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Bisimulation from a graphical encoding 
(DPOs, cospans, relative POs and all that)



some reminiscing...

• Back in 1995, my Ph.D. dealt with the search for 
algebraic presentations of rewriting systems.

• Differently from the Rewriting Logic formalism, 
the idea was not to equip an algebraic theory (i.e., 
a cartesian category) with additional operators... 

• ...but to identify suitable categories for recovering 
the “terms as arrows, rewrites as cells” analogy!



rationale and method
• Equip set-theoretical formalisms (best suited for 

implementation purposes) with an algebraic 
presentation (best suited for inductive reasoning)

• The methodology

• consider your favorite RS (states plus reductions)

• find a free categorical presentation (consider e.g. 
cartesian categories for terms, monoidal categories 
for Petri nets), such that states are arrows

• then rules are pairs of arrows, and computations 
are cells of the free 2-category 



similarities and applications

• The methodology underlines e.g. the lambda 
calculus, and cartesian closed categories: objects 
are types, lambda-terms are arrows, beta-eta 
reductions are cells...

• The topic was tested for some RSs: infinite terms, 
(cyclic) term graphs, ... 

• The same mechanism was the basis for tile logic 
(since a double category is a 2-category in Cats), 
aimed at capturing process calculi specs

late 90’s, mostly with Andrea

late 90’s, mostly with Ugo



dealing with graphs...

• Then, I moved to Berlin for a post-doctoral stay, 
and I tried the same ideas on DPO...

• but which is the category with “graphs as arrows”? 

• Solution: graph cospans and free compact closed 
categories [GH, WADT97][GHL,CTCS99]



My current view of DPO



Why graph rewriting (late Sixties, early Seventies)
generalizes Chomsky grammars (adding data sharing)
used in constraint solving and data structuring (70’s)
applied as a (visual) specification technique (80’s-90’s)

but...
no (obvious) algebraic structure (no induction)
neither (temporal) logic nor calculus

shortly, graph rewriting...

Many data structures (HLR, adhesive...) 
for the same meta-approach 



arrows in C
(possibly mono)

pushout in C

DPO approach
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A category is adhesive if
1. it has pushouts along monos
2. it has pullbacks
3. pushout along monos are Van Kampen squares

shortly, adhesive categories
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pushout in C

arrows in C

cospan definition

an arrow

composition

cocomplete C
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DPO connection
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DPOs vs. Cospans

• (A sub-category of) Cospans over graphs are the 
free compact closed (bi-)category built from the 
unary signature for graphs 

• The DPO approach is operational: search for a 
match, build the PO complement...

• The free construction (using cospans) is algebraic: 
inductive closure of a set of basic rules...



recent facts on LTSs



some familiar remarks...

often, the operational semantics of a 
computational formalism is given by 
means of a reduction system...

(λx.M)N ⇒ M [N/x] functional 
paradigm

α.P |α ⇒ P
process 
calculi



reductions are inductively built...

the semantics is often closed by contexts... 

the states may have a complex structure...

possibly forbidding  some contexts
from allowing the reduction to take 

place

P !! Q

C[P ] !! C[Q]

α | α.P ⇒ P



our simple example...
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interaction vs computation 
Albeit often self -intuitive, reduction may lack compositionality

(in capturing the behaviour of a process)

Or, in other words, it is important the 
interaction of  a process with an environment 

as the basis for a semantical analysis!!

It would be nice to restrict to just a few contexts 
(e.g., linear—not duplicating the process), still 

preserving equivalence with respect to a! contexts

P ≡ Q if ∀C[ ] : P(C[P ]) ⇐⇒ P(C[Q])



a different style...

Labe!ed transition systems may enrich 
reductions with an observation of the 

actions offered to the environment

Thus, a process may be studied in isolation, 
by so called behavioural congruences 

Since late 70s, Plotkin’ SOS 
influenced the style of presenting 

the operational semantics



some facts
• After Milner’s proposal for pi, use of reduction 

semantics has become increasingly popular for 
nominal calculi (consider e.g. mobile ambients)

• Still, it would be highly desirable to recover an 
observational semantics, possibly independently 
from the presentation of a calculus...

