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Abstract. We introduce a novel compositional algebra of Petri nets,
as well as a stateful extension of the calculus of connectors. These two
formalisms are shown to have the same expressive power.

Introduction

In part owing to their intuitive graphical representation, Petri nets [28] are of-
ten used both in theoretical and applied research to specify systems and visu-
alise their behaviour. On the other hand, process algebras are built around the
principle of compositionality: their semantics is given structurally so that the
behaviour of the whole system is a function of the behaviour of its subsystems.
Indeed, Petri nets and process calculi differ in how their underlying semantics is
defined: Petri nets via some kind of globally defined transition system of “firing”
transitions, and process calculi via an inductively generated (SOS [27]) labelled
transition system. As a consequence, the two are associated with different mod-
elling methodologies and reasoning techniques.

There has been much research concentrating on relating the two domains.
This paper continues this tradition by showing that a certain class of Petri nets
has, in a precise way, the same expressive power as a process calculus.

Technically, we introduce a compositional extension of Condition/Event nets
with consume/produce loops. A net is associated with left and right interfaces to
which its transitions may connect. Composition of two such nets along a common
boundary occurs via a kind of synchronisation of transitions. This notion of
compositionality is related to the concept of open nets [4–6].

On the other hand, the process calculus can be considered an extension of
(an SOS presentation of) stateless connectors [9] with a very simple notion of
state: essentially a one-place buffer. A related extension was considered in [3].

The operations of well-known process algebras have influenced research on
Petri nets and various translations have been considered. In the 1990s there was
a considerable amount of research that, roughly speaking, related and adapted
the operations of the CCS [23] and related calculi to Petri nets. An example
of this is the Petri Box calculus [7, 20] and, to a lesser extent, the combinators
of Nielsen, Priese and Sassone [26]. More recently, Cerone [11] defined several
translations from C/E nets to the Circal process algebra, that like CCS is based
on a binary composition and hiding operators. Other recent related work has
included endowing Petri nets with labelled transition systems, using techniques
and intuitions originating from process calculi, see [21,24,29].



Conversely, there has also been considerable work on translating process cal-
culi to Petri nets: representative examples include [10, 12, 14, 31]. Recently [15]
suggests a set of operations for open nets to which an SOS semantics is assigned.

The operations of the calculus presented in this paper are fundamentally dif-
ferent to those utilised in the aforementioned literature. Indeed, they are closer
in nature to those of tile logic [13] and Span(Graph) [18] than to the oper-
ations of CCS. More recently, similar operations have been used by Reo [2],
glue for component-based systems [8] and the wire calculus [30]. Indeed, in [17]
Span(Graph) is used to capture the state space of P/T nets; this work is close
in spirit to the translation from nets to terms given in this paper.

Different representations of the same concept can sometimes serve as an
indication of its canonicity. Kleene’s theorem [19, 22] is a well-known example:
on the one hand graphical structures with a globally defined semantics (finite
automata) are shown to have the same expressive power as a language with an
inductively-defined semantics (regular expressions).

Structure of the paper. Nets with boundaries are introduced in §1 and the rele-
vant process calculus, for the purposes of this paper dubbed the “Petri calculus”,
is introduced in §2. The translation from nets to process calculus terms is given
in §3. A reverse translation is given in §4. Future work is discussed in §5.

1 Nets

Definition 1 For the purposes of this paper a Petri net is a 4-tuple N =
(P, T, ◦−, −◦) where1:

∗ P is a set of places;
∗ T is a set of transitions;
∗ ◦−,−◦ : T → 2P are functions.

N is finite when both P and T are finite sets.

The obvious notion of net homomorphisms f : N → M is a pair of functions
fT : TN → TM , fP : PN → PM such that ◦−N ; 2fP = fT ; ◦−M and −◦

N ;
2fP = fT ; −◦

M , where 2fP (X) =
⋃

x∈X{fP (x)}. For a transition t ∈ T , ◦t and
t◦ are called, respectively, its pre- and post-sets. Notice that Definition 1 allows
transitions with empty pre- and post-sets; this option, while counterintuitive for
ordinary nets, will be necessary for nets with boundaries, introduced in §1.1.

