
A logical approach to specify service-oriented
application

Stefania Gnesi

ISTI-CNR

IFIP WP 1.3

Sierra Nevada - January 17, 2008

Joint work with Alessandro Fantechi, Alessandro Lapadula, Franco Mazzanti,
Rosario Pugliese and Francesco Tiezzi

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 1 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 2 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 3 / 38

A General Theory of Services

Several formalisms for service description that can lay the
mathematical basis for analysing and experimenting with components
interactions, and for combining Service-Oriented application have
been recently developed (see e.g. the Sensoria project) .

Core calculi
Some calculi based on process algebras for service specifications
have been recently proposed that:

comply with a service-oriented approach to business modelling;
allow for modular description of services;
support dynamic, ad-hoc, "just-in-time" composition.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 4 / 38

A General Theory of Services

Several formalisms for service description that can lay the
mathematical basis for analysing and experimenting with components
interactions, and for combining Service-Oriented application have
been recently developed (see e.g. the Sensoria project) .

Core calculi
Some calculi based on process algebras for service specifications
have been recently proposed that:

comply with a service-oriented approach to business modelling;
allow for modular description of services;
support dynamic, ad-hoc, "just-in-time" composition.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 4 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 5 / 38

A more abstract view for Services

Using calculi, services are specified according to a behavioral description
Not many analytical tools for checking that services enjoy desirable properties
and do not manifest unexpected behaviors are available for the calculi

Logic as specification language
Logics have been since long proved able to reason about such complex systems as
SOC applications

they provide abstract specifications of complex systems;

can be used for describing system properties rather than system behaviors;

Logic verification framework
We introduce a logical verification framework for describing functional
requirements of services by abstracting away from the computational contexts in
which they are operating;

services are abstractly considered as entities capable of accepting requests,
delivering corresponding responses and, on-demand, cancelling requests.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 6 / 38

A more abstract view for Services

Using calculi, services are specified according to a behavioral description
Not many analytical tools for checking that services enjoy desirable properties
and do not manifest unexpected behaviors are available for the calculi

Logic as specification language
Logics have been since long proved able to reason about such complex systems as
SOC applications

they provide abstract specifications of complex systems;

can be used for describing system properties rather than system behaviors;

Logic verification framework
We introduce a logical verification framework for describing functional
requirements of services by abstracting away from the computational contexts in
which they are operating;

services are abstractly considered as entities capable of accepting requests,
delivering corresponding responses and, on-demand, cancelling requests.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 6 / 38

A more abstract view for Services

Using calculi, services are specified according to a behavioral description
Not many analytical tools for checking that services enjoy desirable properties
and do not manifest unexpected behaviors are available for the calculi

Logic as specification language
Logics have been since long proved able to reason about such complex systems as
SOC applications

they provide abstract specifications of complex systems;

can be used for describing system properties rather than system behaviors;

Logic verification framework
We introduce a logical verification framework for describing functional
requirements of services by abstracting away from the computational contexts in
which they are operating;

services are abstractly considered as entities capable of accepting requests,
delivering corresponding responses and, on-demand, cancelling requests.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 6 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 7 / 38

Abstract properties of services

A service may be:
available: if it is always capable to accept a request.

reliable: if, when a request is accepted, a final successful response is
guaranteed.

responsive: if it always guarantees a response to each received request.

broken: if, after accepting a request, it does not provide the (expected)
response.

unavailable: if it refuses all requests.

fair: if it is possible to cancel a request before the response.

non-ambiguous: if, after accepting a request, it provides no more than one
response.

sequential: if, after accepting a request, no other requests may be accepted
before giving a response.

asynchronous: if, after accepting a request, other requests may be accepted
before giving a response.

non-persistent: if, after accepting a request, no other requests can be accepted.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 8 / 38

SocL logic

SocL is a logic specifically designed to capture peculiar aspects of
services and it has been introduced to formalize the properties above.

