound Rp < 1, since each error term would then be of order < z. The prime number theorem
would then be equivalent to showing that ((1 4 ¢¢) # 0 for ¢ # 0. In fact, this is an equivalence
(as was later shown by Wiener) and Hadamard and La Vallée Poussin were able to prove that
¢(14 ¢t) # 0 using some ingenious trigonometric identities. We will give a proof due to Mertens, in
1898. Set p = 1+1t, then ((p) = 0 = RIn (04 it) — —oo when o — 1 (we restrict to R(o) > 1).
But, by the Euler identity, one has In ((s) = Ep Ele m~1p~™ exp(—itmIn(p)) and so

Rin((s) = Z Z m~ p~™ cos(—tmIn(p)).

p m>1

Mertens’ trick consists in noticing that 2(1 4 cos 3)* = 3+ 4cosB + cos28 > 0, thus 3In((o) +
ARIn ((o + it) + RIn (o + 2it) > 0, hence (*(0)|¢*(o + it)((o + 2it)| > 1.

But, as ¢ — 1, one has ((c) ~ (¢ — 1)7! and [((0 + it)] ~ A(c — 1) for a some constant A (by
analyticity). So one should have ((o+2it) — oo, this contradicts the fact that ((14 2:¢) is bounded
(by the Abel summation criterion). In conclusion, the ¢ function has no zero with R(p) = 1, the
PNT is proved. Note that by mixing his proof of the PNT and the proof of Dirichlet’s theorem, La
Vallée Poussin proved also that there is asymptotically 7(z)/¢(q) primes of the shape a 4 ¢n less
than 2. An elementary (i.e. without complex analysis) proof of the PNT was subsequently found
by Erd6s and Selberg in 1949 (see [4] and [9]).

4. Chebyshev’s Bias

All numerical evidence shows that 7(z) < Li(z) and it was long believed that this would be true
for all z. Similarly, Chebyshev noted that the number of primes of the form 4k+3 seemed to be more
abundant than the primes of the form 4k + 1, more precisely, let 7, ,(z) = |[{p < 2 : p = a mod ¢}
then m43(z) > ma1(2).
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In fact, Littlewood proved in 1914 that m(z) — Li(z) changes sign infinitely often and the same
is true for mq 3(2) — m41(z). In 1957 Leech showed that 74 1(2) > m43(2) is first true for z = 26861.
That the similar inequality 731(z) > 73 2(2) is first true for z = 608981813029 was shown by Bays

65
and Hudson in 1978. No example of 7(z) > Li(z) is known. Skewes first gave an upper bound e°
which was later reduced by Sherman-Lehman and then te Riele [10] who gave an upper bound of
10°7°.

This behaviour can easily be explained using explicit formulas. In the case of 7(z), the point
is the following: The explicit formula (6) expresses ¢(z) as a sum of powers z”. Assuming the
Riemann Hypothesis, one can write this as

p@=a-at (Y

¢(1/2+iv)=0

" 1/2
— o(x™4).
1/2 + iy +of )
One can now see the reason for the bias: The function ¢ () does not count primes but prime powers
so what one really wants is the behaviour of §(z) which is given by

6(z) = ¥(z) — 6(v/x) + O(2'%),
so that

_ 1/2
12+ Fole™)-

O(z) = —z'? [ 1+ Z

C(1/2+iv)=

The function
z ei'y In(z)
. 9
casrmy=o V2T
is a very slowly oscillating trigonometric series which should be zero on average, so the extra term
biases #(x) to be smaller than z on average. A simple description is that Li(z) counts the number
of prime powers < z, so the number of primes should be slightly less since the number of prime
squares is of the same order as the error term.
There is a similar explanation for the bias in arithmetic progressions. There is an explicit formula

"X

Z xX(n)In(p) = —'/* Z i 2+ i, + o(a'?),

p<z L(1/241vy,x)=
where the Generalised Riemann Hypothesis has been assumed (there is no @ term since L(1,x) is

no longer a pole if x # xo). As before one has

1/2 27X

Grale) = 3 W)= oS- oS YO Y s

p"=amodyg L(1/2+4ivx)=
p"<z

but one really wants to look at

brale)= Y (p)=veale) = Y In(p)+0("?) = Yyal2) = cpua'/? + O('),
p=amodg p?=amodg
p<z p’<z
where ¢, , is the number of solutions of y?> = @ mod ¢. In particular, the same argument shows
that there will always be fewer primes in the progression ¢n + a when « is a residue than when a is
a nonresidue. Simply put, the “balanced” count is the set of prime powers = @ mod ¢ so there are
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fewer primes = a mod ¢ when a is quadratic residue since the number of prime squares congruent
to a is of the same order as the error term in the analytic formulas.

In 1994, Rubinstein and Sarnak [8] were able to make Chebyshev’s bias precise. Assuming GRH
(if this is false, then there is no bias) and also the Grand Simplicity Hypothesis (GSH: All the
ordinates of zeroes of L-function are linearly independent over Q), then

1 1
e > — 00000026, — > — .9959.
m(n)>Lin ma,3(n)>74,1(n)
n<z n<z
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