Transitions t, u are independent when ◦t ∩ ◦u = ∅ and t◦ ∩ u◦ = ∅. Note
that this notion of independence is quite liberal and allows so-called contact
situations. Moreover, a place p can be both in ◦t and t◦ for some transition t;
some authors refer to this as a consume/produce loop; the notion of contextual
net [25] is related. A set U of transitions is mutually independent when, for all
t, u ∈ U , if t 6= u then t and u are independent. Given a set of transitions U let
◦U =

⋃
u∈U

◦u and U◦ =
⋃

u∈U u◦.

1 In the context of C/E nets some authors call places conditions and transitions events.
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Fig. 1. Traditional and alternative graphical representations of a net.

Definition 2 (Semantics) Let N = (P, T, ◦−, −◦) be a net, X, Y ⊆ P and
t ∈ T . Write:

(N, X) →{t} (N, Y ) def= ◦t ⊆ X, t◦ ⊆ Y & X\◦t = Y \t◦.

For U ⊆ T a set of mutually independent transitions, write:

(N, X) →U (N, Y ) def= ◦U ⊆ X, U◦ ⊆ Y & X\◦U = Y \U◦.

Note that, for any X ⊆ P , (N, X) ∅−→ (N, X). States of this transition system
will be referred to as markings of N .

The left diagram in Fig. 1 demonstrates the traditional graphical representation
of a (marked) net. Places are circles; a marking is represented by the presence
or absence of tokens. Each transition t ∈ T is a rectangle; there are directed
edges from each place in ◦t to t and from t to each place in t◦. This graphical
language is a particular way of drawing hypergraphs; the right diagram in Fig. 1
exemplifies another graphical representation, more suitable for representing the
notion of nets introduced in this paper. Places are again circles, but each has
exactly two ports: one on the left and one on the right. Transitions are undirected
links—each link can connect to any number of ports. Connecting t to the right
port p signifies that p ∈ ◦t, connecting t to the left port means that p ∈ t◦.
Variants of link graphs have been used to characterise various free monoidal
categories: see for instance [1, 16].

1.1 Nets with boundaries

Let k, l,m, n range over finite ordinals: n
def= {0, 1, . . . , n− 1}.

Definition 3 Let m,n ∈ N. A (finite) net with boundaries N : m → n, is a
sextuple (P, T, ◦−, −◦, •−, −•) where:

∗ (P, T, ◦−, −◦) is a finite net;
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Fig. 2. Representation of a net with boundaries 2 → 3. Here T = {α, β, γ, δ, ε, ζ}
and P = {a, b, c, d}. The non-empty values of ◦− and −◦ are: α◦ = {a}, ◦β = {a},
β◦ = {b, c, d}, ◦γ = {b}, ◦δ = {c}. The non-empty values of •− and −• are: •α = {0},
γ• = {1}, δ• = {1}, ζ• = {2}.
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Fig. 3. Illustration of composition of two nets with boundaries.

∗ •− : T → 2m, −• : T → 2n are functions.

We refer to m and n as, respectively, the left and right boundaries of N . An
example is pictured in Fig. 2.

Henceforward we shall usually refer to nets with boundaries as simply nets.
The obvious notion of homomorphism between two nets with equal bound-

aries extends that of ordinary nets: given nets N,M : m → n, f : N → M is a pair
of functions fT : TN → TM , fP : PN → PM such that ◦−N ; 2fP = fT ; ◦−M ,
−◦

N ; 2fP = fT ; −◦
M , •−N = fT ; •−M and −•

N = fT ; −•
M . A homomor-

phism is an isomorphism iff its two components are bijections; we write N ∼= M
when there is an isomorphism from N to M .

The notion of independence of transitions extends to nets with boundaries
in the obvious way: t, u ∈ T are said to be independent when

◦t ∩ ◦u = ∅, t◦ ∩ u◦ = ∅, •t ∩ •u = ∅ and t• ∩ u• = ∅.
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Let M : l → m and N : m → n be nets. In order to define the composition along
their shared boundary, we must first introduce the concept of synchronisation: a
pair (U, V ), with U ⊆ TM and V ⊆ TN mutually independent sets of transitions
such that:

∗ U ∪ V 6= ∅;
∗ U• = •V .