SocL is a variant of the logic UCTL [fmics07], originally introduced
to express properties of UML statecharts.
UCTL and SocL have many commonalities: they share the same
temporal logic operators, they are both state and action based
branching-time logics, they are both interpreted on Doubly
Labeled Transition Systems by exploiting the same on-the-fly
model-checking engine.

The two logics mainly differ for the syntax and semantics of state
predicates and action formulae, and for the fact that SocL also permits
to specify parametric formulae.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 9 / 38

SocL logic

SocL is a logic specifically designed to capture peculiar aspects of
services and it has been introduced to formalize the properties above.

SocL is a variant of the logic UCTL [fmics07], originally introduced
to express properties of UML statecharts.
UCTL and SocL have many commonalities: they share the same
temporal logic operators, they are both state and action based
branching-time logics, they are both interpreted on Doubly
Labeled Transition Systems by exploiting the same on-the-fly
model-checking engine.

The two logics mainly differ for the syntax and semantics of state
predicates and action formulae, and for the fact that SocL also permits
to specify parametric formulae.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 9 / 38

SocL logic

SocL is a logic specifically designed to capture peculiar aspects of
services and it has been introduced to formalize the properties above.

SocL is a variant of the logic UCTL [fmics07], originally introduced
to express properties of UML statecharts.
UCTL and SocL have many commonalities: they share the same
temporal logic operators, they are both state and action based
branching-time logics, they are both interpreted on Doubly
Labeled Transition Systems by exploiting the same on-the-fly
model-checking engine.

The two logics mainly differ for the syntax and semantics of state
predicates and action formulae, and for the fact that SocL also permits
to specify parametric formulae.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 9 / 38

L2TS definition

An L2TS is a tuple 〈Q, q0,Act ,R,AP, L〉, where:

Q is a set of states;

q0 ∈ Q is the initial state;

Act is a finite set of observable events (actions) with α ranging over 2Act and ε
denoting the empty set;

R ⊆ Q × 2Act ×Q is the transition relation.

AP is a set of atomic propositions with π ranging over AP;

L : Q −→ 2AP is a labelling function that maps each state in Q to a subset of AP.

Basically, an L2TS is an LTS (defined as the quadruple
〈Q,q0,Act ,R〉), extended with a labelling function from states to
sets of atomic propositions.
By means of an L2TS, a system can be characterized by states
and state changes and by the events (actions) that are performed
when moving from one state to another.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 10 / 38

An example of L2TS

Act ranges over by observable actions, such as: request(i, c), response(i,
c),cancel(i, c) and fail(i, c), where

i indicates the interaction to which the operation performed by a service belongs
c denotes a tuple of correlation values that identifies a particular invocation of
the operation

AP is a finite set of atomic propositions, parameterized by interactions and
correlation tuples, like accepting_request(i) and accepting_cancel(i), that can be
true over a state of an L2TS.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 11 / 38

SocL logic

Action formulae syntax
Given Act$ as Act plus correlation variable names a$ AF(Act$) is defined as follows:

γ ::= a$ | χ χ ::= tt | a% | τ | ¬χ | χ ∧ χ

SocL syntax

(state formulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ
(path formulae) Ψ ::= Xγφ | φ χU φ′ | φ χUγ φ′ | φ χW φ′ | φ χWγ φ

′

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ;
EFφ stands for E(true tt Uφ) AG φ stands for ¬EF ¬φ.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 12 / 38

SocL semantics

Substitutions, ranged over by ρ, are functions mapping correlation variables to
values and are written as collections of pairs of the form var/val .

The empty substitution is denoted by ∅.
Application of substitution ρ to a formula φ, written φ · ρ, has the effect of
replacing every occurrence %var in φ with val , for each var/val ∈ ρ.

