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* Propose an Object-Z / CSP based approach for

the specification of architectural connectors
which are seen as explicit semantic entities.

e The approach has to support incremental
development of specifications, and allow for

verification of properties.
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e Start: Software architecture = collection of
computational components together with a

collection of connectors.

* Follow: Formal basis by R. Allen and D. Garlan,
“A formal Basis for architectural connection”,
connector definition rely on the definition of
notions such as: component, port, role, glue,
connector, attachment, etc.
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e Why more than one language?

— Few specifications languages are suited for
modeling all aspects of software architectures.

e Why Z and CSP?

— Both of them have been advocated for specifying
different aspects of software architectures.
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e Why Object-Z / CSP?

— Object-Z is a semi-graphical notation - visual appeal:
suitable for representing system and software
components in general (readability).

— CSP is suitable for specifying the interactions between
such components (conciseness).

 Both languages have common semantic basis
(Object-Z classes might be given semantics of CSP
processes): this enables using and / or developing
unified method of refinement for the integrated
notation.
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Roles, ports (refinements of roles) and glue, are
seen as components.

(Computational) components, roles, ports and
glue are specified by Object-Z classes.

Internal behavior of roles, glue, and ports
(method execution) is governed by preconditions
on adequate state variables.

Behavior of the connector is specified by a
parallel composition of roles and glue.

Attachment of ports as roles is specified by a CSP
process parameterized by Object-Z classes.
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* R. Allen and D. Garlan: Using of CSP-like
notation.

e G. Abowd, R. Allen and D. Garlan
— Using Z.
— No notion of glue.

— ports and roles are specified as basic types (not as
schemas).
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e J.L.Fiadeiro et al. : CommuUnity

Components, glue, roles are CommUnity “component designs”

Ports are not defined explicitly. They are represented by input and
output variables in the description of the components.

A connector is a finite set of connections with the same glue.

A connection consists of a glue, a role, a signature, and two
category morphisms connecting a glue with a role.

The semantics of a connector is the colimit of the diagram formed
by its connections.

A component (to be connected to a role) is seen as a refinement
(according to CommUnity meaning) of this role.



Example: A simple a client-server
relationship

e Basic types: [State, Request, Result,
Invocation, Return]

e State == pending | ready

 We suppose that the C-S_Connector handles
only one service.



Df\lf\(‘

nOIes

 The role describes the behavior that is
expected of each of the interacting parts.
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_Role: The attributes

____C R Attributes
req state : State
res_state : State

Init

req state = ready
res state = ready
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___ RequestService . .
A Client Role The client calls a service

x!: Request

req state = ready
res_state = ready
req_state' = pending
res_state' = pending

_ ReceiveResult . .
A Client Role The client receives the result

v? : Result
res . Result

req_state = pending
res_state = pending
res =y?

req state' = ready
res_state' = ready
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Inv_state . State
ret_state : State

Init

inv_state = ready
ret_state = ready
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A Server Role
x? r Invocation
v Invocation

inv_state = ready
ret_state = ready
myv =x?

inv_state' = pending
ret_state' = pending

t

_ ReturnValue

A Server Role
v! ! Return

inv_state = pending
ref_state = pending
inv_state' = ready
ret_state' = ready

I _

hod

The server accepts the invocation

The server returns a value
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 The glue describes how the activities of the
roles are coordinated.
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G Attributes
req statfe . State
Inv_stare: State
ret_stare : Stare
res_state : State

Init

req state = ready
inv_state = ready
ret_state = ready
res_state = ready
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— RequestService ____ Acceptlnvocation
A Glue A Glue

o Request x!: Invocation
req ! Request _

req_state = pending

req state = ready inv_state = ready
inv state = ready ret_state = ready

| f'E?I_.S'TE?fE? = I'E?ﬂd;!' res_state = ready
I'ES_SI{’HE? _ f'e?ncﬁ‘ inv_state'= pending
req = x?
req state' = pending
The glue allows the The glue allows the server to

client to call a service accept an invocation
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___ ReturnValue ___ ReceiveResult
A Glue A Glue
y 7 Return y!: Result
Ret : Refurn

req_state = pending

req_stafe = pending inv_state = pending
inv_state = pending ret_state = pending
ret_state = ready res_state = ready
res_state = ready req state’ = ready
et =1 ° inv_state' = ready
ret_state' = pending ret_state' = ready

The glue allows the The glue allows the client

server to return a value to receive the result



e Parallel composition of roles and glue.

C-S _ConnectorBehaviour = Client Role || Glue || Server Role



Ports

* In our example ports are identical to roles,
since our client server provides just one
service.



Attachment of ports as roles

Attachement =
CS_ConnectorBehaviour [Client _Port / Client Role ;
Server _Port / Server Role]



Conclusion and future work

e Look for a unified method of refinement for
the integrated notation (not necessarily
process based).

e Tackle the problem of verification.
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