The set of synchronisations inherits an ordering from the subset relation, ie
(U ′, V ′) ⊆ (U, V ) when U ′ ⊆ U and V ′ ⊆ V . A synchronisation is said to be
minimal when it is minimal with respect to this order. Let

TM ;N
def= {(U, V ) | U ⊆ TM , V ⊆ TN , (U, V ) a minimal synchronisation}

Notice that any transition in M or N not connected to the shared boundary m is
a minimal synchronisation in the above sense. Define2 ◦−,−◦ : TM ;N → 2PM+PN

by letting ◦(U, V ) = ◦U ∪ ◦V , (U, V )◦ = U◦ ∪ V ◦. Define •− : TM ;N → 2l by
•(U, V ) = •U and −• : TM ;N → 2n by (U, V )• = V •. The composition of M
and N , written M ; N : l → n, has:

∗ TM ;N as its set of transitions;
∗ PM + PN as its set of places;
∗ ◦−,−◦ : TM ;N → 2PM+PN , •− : TM ;N → 2l, −• : TM ;N → 2n as above.

An example of a composition of two nets is illustrated in Fig. 3.

Proposition 4

(i) Let M,M ′ : k → n and N,N ′ : n → m be nets with M ∼= M ′ and N ∼= N ′.
Then M ; N ∼= M ′ ; N ′

(ii) Let L : k → l, M : l → m, N : m → n be nets. Then (L ; M) ; N ∼= L ;
(M ; N)

ut

We need to define one other binary operation on nets. Given nets M : k → l
and N : m → n, their tensor product is, intuitively the net that results from
putting the two nets side-by-side. Concretely, M ⊗N : k + m → l + n has:

∗ set of transitions TM + TN ;
∗ set of places PM + PN ;
∗ ◦−,−◦, •−,−• defined in the obvious way.

1.2 Semantics

Throughout this paper we use two-labelled transition systems. Labels are words
in {0, 1}∗ and are ranged over by α, β. Write #α for the length of a word α. The
intuitive idea is that a transition p

α−→
β q signifies that a system in state p can,

in a single step, synchronise with α on its left boundary, β on it right boundary
and change its internal state to q.
2 We use + to denote disjoint union.
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Definition 5 (Transitions) For k, l ∈ N, a (k, l)-transition is a two-labelled
transition of the form α−→

β where α, β ∈ {0, 1}∗, #α = k and #β = l. A (k, l)
labelled transition system ((k, l)−LTS) is a transition system that consists of
(k, l)-transitions.

Definition 6 (Bisimilarity) A simulation on a (k, l)−LTS is a relation S on
its set of states that satisfies the following: if (v, w) ∈ S and v

α−→
β v′ then ∃w′

s.t. w
α−→
β w′ and (v′, w′) ∈ S. A bisimulation is a relation S where both S and

S−1 are simulations. Bisimilarity is the largest bisimulation relation.

For any k ∈ N, there is a bijection p−q : 2k → {0, 1}k with

pUqi
def=

{
1 if i ∈ U

0 otherwise
.

Definition 7 (Semantics) Let N : m → n be a net and X, Y ⊆ PN . Write:

(N, X) α−→
β (N,Y ) def= ∃ mutually independent U ⊆ TN s.t.

(N,X) →U (N,Y ), α = p•Uq & β = pU•q (1)

Notice that (N,X) 0m

−−→
0n (N,X).

We conclude this section with a brief remark on the relationship between
nets with boundaries and open nets [4, 6]. While open nets are based on P/T
nets, a similar construction can be carried out for the variant of net given by
Definition 1. Composition in open nets is based on a pushout construction in a
category of open-net morphisms. It is not difficult to show that this open net
composition can be captured by a composition of nets with boundaries. We omit
the details here.

