
Fabio Gadducci
Dipartimento di Informatica, Pisa

Bisimulation from a graphical encoding
(DPOs, cospans, relative POs and all that)

some reminiscing...

• Back in 1995, my Ph.D. dealt with the search for
algebraic presentations of rewriting systems.

• Differently from the Rewriting Logic formalism,
the idea was not to equip an algebraic theory (i.e.,
a cartesian category) with additional operators...

• ...but to identify suitable categories for recovering
the “terms as arrows, rewrites as cells” analogy!

rationale and method
• Equip set-theoretical formalisms (best suited for

implementation purposes) with an algebraic
presentation (best suited for inductive reasoning)

• The methodology

• consider your favorite RS (states plus reductions)

• find a free categorical presentation (consider e.g.
cartesian categories for terms, monoidal categories
for Petri nets), such that states are arrows

• then rules are pairs of arrows, and computations
are cells of the free 2-category

similarities and applications

• The methodology underlines e.g. the lambda
calculus, and cartesian closed categories: objects
are types, lambda-terms are arrows, beta-eta
reductions are cells...

• The topic was tested for some RSs: infinite terms,
(cyclic) term graphs, ...

• The same mechanism was the basis for tile logic
(since a double category is a 2-category in Cats),
aimed at capturing process calculi specs

late 90’s, mostly with Andrea

late 90’s, mostly with Ugo

dealing with graphs...

• Then, I moved to Berlin for a post-doctoral stay,
and I tried the same ideas on DPO...

• but which is the category with “graphs as arrows”?

• Solution: graph cospans and free compact closed
categories [GH, WADT97][GHL,CTCS99]

My current view of DPO

Why graph rewriting (late Sixties, early Seventies)
generalizes Chomsky grammars (adding data sharing)
used in constraint solving and data structuring (70’s)
applied as a (visual) specification technique (80’s-90’s)

but...
no (obvious) algebraic structure (no induction)
neither (temporal) logic nor calculus

shortly, graph rewriting...

Many data structures (HLR, adhesive...)
for the same meta-approach

arrows in C
(possibly mono)

pushout in C

DPO approach

L K
r

!!
l

"" R

L

mL

!!

(1)

K
r

""
l

##

mK

!!

(2)

R

mR

!!

G D
r
∗

""

l
∗

H

a rule

a derivation step

adhesive C

set of theoretical tools
(concurrency, mostly)

A category is adhesive if
1. it has pushouts along monos
2. it has pullbacks
3. pushout along monos are Van Kampen squares

shortly, adhesive categories

C
m

!!!!
!!

f

""
""

""

A

g ""
""

""
B

n!!!!
!!

D

a pushout

C′

m′

!!!!!!!!!!! f ′

""
"

"
"

c

##

A′

g′ ""
"

"
"

a

##

B′

n′
!!!!!!!!!!!

b

##

D′

d

##

C
m

!!!!!!!!!!! f

""
#

#
#

#

A

g ""
$

$
$

$
B

n!!!!!!!!!!!

D′

a Van Kampen
square

[LS04]

pushout in C

arrows in C

cospan definition

an arrow

composition

cocomplete C

A
a

!! E B
b

""

A
a

!! E

e
""

B
b

##
c

!! D

f
$$

C
d

##

Fpowerful theoretical tool
(bi-categories of relations...)

[CW87]

DPO connection

L K
r

!!
l

"" R

L

∅ ⇓ K

r
!!!
!!!!!!

l
"""
"
"
"
"
"
"

R

mL

!!

(1) mK

!!

(2) mR

!!

G D
r
∗

""

l
∗

H

(1)

mL
!! G

mK
!! D

r
∗

""!!!!!!!

l
∗

##"""""""

∅

mR

!!

(2)

H

a rule

a derivation step

a “cell”

operational
vs induction

“whiskering”

[GH97]

DPOs vs. Cospans

• (A sub-category of) Cospans over graphs are the
free compact closed (bi-)category built from the
unary signature for graphs

• The DPO approach is operational: search for a
match, build the PO complement...

• The free construction (using cospans) is algebraic:
inductive closure of a set of basic rules...

recent facts on LTSs

some familiar remarks...

often, the operational semantics of a
computational formalism is given by
means of a reduction system...

(λx.M)N ⇒ M [N/x] functional
paradigm

α.P |α ⇒ P
process
calculi

reductions are inductively built...

the semantics is often closed by contexts...

the states may have a complex structure...

possibly forbidding some contexts
from allowing the reduction to take

place

P !! Q

C[P] !! C[Q]

α | α.P ⇒ P

our simple example...