The partial function m (_ , _) from pairs of actions to substitutions, that permits
performing pattern-matching, is defined by the following rules:

m (request(i, c), request(i, c′)) = m (c, c′) m ($var , val) = {var/val}

m (response(i, c), response(i, c′)) = m (c, c′) m (val, val) = ∅

m (cancel(i, c), cancel(i, c′)) = m (c, c′) m (fail(i, c), fail(i, c′)) = m (c, c′)

m ((e1 · c1), (e2 · c2)) = m (e1, e2) ∪m (c1, c2)

where notation e · c stands for a tuple with first element e.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 13 / 38

Parametric SocL formulae evaluation

φ = EXrequest(charge,〈$id〉) AXresponse(charge,〈%id〉) true

request(charge, 〈id1〉) |= request(charge, 〈$id〉) B ρ

where the produced substitution ρ is

ρ = m (request(charge, 〈$id〉), request(charge, 〈id1〉)) = m ($id , id1) = {id/id1}

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 14 / 38

SocL semantics - Action formulae semantics

The satisfaction relation |= for action formulae (α |= γ B ρ) is defined
over sets of observable actions in Act$, and over a substitution.

α |= a$ B ρ iff ∃! b ∈ α such that m (a$,b) = ρ;
α |= χB ∅ iff α |= χ

where the relation α |= χ is defined as follows:

α |= tt holds always;
α |= a% iff ∃! b ∈ α such that m (a%,b) = ∅;
α |= τ iff α = ε;
α |= ¬χ iff not α |= χ;
α |= χ ∧ χ′ iff α |= χ and α |= χ′.

The notation α |= χB ρ means: the formula γ is satisfied over the action (set) α
(only) under substitution ρ.
We assume that inside a single evolution step two or more actions with the same
type and interaction do not occur.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 15 / 38

SocL semantics

The satisfaction relation of closed SocL formulae, i.e. formulae without
unbound variables, over a L2TS is defined as follows:

q |= true holds always;
q |= π iff π ∈ L(q);
q |= ¬φ iff not q |= φ;
q |= φ ∧ φ′ iff q |= φ and q |= φ′;
q |= EΨ iff ∃σ ∈ path(q) such that σ |= Ψ;
q |= AΨ iff ∀σ ∈ path(q) σ |= Ψ;
σ |= Xγφ iff σ = (q, α, q′)σ′, α |= γ B ρ, and q′ |= φ · ρ;
σ |= φ χUφ′ iff there exists j ≥ 0 such that σ(j) |= φ′ and for all
0 ≤ i < j :
σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ implies σ(i) |= φ and αi+1 = ε or
αi+1 |= χ;

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 16 / 38

SocL semantics

σ |= φ χUγφ′ iff
there exists j ≥ 1 such that σ = σ′(σ(j − 1), αj , σ(j))σ′′ and αj |= γ B ρ and
σ(j) |= φ′ · ρ and σ(j − 1) |= φ, and for all 0 < i < j :
σ = σ′i (σ(i − 1), αi , σ(i))σ′′i implies σ(i − 1) |= φ, and αi = ε or αi |= χ;

σ |= φ χWφ′ iff either
there exists j ≥ 0 such that σ(j) |= φ′ and for all 0 ≤ i < j :
σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ implies σ(i) |= φ and αi+1 = ε or αi+1 |= χ
or for all 0 ≤ i :
σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ implies σ(i) |= φ, and αi+1 = ε or αi+1 |= χ;

σ |= φ χWγφ
′ iff either

there exists j ≥ 1 such that σ = σ′(σ(j − 1), αj , σ(j))σ′′ and
αj |= γ B ρ and σ(j) |= φ′ · ρ and σ(j − 1) |= φ, and for all 0 < i < j :
σ = σ′i (σ(i − 1), αi , σ(i))σ′′i implies σ(i − 1) |= φ, and αi = ε or αi |= χ
or for all 0 ≤ i :
σ = σ′i (σ(i − 1), αi , σ(i))σ′′i implies σ(i − 1) |= φ, and αi+1 = ε or αi+1 |= χ.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 17 / 38

SocL description of abstract properties

Availability:if it is always capable to accept a request
AG(accepting_ request(i)).
AGAF (accepting_ request(i)) (weaker).