2 Petri calculus

Here we give the syntax and the structural operational semantics of a simple
process calculus, which, for the purposes of this paper, we shall refer to as the
Petri calculus. It results, roughly, from adding a one-place buffer to the calculus
of stateless connectors [9]. The syntax does not feature any binding nor primitives
for recursion.

P ::= © | ©• | I | X | ∆ |

∆

| ⊥⊥⊥ | >>> | Λ | V | ↓↓↓ | ↑↑↑ | P ⊗ P | P ; P

There is an associated sorting. Sorts are of the form (k, l), where k, l ∈ N. The
inference rules are given in Fig. 4. Due to their simplicity, a simple induction
confirms uniqueness of sorting: if ` P : (k, l) and ` P : (k′, l′) then k = k′

and l = l′. We shall only consider sortable terms.
Structural inference rules for operational semantics are given in Fig. 5. The

rule (Refl) guarantees that any term is always capable of “doing nothing”; note
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` © : (1, 1) ` ©• : (1, 1) ` I : (1, 1) ` X : (2, 2)

` ∆ : (1, 2) `

∆

: (2, 1) ` ⊥⊥⊥ : (1, 0) ` >>> : (0, 1)

` Λ : (1, 2) ` V : (2, 1) ` ↓↓↓ : (1, 0) ` ↑↑↑ : (0, 1)

` P : (k, l) ` R : (m, n)

` P⊗R : (k+m, l+n)

` P : (k, n) ` R : (n, l)

` P ;R : (k, l)

Fig. 4. Sort inference rules.

(TkI)
©

1−→0 ©•
(TkO1)

©•
0−→1 ©

(TkO2)
©•

1−→1 ©•
(Id)

I
1−→1 I

a,b∈{0,1}
(Tw)

X
ab−−→
ba X

(∆)
∆

1−→11 ∆

(

∆

)

∆11−−→1

∆

(⊥⊥⊥)
⊥⊥⊥

1−→ ⊥⊥⊥
(>>>)

>>> −→1 >>>

(a∈{0,1})
(Λa)

Λ
1−−→

(1−a)a
Λ

(a∈{0,1})
(Va)

V
(1−a)a−−−−→1 V

P
a−→
c Q R

c−→
b S

(Cut)
P ;R

a−→
b Q;S

P
a−→
b Q R

c−→
d S

(Ten)
P⊗R

ac−−→
bd Q⊗S

P :(k, l)

(Refl)

P
0k

−−→
0l P

Fig. 5. Structural rules for operational semantics.

that this is the only rule that applies to ↓↓↓ and ↑↑↑. Each of the rules (Λa) and (Va)

actually represent two rules, one for a = 0 and one for a = 1.
Bisimilarity on the transition system obtained via the inference rules in Fig. 5

is a congruence. This is important, because it allows us to replace subterms with
bisimilar subterms without affecting the behaviour of the overall term. This fact
will be relied upon in several proofs.

Proposition 8 If P ∼ P ′ then, for any R:

(i) (P ; R) ∼ (P ′ ; R);
(ii) (R ; P ) ∼ (R ; P );
(iii) (P ⊗R) ∼ (P ′ ⊗R);
(iv) (R⊗ P ) ∼ (R⊗ P ′).

ut

A process is a bisimulation equivalence class of a term. We write [t] : (m, n)
for the process that contains t : (m, n).

2.1 Circuit diagrams

In subsequent sections it will often be convenient to use a graphical language
for terms in the Petri calculus. Diagrams in the language will be referred to
as circuit diagrams. We shall be careful, when drawing diagrams, to make sure
that each diagram can be converted to a syntactic expression by “scanning” the
diagram from left to right. The following result justifies the usage.
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© ©•

I X

∆

∆

⊥⊥⊥ >>>

Λ V

↓↓↓ ↑↑↑

Fig. 6. Circuit diagram components.

Lemma 9

(i) Let P : (k, l), Q : (l, m), R : (m, n). Then

(P ; Q) ; R ∼ P ; (Q ; R);

(ii) Let P : (k, l), Q : (m, n), R : (t, u). Then

(P ⊗Q)⊗R ∼ P ⊗ (Q⊗R);

(iii) Let P : (k, l), Q : (l, m), R : (n, t), S : (t, u). Then

(P ; Q)⊗ (R ; S) ∼ (P ⊗R) ; (Q⊗ S).