0
P

!! 1

α.[]|ᾱ
""

⇓

[]

1
C[]

!! 1α.P |α ⇒ P

α.β | α ⇒ β β.0 | []

β.0 | α.β | α ⇒ β.0 | β

C[]

C[] = β.0 | []

P = β

terms as arrows, types as objects

interaction vs computation
Albeit often self -intuitive, reduction may lack compositionality

(in capturing the behaviour of a process)

Or, in other words, it is important the
interaction of a process with an environment

as the basis for a semantical analysis!!

It would be nice to restrict to just a few contexts
(e.g., linear—not duplicating the process), still

preserving equivalence with respect to a! contexts

P ≡ Q if ∀C[] : P(C[P]) ⇐⇒ P(C[Q])

a different style...

Labe!ed transition systems may enrich
reductions with an observation of the

actions offered to the environment

Thus, a process may be studied in isolation,
by so called behavioural congruences

Since late 70s, Plotkin’ SOS
influenced the style of presenting

the operational semantics

some facts
• After Milner’s proposal for pi, use of reduction

semantics has become increasingly popular for
nominal calculi (consider e.g. mobile ambients)

• Still, it would be highly desirable to recover an
observational semantics, possibly independently
from the presentation of a calculus...

• In general terms, how to distill a suitable labelled
transition system from a reduction system, at the
same time ensuring congruence for the chosen
behavioural equivalence ?

the context-as-label proposal
Aim: use enabling contexts as labels [Sewell98]

C[P] !! Q

P
C[]

!! Q

• how to minimize the labels (otherwise, of little use)
• how to recover congruence?
• how to establish meaning (e.g., correspondence results)?

problems...

the Relative PO choice
proposed by Leifer

and Milner [00]

generalised by Sassone
and Sobocinski [03]

L : σ !! R : σ

a rule
D[] an enabling

context

ε

L

!!

P
"" σ

C[]
!!!! !

!
!
!
!
!

!
!
!
!
!
!

σ
D[]

"" ρ a commutative,
“minimal” diagram

P
C[]

!! D[R]

the labelled
transition

the RPO definition
C

m

!!!!
!!

!!
!!

!
f

""
""

""
""

""
"

αA

g
""

""
""

""
""

" B

n
!!!!

!!
!!

!!
!

D

C

m

!!!!
!!

!!
!!

!
f

""
""

""
""

""
"

β

A

g
""

""
""

""
""

"

e ## E

h

$$

γ δ

B

n
!!!!

!!
!!

!!
!

o%%

D

a commutative
diagram

an RPO candidate

a candidate is an RPO
if it uniquely factorizes
all possible candidates

an IPO is a commutative
diagram which is its own

RPO (i.e., E = D, etc.)

arrows in C

alternative RPO definition

span of arrows
(commutative

diagram)

(IPO iff E = D)

pushout (RPO)

co-slice category
(C ⇓ id) C

f ;n
−→ D

f ;−
!!

B
n

−→ D

C
−

−→ D

m;−

!!

f ;−
""
B

n
−→ D

A
g

−→ D

C
−

−→ D

m;−

!!

f ;−
""
B

n
−→ D

o;−

!!

A
g

−→ D e;−
""
E

h
−→ D

a derivation
not necessarily a pushout,

but an IPO (no further
factorizing of the diagram)

problems...
• what is the associated equivalence? Hard to assess...
• from rules to labelled rules, instead of labelled transitions

0

α.β|α

!!

β.0|α.β
"" 1

[]|α

!!!! !
!
!
!
!
!
!

!
!
!
!
!
!
!

1
β.0|[]

"" 1

β.0 | α.β
[]|α

!! β.0 | β

mixing graphs and processes

sad fact...

• the category with sets of process variables as
objects and structurally congruent processes as
arrows does not have all POs...

• (grupoidal) relative POs exist (this is the reason
for their introduction), but then analysing the
bisimilarity induced by the transition system is
very hard...

cospans of adhesive cats
for adhesive its cospan category has (G)RPOsC

[SS05]
hence, an observational semantics

for graph rewriting systems
(subsumes [HK04])

sanity check: maps processes into graphs,
reduction rules into DPO rules, and
check out the resulting bisimilarity

[GM06]

 a discrete graph cospan (r, G,v) is a graph G with

• a function v from a set of variables V to N; and

• a function r from a from a set of roots R to N.

we need a graph cospan...

