
Specification-based testing for refinement

Temesghen Kahsai∗ Markus Roggenbach∗ Bernd-Holger Schlingloff†

Abstract

In this paper, we present a theory for the evaluation of
test cases with respect to formal specifications. In particu-
lar, we use the specification language CSP-CASL to define
and evaluate black-box tests for reactive systems. Using
loose semantics and three-valued test oracles, our approach
is well-suited to deal with the refinement of specifications.
In a structured development process of computational sys-
tems, abstract specifications are gradually refined into more
concrete ones. With our approach, it is possible to develop
test cases already from very abstract and basic specifica-
tions, and to reuse them later on in more refined systems.

1. Introduction

Systematic testing is the most important quality assur-
ance method in software and systems design. Testing
can be done at all stages during the design, e.g. on unit-,
integration-, and system level. System tests often are con-
ceived as black-box-tests, where the inner structure of the
system is hidden from the observer’s view. In contrast to
formal verification, black-box-testing is concerned with all
parts of a computational system — software, middleware
and hardware. The ‘black box’ view abstracts from the
actual implementation details and considers the observable
behaviour of the system only. The main purpose of testing
is to determine whether or not a system under test (SUT)
contains errors, where an error is a deviation of the actual
from the intended behaviour of the SUT. If in a systematic
test no errors are found, this can increase the confidence that
the system is apt for its intended use.

Intentions are bound to individuals. For various reasons
it is often necessary to establish testing results which are
valid inter-subjectively. This requires that the intentions are
denoted in an explicit, definite, and unambiguous specifica-
tion. Within the design process of a system these intentions

∗University of Wales Swansea
†Humboldt University Berlin Fraunhofer FIRST

This work was supported by EPSRC under the grant EP/D037212/1.

are developed in several steps. Consequently, especially the
early specifications may leave room for later design deci-
sions. In a specification, there may be properties which are
intended, which are unwanted or which are left open. Sev-
eral formal specification methods have been proposed. In
this paper, we use the formal language CSP-CASL [16, 7]
for the specification of a computational system. Likewise,
the computational behaviour of a system can be denoted in a
formal way, e.g. as a set of sequences of input/output events
which occur at a certain point of control and observation
(PCO). Such sequences are called traces of the SUT. Testing
then becomes the task of comparing specified and traceable
behaviour of a computational system, i.e., checking whether
all intended behaviour is realized by traces, no unintended
behaviour can be observed, and other behaviour is neither
forced on the system nor inhibited. In this paper, we elab-
orate this idea of specification-based testing for distributed
computer applications. We define a framework for test exe-
cution and evaluation based on a black-box SUT and formal
CSP-CASL-specification.

Large computational systems often are developed in an
incremental fashion, starting with an initial loose specifica-
tion which leaves many design decisions open. This ini-
tial specification then is stepwise refined into more concrete
artefacts; the last step of refinement is to transform a low-
level specification into executable code which is ported to
the SUT. It is generally agreed that the cost of error correc-
tion increases exponentially during the product life cycle.
Hence, it is advisory that the testing process and the design
of test cases starts as early as possible in the systems de-
sign. One of the main benefits of our approach is that the
construction of test cases can start already in the very be-
ginning, as soon as the first loose specifications are written.
Our approach ensures that test cases which are designed at
an early stage can be used without modification for the test
of a later development stage. Hence, test suites can be de-
veloped in parallel with the SUT, which reduces the overall
development time and helps to avoid ambiguities and spec-
ification errors.

Our work builds on previous work in specification-based
testing, mainly in the area of LOTOS, see e.g. [9], [6], [3].
A first formal treatment of testing was given in [5]. The test
oracle problem in such a setting was investigated in [12],

[13]. In contrast to these approaches, we are using a speci-
fication language with loose semantics which allows under-
specification and refinement.

The language CSP dates back to 1985 [8]; an excellent
reference is the book [17] (updated 2005). CASL was de-
veloped by the CoFI [1], [15], [2]. Tools for CASL are de-
veloped, e.g., in [10, 11, 14]. The combination CSP-CASL
was introduced in [16] and used for specifying an electronic
payment system in [7].