• In general terms, how to distill a suitable labelled  
transition system from a reduction system, at the 
same time ensuring congruence for the chosen 
behavioural equivalence ?



the context-as-label proposal
Aim: use enabling contexts as labels [Sewell98]

C[P ] !! Q

P
C[ ]

!! Q

• how to minimize the labels (otherwise, of little use)
• how to recover congruence?
• how to establish meaning (e.g., correspondence results)?

problems...



the Relative PO choice
proposed by Leifer 

and Milner [00]

generalised by Sassone
and Sobocinski [03]
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the RPO definition
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arrows in C

alternative RPO definition

span of arrows 
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a derivation
not necessarily a pushout, 

but an IPO (no further 
factorizing of the diagram)

problems...
• what is the associated equivalence? Hard to assess...
• from rules to labelled rules, instead of labelled transitions
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mixing graphs and processes



sad fact...

• the category with sets of process variables as 
objects and structurally congruent processes as 
arrows does not have all POs...

• (grupoidal) relative POs exist (this is the reason 
for their introduction), but then analysing the 
bisimilarity induced by the transition system is 
very hard...



cospans of adhesive cats
for adhesive     its cospan category has (G)RPOsC

[SS05]
hence, an observational semantics 

for graph rewriting systems
(subsumes [HK04])

sanity check: maps processes into graphs, 
reduction rules into DPO rules, and 
check out the resulting bisimilarity 

[GM06]



 a discrete graph cospan (r, G,v) is a graph G with 

• a function v from a set of variables V to N; and

• a function r from a from a set of roots R to N.

we need a graph cospan...

A process P is mapped to a discrete graph cospan G(P) with 
set of variables fn(P) and set of roots {p}

(in other terms, the functions trace the free names of a process, 
as well as its top operators)



...with four types of edges...

(for label op either snd or rcv)
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..and the coalescing of nodes

...another
graph cospan...
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...and the coalescing of nodes.

...and their sequential composition!!
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encoding restriction

restriction takes a node 
out of the interface 
(making it convertible)

is post-composed
with the cospan
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dealing with conversion

(and also for any renaming of the x variable !!)

the graph is the encoding for (νx)(y.x.0)
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sound and complete

Let P be a process.

1. A graph cospan G(P) –i.e., the encoding for P– 
can be defined by induction on the operators 
of the calculus occurring in P

2. Moreover, let R be any other process. Then, P 
is structurally congruent to R if and only if G
(P) is isomorphic as a graph cospan to G(R).



the rewriting rule

no other rule is needed 
(graph morphisms take care of the context inside which 

the reduction might be occurring)

a redex is found
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a rewriting stepgo
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sound and complete
Let P be a process.

1. If P reduces to a process R, then there exists a 
graph cospan H and a rewrite from G(P) to H, 
such that G(R) is isomorphic as a graph to H, 
up-to some garbage collection.

2. If G(P) rewrites to a graph cospan H, then 
there exists a process R and a reduction from 
P to R, such that H is isomorphic as a graph to 
G(R), up-to some garbage collection.



playing the RPO game
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labels from contexts

rewrites to

go

p
•

!!

""

##

$$

c !! ! !! rcv

%%

!! •

snd !! &&• ◦

c !! ! !!

##

snd !! ''• ◦
w

c !! ! !! rcv !!

((

•

(νx)(x.0 | (x.0 + w.0)) | w.0

(the label is the minimal
context allowing the

rewriting step!!)

(νx)(x.0)

go

p
•

!!

""

c !! ! !! rcv

##

!! •

snd !! $$• ◦

!

""

◦
w

!



most astonishingly...

• Let P, Q be (possibly recursive) CCS processes. 
Then, they are strongly bisimilar if and only if 
their graphical encodings are so. [BGK06]

• Bad thing: difficult!

• Good thing: first correspondence result of its 
kind for ANY recursive calculus!



current work

• Bisimilarity for other calculi (fusion, ...)

• Analysis for other graph-like adhesive categories

• Does these categories have a “terms as arrows, 
types as objects” characterization?