Reliability: if, when a request is accepted, a final successful response is
guaranteed.
AG[request(i, $v)]AFresponse(i,%v) true.

Notably, the response belongs to the same interaction i of the accepted request
and they are correlated by the variable v .

Responsiveness: if it always guarantees a response to each received request.
AG[request(i, $v)] AFresponse(i,%v)∨fail(i,%v) true.

Broken service: if it does not provide the (expected) response
¬AG[request(i, $v)] AFresponse(i,%v)∨fail(i,%v) true. (temporarily broken)

AG[request(i, $v)]¬EFresponse(i,%v)∨fail(i,%v) true. (permanently broken)

Unavailability: if it refuses all requests.
AG[request(i, $v)] AFfail(i,%v) true.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 18 / 38

SocL description of abstract properties

Fairness :if it is possible to cancel a request before the response
AG[request(i, $v)] A(accepting_ cancel(i,%v) ttWresponse(i,%v)∨fail(i,%v)true).
(fairness towards the client);
AG[response(i, $v)]¬EF < cancel(i,%v) > true
(fairness towards the server).

Unambiguity: if, after accepting a request, it provides no more than one
response.
AG[request(i, $v)]¬EF < response(i,%v) > EF < response(i,%v) > true.

Sequentiality: if, after accepting a request, no other requests may be accepted
before giving a response

AG[request(i, $v)] A(¬ accepting_ request(i) tt Uresponse(i,%v)∨fail(i,%v)true).

Asynchronicity: if, after accepting a request, other requests may be accepted
before giving a response.

AG[request(i, $v)] EF < response(i,%v) ∨ fail(i,%v) > true.

Non-persistency: if, after accepting a request, no other requests can be
accepted. AG[request(i, $v)] AG ¬ accepting_ request(i).

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 19 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 20 / 38

COWS: Calculus for Orchestration of Web Services

Services can create new instances to serve specific requests

Instances contain concurrent threads (possibly with a shared state)

Services and instances communicate through endpoints

Endpoint’s names can be communicated (only the ‘send capability’)

Communication is regulated by a pattern-matching mechanism

that permits correlating, by means of their same contents, different
service interactions logically forming a same ‘session’

The only binder is the delimitation operator; it can generate fresh names
(like the restriction operator of the π-calculus) and also regulate the
range of application of substitutions generated by communication

Termination of parallel activities can be forced by using a kill, but
sensitive code can be protected from the effect of a forced termination

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 21 / 38

COWS: Syntax

s ::= (services) (notations)
kill(k) (kill) k (killer) labels

| u •u′!ē (invoke) e expressions
|

∑r
i=0 pi •oi?w̄i .si (receive-guarded choice) x variables

| s | s (parallel composition) v values
| {|s|} (protection) n,p,o names
| [d] s (delimitation) u: names|vars
| ∗ s (replication) w : values|vars

d : labels|names|vars

Only one binding construct: [d] s binds d in the scope s
(free/bound names/variables/labels and closed terms defined accordingly)

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 22 / 38

An example

BankInterface; CreditRating
A bank service is composed of two persistent subservices: BankInterface
and CreditRating.

The scenario also involves the processes Client1 and Client2 that model
requests for charging the customer’s credit card with some amount.

Bank service

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 23 / 38

Bank service scenario

[ocheck , ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating) | Client1 | Client2

BankInterface , [xcust , xcc , xamount , xid]
pbank • ocharge?〈xcust , xcc , xamount , xid 〉.
(pbank • ocheck !〈xid , xcc , xamount 〉
| pbank • ocheckOK ?〈xid 〉. xcust • ochargeOK !〈xid 〉
+ pbank • ocheckFail?〈xid 〉. xcust • ochargeFail !〈xid 〉)

CreditRating , [xid , xcc , xa]
pbank • ocheck?〈xid , xcc , xa〉.
[p, o] (p • o!〈〉 | p • o?〈〉. pbank • ocheckOK !〈xid 〉