Proof. Straightforward, using the inductive presentation of the operational se-
mantics. ut

Each of the language constants is represented by a circuit component listed
in Fig. 6. For the translation of §3 we need to construct four additional kinds of
compound terms, for each n > 0:

In : (n, n) dn : (0, 2n) en : (2n, 0) ∆n : (n, 2n) ∇n : (2n, n)

with operational semantics characterised by:

α∈{0,1}n

In
α−→
α In

α∈{0,1}n

dn −→αα dn

α∈{0,1}n

en

αα−−→ en

α∈{0,1}n

∆n

α−→
αα ∆n

α∈{0,1}n

∇n

αα−−→
α ∇n

(2)

First, In =
⊗

n I. Now because dn and en, as well as ∆n and ∇n are symmetric,
here we only construct dn and ∆n. Each is defined recursively:

d1 =>>> ; ∆ dn+1 = dn ; (In ⊗ d1 ⊗ In); (In+1 ⊗ Xn)
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∆1 = ∆ ∆n+1 = (∆⊗∆n) ; (I⊗ Xn ⊗ In)

where also Xn : (n + 1, n + 1) is defined recursively:

X1 = X Xn+1 = (Xn ⊗ I) ; (In ⊗ X).

An easy induction on the derivation of a transition confirms that these construc-
tion produce terms whose semantics is characterised by (2).

2.2 Relational forms

For θ ∈ {X,∆,

∆

,⊥⊥⊥,>>>,Λ,V,↓↓↓,↑↑↑} let Tθ denote the set of terms generated by the
following grammar:

Tθ ::= θ | I | Tθ ⊗ Tθ | Tθ ; Tθ.

We shall use tθ to range over terms of Tθ. We now identify two classes of terms
of the Petri calculus: the relational forms.

Definition 10 A term t : (k, l) is in right relational form when

t = t⊥⊥⊥ ; t∆ ; tX ; tV ; t↑↑↑.

Dually, t is said to be in left relational form when

t = t↓↓↓ ; tΛ ; tX ; t ∆; t>>>.

The following result spells out the significance of the relational forms.

Lemma 11 For each function f : k → 2l there exists a term ρf : (k, l) in right
relational form, the dynamics of which are characterised by the following:

ρf

pUq−−−→
pV q ρf

⇔ U ⊆ k s. t. ∀u, v ∈ U. u 6= v ⇒ f(u) ∩ f(v) = ∅ & V = f(U)

The symmetric result holds for functions f : k → 2l and terms t : (l, k) in
left relational form. Write λf : (l, k) for any term in left relational form that
corresponds to f in the above sense.

Proof. Any function f : k → 2l induces a triple (m, lf : m → k, rf : m → l)
where lf and rf are jointly injective, ie the function (lf , rf ) : m → k × l is
injective, and f(i) =

⋃
j∈l−1

f (i) rf (j) where l−1
f (i) = {j | lf (j) = i}. Any two

such triples are isomorphic as spans of functions. It is not difficult to verify that
any function lf : m → k gives rise to a term tlf of the form t⊥⊥⊥ ; t∆ ; tX, the
semantics of which are characterised by tlf

pUq−−−→
pl
−1
f

(U)q
tlf for any U ∈ k where for

all u, v ∈ U , l−1
f (u) ∩ l−1

f (v) = ∅. Also, any function rf : m → l gives rise to a

term trf
of the form tX ; tV ; t↓↓↓, the semantics of which are trf

pV q−−−→
pW q trf

where
∀w ∈ W there exists unique v ∈ V such that rf (v) = w. It thus suffices to let
ρf = tlf ; trf

. ut

A simple example is given in Fig. 7. Note that not all terms t : (k, l) in right
relational form are bisimilar to ρf for some f : k → 2l; a simple counterexample
is ∆ ; V : (1, 1).
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Fig. 7. Right relational form of f : 4 → 24 defined f(0), f(1) = {0}, f(2) = ∅ and
f(3) = {1, 2}.