A process P is mapped to a discrete graph cospan G(P) with
set of variables fn(P) and set of roots {p}

(in other terms, the functions trace the free names of a process,
as well as its top operators)

...with four types of edges...

(for label op either snd or rcv)

• p!!

s "" ! "" op

##

$$
◦ x!!

p !! • !! c !! ! x""

p !! • !! go

..and the coalescing of nodes

...another
graph cospan...

p !! • !! c !! ! !! snd !!

""

• x

##◦

a graph cospan...

p !! • !! c !! ! !! rcv !!

""

• p##

◦ y$$

...and the coalescing of nodes.

...and their sequential composition!!

p !! • !! c !! ! !! rcv !!

""

• !! c !! ! !! snd !!

##

• x

$$◦ ◦ y%%

(the actual encoding for) y.x.0

encoding restriction

restriction takes a node
out of the interface
(making it convertible)

is post-composed
with the cospan
x !! ◦

y !! ◦ y""

the encoding of
y.x.0

p !! • !! c !! ! !! rcv !!

""

• !! c !! ! !! snd !!

##

• x

$$◦ ◦ y%%

dealing with conversion

(and also for any renaming of the x variable !!)

the graph is the encoding for (νx)(y.x.0)

p !! !! • !! c !! ! !! rcv !!

""

• !! c !! ! !! snd !!

##

•

◦ ◦ y$$

sound and complete

Let P be a process.

1. A graph cospan G(P) –i.e., the encoding for P–
can be defined by induction on the operators
of the calculus occurring in P

2. Moreover, let R be any other process. Then, P
is structurally congruent to R if and only if G
(P) is isomorphic as a graph cospan to G(R).

the rewriting rule

no other rule is needed
(graph morphisms take care of the context inside which

the reduction might be occurring)

a redex is found

go

• !!

!!

""

c !! ! !! rcv

##

!! •

◦

c !! ! !! snd !!

$$

•

edges are removed
nodes are coalesced

go

•

!!

!

◦

!

a rewriting stepgo

p
•

!!

""

##

c !! ! !! rcv

$$

!! • !!

%%

c !! ! !! rcv !!

$$

•

snd !! &&• ◦ snd !! && ◦

c !! ! !!

##

snd !!

''
• c !! ! !!

##

snd !! ((• ◦
w

go

p
•

!!

""

##

c !! ! !! rcv !!

$$

•

◦ snd !! %% ◦

! !! snd !!

&&
• c !! ! !!

##

snd !! ''• ◦
w

(νx)(x.((νy)(y.0 | (y.0 + w.0))) | (x.0 + w.0))

(νy)(y.0 | (y.0 + w.0))

sound and complete
Let P be a process.

1. If P reduces to a process R, then there exists a
graph cospan H and a rewrite from G(P) to H,
such that G(R) is isomorphic as a graph to H,
up-to some garbage collection.

2. If G(P) rewrites to a graph cospan H, then
there exists a process R and a reduction from
P to R, such that H is isomorphic as a graph to
G(R), up-to some garbage collection.

playing the RPO game
go

p
•

!!

""

##

c !! ! !! rcv

$$

!! •

snd !! %%• ◦

c !! ! !!

##

snd !! &&• ◦
w

the source
(νx)(x.0 | (x.0 + w.0))

p
•

!!
!

!

!

◦
w

c "" " "" rcv

##

"" •

the label
w.0

go

p
•

!!

""

c !! ! !! rcv

##

!! •

snd !! $$• ◦

!

""

◦
w

!

the target
(νx)(x.0)

labels from contexts

rewrites to

go

p
•

!!

""

##

$$

c !! ! !! rcv

%%

!! •

snd !! &&• ◦

c !! ! !!

##

snd !! ''• ◦
w

c !! ! !! rcv !!

((

•

(νx)(x.0 | (x.0 + w.0)) | w.0

(the label is the minimal
context allowing the

rewriting step!!)

(νx)(x.0)

go

p
•

!!

""

c !! ! !! rcv

##

!! •

snd !! $$• ◦

!

""

◦
w

!

most astonishingly...

• Let P, Q be (possibly recursive) CCS processes.
Then, they are strongly bisimilar if and only if
their graphical encodings are so. [BGK06]

• Bad thing: difficult!

• Good thing: first correspondence result of its
kind for ANY recursive calculus!

current work

• Bisimilarity for other calculi (fusion, ...)

• Analysis for other graph-like adhesive categories

• Does these categories have a “terms as arrows,
types as objects” characterization?