+ p • o?〈〉. pbank • ocheckFail !〈xid 〉)

Client1 , pbank • ocharge!〈pC , 1234, 100, id1〉 | pC • ochargeOK ?〈id1〉+ pC • ochargeFail?〈id1〉

Client2 , pbank • ocharge!〈pC , 1234, 200, id2〉 | pC • ochargeOK ?〈id2〉+ pC • ochargeFail?〈id2〉

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 24 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 25 / 38

SocL and calculi for services

SocL my be also used to describe properties of services
behaviorally specified using a calculus
The model checker developed for SocL over L2TSmay be used to
check the properties

USING socL on COWS
1 the semantics of a COWS term is defined by using a Labelled

Transition System (LTS).
2 this LTS is transformed into an L2TS by labelling each state with

the set of actions the COWS term is able to perform immediately
from that state.

3 by applying a set of application-dependent abstraction rules over
the actions, the concrete L2TS is abstracted into a simpler L2TS.

4 SocL formulae are checked over this abstract L2TS.

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 26 / 38

Concrete LTS for the COWS specification

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 27 / 38

COWS and SocL

The semantics of COWS bank scenario is given over a L2TS:

transitions are labelled by ‘concrete’ actions, i.e. those actions occurring in the
COWS term.

each state is labelled with the set of actions that each active subterm of the
COWS term would be able to perform immediately.

C1
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,100,id1>,
 bank.charge!<client,1234,200,id2>,

... }

C3
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,100,id1>,
... }

C2
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,200,id2>,
... }

{ bank.charge!<client,1234,100,id1>,
 bank.charge?<CUST,CC,AMOUNT,ID>}

{ bank.charge!<client,1234,200,id2>,
 bank.charge?<CUST,CC,AMOUNT,ID>}

C5
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C4
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,200,id2>,
... }

{ bank.charge!<client,1234,200,id2>,
 bank.charge?<CUST,CC,AMOUNT,ID> } { bank.check#1!<client,1234,100>,

 bank.check#1?<CUST,CC,AMOUNT> }

C6
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

{ bank.check#1!<client,1234,200>,
 bank.check#1?<CUST,CC,AMOUNT> }

C54
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C45
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C49
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C58
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

{ client.chargeOK!<id2>,
 client.chargeOK?<id2> }

{ client.chargeFail!<id1>,
 client.chargeFail?<id1> }

{ client.chargeOK!<id1>,
 client.chargeOK?<id1> }

{client.chargeFail!<id2>,
 client.chargeFail?<id2> }

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 28 / 38

COWS and SocL

The semantics of COWS bank scenario is given over an abstract L2TS
applying a set of suitable abstraction rules to the concrete action.
replacing concrete labels on the transitions with actions belonging
to the set Act , i.e. request(i , c), response(i , c), cancel(i , c) and
fail(i , c)

Action : charge〈∗, ∗, ∗, $1〉 → request(charge, 〈$1〉)
Action : chargeOK 〈$1〉 → response(charge, 〈$1〉)
Action : chargeFail〈$1〉 → fail(charge, 〈$1〉)
State : charge → accepting_ request(charge)

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 29 / 38

COWS and SocL

The set of “Action :” and “State :” rules is not defined once and for all, but is
application-dependent and, thus, must be defined from time to time.