IT

wP,Xρ−◦ λ◦−

dT eT

∆T∇T

λ•− ρ−•

Fig. 8. Diagrammatic representation of the translation from a marked net to a term.

3 Translating nets to Petri calculus terms

Here we present a translation from nets with boundaries, defined in §1, to the
process calculus defined in §2. Let N : m → n = (P, T, ◦−, −◦, •−, −•) be
a finite net with boundary and X ⊆ P a marking. Assume, without loss of
generality, that P = p and T = t for some p, t ∈ N. Let

wP, X : (p, p) def=
⊗
i<p

mi where mi
def=

{
©• if i ∈ X

© otherwise

The following technical result will be useful for showing that the encoding of
this section is correct.

Lemma 12 wP,X
pZq−−−→
pW q Q iff Q = wP,Y , W ⊆ X, Z ⊆ Y and X\W = Y \Z.

Proof. Examination of rules (TkI), (TkO1) and (TKO2), together with the rule (Ten).
ut

The translation of N can now be expressed as:

TN,X
def= (dT ⊗ λ•−) ; (IT ⊗ (

∆

T ; ρ−◦ ; wP,X ; λ◦− ; ∆T )); (eT ⊗ ρ−•).

A circuit diagram representation of the above term is illustrated in Fig. 8.
The encoding preserves and reflects semantics in a very tight manner, as

shown by the following.
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Theorem 13 Let N be a finite net. The following hold:

(i) if (N,X) α−→
β (N,Y ) then TN,X

α−→
β TN,Y ;

(ii) conversely, if TN,X
α−→
β Q then there exists Y such that Q = TN,Y and

(N,X) α−→
β (N,Y ).

Proof. (i) If (N,X) α−→
β (N,Y ) then there exists a set U ⊆ t of mutually inde-

pendent transitions such that (N,X) →U (N,Y ), with α = p•Uq and β = pU•q.
Using the conclusion of Lemma 12, we have

wP,X
pU◦q−−−−→
p◦Uq wP,Y .

Now, using the conclusion of Lemma 11 and (Cut) we obtain transition

ρ−◦ ; wP,X ; λ◦−
pUq−−−→
pUq ρ−◦ ; wP,Y ; λ◦−

and subsequently

∇T ; ρ−◦ ; wP,X ; λ◦− ; ∆T
pUqpUq−−−−−−→
pUqpUq ∇T ; ρ−◦ ; wP,Y ; λ◦− ; ∆T

Certainly IT
pUq−−−→
pUq IT , thus using the semantics of dT and eT we obtain:

TN,X
p•Uq−−−−→
pU•q TN,Y

as required.

(ii) If TN,X
α−→
β Q then Q = (dT ⊗ λ•−) ; Q1 ; (eT ⊗ ρ−•) and

IT ⊗ (∇T ; ρ−◦ ; wP,X ; λ◦− ; ∆T ) pUqpUqpV q−−−−−−−−→
pU′qpU′qpV ′q Q1

For some U, V, U ′, V ′ ⊆ t with α = p•V q and β = pV ′•q. The structure of (Ten)

and the semantics of IT imply that U = U ′ and Q1 = IT ⊗Q2 with

∇T ; ρ−◦ ; wP,X ; λ◦− ; ∆T
pUqpV q−−−−−−→
pUqpV ′q Q2

Now the semantics of ∆T implies that U = V and conversely, the semantics of
∇T that U = V ′, moreover Q2 = ∇T ; Q3 ; δT with

ρ−◦ ; wP,X ; λ◦−
pUq−−−→
pUq Q3

Finally, using the conclusion of Lemma 11, we obtain Q3 = ρ−◦ ; Q4 ; λ◦− and

wP,X
pU◦q−−−−→
p◦Uq Q4

In particular, we obtain that Q4 = wP,Y and (N,X) α−→
β (N,Y ). ut
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J©K def
= J©• K def

=

JIK def
= JXK def

=

J∆K def
= J

∆

K def
=

J>>>K def
= J⊥⊥⊥K def

=

JΛK def
= JVK def

=

J↑↑↑K def
= J↓↓↓K def

=

Fig. 9. Translation from calculus constants to nets with marking.