This paper is organized as follows: In section 2, we give
a short overview of our specification language CSP-CASL.
Then, we discuss reasonable expectations for specification
based testing, where we use a simple calculator as running
example. In section 4, we introduce the notion of a test
process and the expected result of a test process with respect
to a specification. In section 5, we describe test execution
and evaluation as well as formal properties of test suites.
Finally, we re-visit our calculator example and demonstrate
our techniques.

2. CSP-CASL

CSP-CASL [16] is a comprehensive language which
combines processes written in CSP [8, 17] with the spec-
ification of data types in CASL [2, 15]. The general idea is
to describe reactive systems in the form of processes based
on CSP operators, where the communications of these pro-
cesses are the values of data types, which are loosely spec-
ified in CASL. All standard CSP operators are available,
such as multiple prefix, the various parallel operators, op-
erators for non-deterministic choice, communication over
channels. Concerning CASL features, the full language is
avaliable to specify data types, namely many-sorted first
order logic with sort-generation constraints, partiality, and
sub-sorting. Furthermore, the various CASL structuring
constructs are included, where the structured free construct
adds the possibility to specify data types with initial seman-
tics. CSP-CASL specifications can be organized in libraries.
This allows to specify a complex system in a modular way.

Syntactically, a CSP-CASL specification with name N
consists of a data part Sp, which is a structured CASL spec-
ification, an (optional) channel part Ch to declare channels,
which are typed according to the data part, and a process
part P written in CSP, within which CASL terms are used
as communications, CASL sorts denote sets of communi-
cations, relational renaming is described by a binary CASL
predicate, and the CSP conditional construct uses CASL for-
mulae as conditions:

ccspec N = data Sp channel Ch process P end

See Section 3 for concrete instances of such a scheme.
Semantically, a CSP-CASL specification is a family of

process denotations for a CSP process, where each model

of the data part Sp gives rise to one process denotation.
The definition of the language CSP-CASL is generic in the
choice of a specific CSP semantics. For example, all deno-
tational CSP models mentioned in [17] are possible param-
eters, as is the newly defined model R [18].

Figure 1: CSP-CASL semantics

The semantics of CSP-CASL is defined in a two-step ap-
proach1, see Figure 1. Given a CSP-CASL (Sp, P) specifi-
cation, in the first step we construct for each model M of
Sp a CSP process P′(A(β(M))). To this end, we define for
each model M, which might include partial functions, an
equivalent model β(M) in which partial functions are to-
talized. β(M) gives rise to an alphabet of communications
A(β(M)). In order to deal with CSP binding, we introduce
variable evaluations ν : X → β(M). With these notations
we define the process P′(A(β(M))) := [[P]]∅:∅→β(M), where
∅ is the empty evaluation, i.e., P has no free variables. In the
second step we point-wise apply a denotational CSP seman-
tics. This translates a process P′(A(β(M))) into its denota-
tion dM in the semantic domain of the chosen CSP model.
See [16] for the details of the construction.

Given a denotational CSP model with domain D, the se-
mantic domain of CSP-CASL consists of families of process
denotations dM ∈ D. Its elements are of the form (dM)M∈I

where I is a class of algebras. As refinement ;D we define
on these elements

(dM)M∈I ;D (d′M′)M′∈I′

iff
I′ ⊆ I ∧ ∀M′ ∈ I′ : dM′ vD d′M′ ,

where I′ ⊆ I denotes inclusion of model classes over the
same signature, and vD is the refinement notion in the cho-
sen CSP model D. In the traces model T , for instance,
T vT T ′ :⇔ T ′ ⊆ T, where T and T ′ are prefixed
closed sets of traces. The definitions of CSP refinements
for D ∈ {T ,N ,F , I,U}, c.f. [17], and also for the newly
developed model R [18], which all are based on set inclu-
sion, yield that CSP-CASL refinement is a preorder.