C1
{accepting_request(charge)}

{ request(charge,id1)}{ request(charge,id2)}

C3
 {accepting_request(charge)}

C49
 {accepting_request(charge)}

C2
{accepting_request(charge)}

{ request(charge,id2)}{}

C5
 {accepting_request(charge)}

C4
 {accepting_request(charge)}

C6
 {accepting_request(charge)}

{}

{ response(charge,id2)}
C45

 {accepting_request(charge)}
C54

 {accepting_request(charge)}

{ response(charge,id1)}

{ fail(charge,id1)} { fail(charge,id2)}

C58
 {accepting_request(charge)}

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 30 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 31 / 38

Model checking COWS

the model checker CMC is implemented by exploiting an on-the-fly algorithm.

the instantiation of the generic patterns of formulae over the bank service has
been obtained by just replacing any occurrence of i with charge

AG [request(charge, $v)] AFresponse(charge,%v)∨fail(charge,%v) true

Property Result States
Available TRUE 274
Reliable FALSE 37
Responsive TRUE 274
Permanently Broken FALSE 12
Temporarily Broken FALSE 274
Unavailable FALSE 18
Fair 2 TRUE 274
Non-ambiguous TRUE 274
Sequential FALSE 3
Asynchronous TRUE 274
Non-persistent FALSE 3

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 32 / 38

Generated counterexample

Non-persistent service:
AG[request(charge, $v)] AG ¬accepting_ request(charge).

——————————————-
The formula: AG [request(charge,id1)] AG not (accepting_request(charge))

is FOUND_FALSE in State C1
because
the formula: [request(charge,id1)] AG not (accepting_request(charge))
is FOUND_FALSE in State C1

because
C1 –> C2 { bank.charge!,bank.charge? } {{ request(charge,id1)}}
and the formula: AG not accepting_request(charge)
is FOUND_FALSE in State C2

because
the formula: not accepting_request(charge)
is FOUND_FALSE in State C2

because
the formula: (accepting_request(charge))
is FOUND_TRUE in State C2

——————————————-

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 33 / 38

Outline

1 Core Calculi and services

2 A more abstract view for Services

3 Socl logic

4 COWS

5 SocL and calculi for services

6 Model checking COWS

7 Conclusions

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 34 / 38

Conclusions

The logic interpretation model (i.e. L2TSs) is independent from the
service specification language (i.e. COWS), it can be easily
tailored to be used in conjunction with other SOC specification
languages.
SocL permits expressing properties about any kind of interaction
pattern, such as one–way, request–response, one
request–multiple responses, one request-none of two possible
responses
The use of L2TSs as model of the logic helps to reduce the state
space and, hence, the memory used and the time spent for
verification.
We are currently only able to analyse systems of services ‘as a
whole’ i.e. we cannot analyse isolated services

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 35 / 38

Thank you for your attention!

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 36 / 38

Concrete L2TSof the same COWS term

C1
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,100,id1>,
 bank.charge!<client,1234,200,id2>,

... }

C3
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,100,id1>,
... }

C2
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,200,id2>,
... }

{ bank.charge!<client,1234,100,id1>,
 bank.charge?<CUST,CC,AMOUNT,ID>}

{ bank.charge!<client,1234,200,id2>,
 bank.charge?<CUST,CC,AMOUNT,ID>}

C5
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C4
{ bank.charge?<CUST,CC,AMOUNT,ID>

 bank.charge!<client,1234,200,id2>,
... }

{ bank.charge!<client,1234,200,id2>,
 bank.charge?<CUST,CC,AMOUNT,ID> } { bank.check#1!<client,1234,100>,

 bank.check#1?<CUST,CC,AMOUNT> }

C6
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

{ bank.check#1!<client,1234,200>,
 bank.check#1?<CUST,CC,AMOUNT> }

C54
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C45
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C49
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

C58
{ bank.charge?

<CUST,CC,AMOUNT,ID>
... }

{ client.chargeOK!<id2>,
 client.chargeOK?<id2> }

{ client.chargeFail!<id1>,
 client.chargeFail?<id1> }

{ client.chargeOK!<id1>,
 client.chargeOK?<id1> }

{client.chargeFail!<id2>,
 client.chargeFail?<id2> }

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 37 / 38

Abstract L2TSof the same COWS term

S.Gnesi (ISTI-CNR) A logical approach for service-oriented application 38 / 38

	Core Calculi and services
	A more abstract view for Services
	Socl logic
	COWS
	SocL and calculi for services
	Model checking COWS
	Conclusions