4 Translating Petri calculus terms to nets

Each of the constants of the Petri calculus has a corresponding net with the same
semantics: this translation is given in Fig. 9. The naive way of extending this
translation to all terms would then be to let Jt1 ; t2K = Jt1K ; Jt2K and Jt1 ⊗ t2K =
Jt1K⊗ Jt2K. The naive translation does not reflect behaviour, essentially because
of three problematic compositions that involve Λ and/or V. First, consider the
net that would result from translating the term V ;⊥⊥⊥ : (2, 0):

=

According to the inductive system in Fig. 5, the non-trivial transitions of the
operational semantics of V ; ⊥⊥⊥ are: V ; ⊥⊥⊥ 10−−→ V ; ⊥⊥⊥ and V ; ⊥⊥⊥ 01−−→ V ; ⊥⊥⊥. Now
JV ;⊥⊥⊥K has the above transitions, but also an extra transition: JV ;⊥⊥⊥K 11−−→ JV ;⊥⊥⊥K.
The second problematic composition is >>> ; Λ, which is symmetric to the above
situation.

The third and final problematic composition amongst constants arises when
translating the term V ; Λ : (2, 2). Here the net composition of the translated
components is:

=

Now the non-trivial derivable transitions are

(V ; Λ) 01−−→01 (V ; Λ), (V ; Λ) 10−−→10 (V ; Λ), (V ; Λ) 01−−→10 (V ; Λ), (V ; Λ) 10−−→01 (V ; Λ).

Again, the encoding introduces an additional transition

JV ; ΛK 11−−→11 JV ; ΛK.

The solution, then, is to first transform each term t into a bisimilar term t′ in a
form which allows compositional translation into a bisimilar net Nt′ .
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 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

Fig. 10. Rewriting system for V.

The initial transformation is best understood via the circuit diagram repre-
sentation of a term, the soundness of which is ensured by Lemma 9. We say that
a term is in composable form when, in its circuit diagram:

(i) any occurrence of V is connected on the right to either the right boundary,
another occurrence of V, © or ©• ;

(ii) any occurrence of Λ is connected on the left to either the left boundary,
another occurrence of Λ, © or ©• ;

If a term t can can be transformed into the above form then it follows that it can
be written as t1 = tΛ ; t2 ; tV, where in t2 any occurrence of Λ and V is within
a subterm of the form tV ; © ; tΛ (*), or tV ; ©• ; tΛ (**). Terms of the form
(*) and (**) translate into correct nets, by a case straightforward analysis, the
translation can be continued compositionally to obtain a net Nt1 with marking
Xt1 such that (Nt1 , Xt1) ∼ t1.

Theorem 14 For each term t there exists a net Nt such that t ∼ Nt.
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Proof. By the above reasoning, it suffices to show that a term can be trans-
formed into composable form. For this we apply transformations to individual
occurrences of V and Λ until the requirements of composable form are met. The
rules for V are given in Fig. 10. Rules (8) and (9) deal with V’s problematic
compositions. The other rules “push V to the right”. The complete rewriting
system is obtained by including the symmetric versions of (3), (4), (5), (6), (7)
and (8) for Λ. ut

5 Conclusion and future work

We showed that the class of nets with boundaries has the same expressiveness as
a simple process calculus with operations that are fundamentally different from
those of CCS, but closely related to operations of coordination languages. As
future work it will be interesting to capture the expressive power of other classes
of nets, for instance P/T nets with boundaries, with extensions of the process
calculus presented here.

Acknowledgment. The author thanks Jennifer Lantair and the anonymous ref-
erees for helpful suggestions.
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30. P. Sobociński. A non-interleaving process calculus for multi-party synchronisation.
In Interaction and Concurrency (ICE ‘09), volume 12 of EPTCS, 2009.

31. R. van Glabbeek and F. Vaandrager. Petri net models for algebraic theories of
concurrency. In PARLE, Parallel Architectures and Languages Europe, Volume II,
volume 259 of LNCS. Springer, 1987.

15