Concerning data refinement, we directly obtain the fol-
lowing characterisation:

data Sp process P
;D

data Sp′ process P

 if
{

1. Σ(Sp) = Σ(Sp′),
2. Mod(Sp′) ⊆ Mod(Sp)

1We omit the syntactic encoding of channels into the data part.

2

The crucial point is that we fix both the signature of the data
part and the process P. For process refinement, a similar
characterisation is obvious:

data Sp process P
;D

data Sp process P′

 if

 for all M ∈ Mod(Sp) :
[[[[P]]∅:∅→β(M)]]CSP vD
[[[[P′]]∅:∅→β(M)]]CSP

Here, [[]]CSP is the evaluation according to the CSP deno-
tational semantics. For this result, we need to fix Sp.

3 Relating formal specifications to tests

The fundamental question when dealing with testing
based on formal specifications is the following: which are
the intentions or properties formulated in the specification
text that can be tested? In order to illustrate this question,
we consider as an SUT a simple binary calculator, see Fig-
ure 2. It has two input buttons and can compute the addition
function only. Whenever one of the buttons is pressed on the
calculator, the integrated control circuit displays the corre-
sponding digit in the display. After pressing a second but-
ton, the corresponding addition result is displayed and the
calculator returns to its initial state. A major advantage of

Figure 2: Binary Calculator

specification-based design is the possibility of stepwise re-
finement. Starting from an initial, loose specification, more
and more details can be added until the specification is ef-
fective, deterministic and executable. From this, the target
code can be derived semi-automatically and in some cases
even fully automatic.

Thus, the testing framework must be able to deal with in-
complete and nondeterministic specifications. For the cal-
culator example, in a first high-level specification we might
want to abstract from the control flow and just specify the
interfaces of the system.
ccspec BCALC0 =
data

sort Number
ops ,  : Number;

+ : Number × Number →? Number

channel
Button, Display : Number

process
P0 = (?x : Button → P0) u (!y : Display → P0)

end

In this specification, 0 and 1 are constants of sort Number,
and + is a partial function from pairs of type Number to
Number. The calculator receives values of type number on
the channel Button, while it sends values of type number
over the channel Display. The process ?x : Button → P0 is
willing to receive any value of type Number over the chan-
nel Button, stores this value of type Number in x, and be-
haves like P0. This corresponds to a user input. The pro-
cess !y : Display → P0 chooses an arbitrary value y of
type Number, sends this value over the channel Display,
and behaves like P0. This corresponds to the computed
output of the calculator. The process P0 as a whole re-
peatedly chooses one of the two above processes in a non-
deterministic way, which corresponds to an arbitrary inter-
leaving of inputs and outputs.

Even for such loosely specified systems we would like to
be able to derive meaningful tests. For example, we could
design test cases which are used for setting up the inter-
face between testing system and SUT. The testing frame-
work should be able to cope with such a situation.

A more refined specification could require that the press-
ing of buttons and the display of digits strictly alternates:

P1 = ?x : Button → !y : Display → P1

In the process P1 each input is directly followed by some
output. For such a specification, we would like to test that
after each press of a button some digit is displayed.

An even more refined version requires that the first dis-
played digit is echoing the input, and the second displays
the result of the computation:

P2 =?x : Button → Display!x → ?y : Button
→ Display!(x + y) → P2

The process P2 has the following event sequence: The input
of x is followed by the display of the value x. Then the
process reads y and displays x + y. After that the process
behaves like P2 again. For testing this means that we can
check if after input of x the display shows x, and if after
input of x and y the display shows the value of the term
x + y.

Such refinement steps could occur, for example, when
use cases which are derived from customer’s wishes are in-
tegrated into the formal specification. Ideally, we would like
to be able to re-use test cases on a more detailed level which
have been designed for a more abstract level; since the re-
fined specification is more precise than the abstract one, the
outcome of testing should also be more precise. In particu-
lar, each test case developed for P1 should be reusable for
P2.

In P2 it is still left open what the value of x + y shall be.
We haven’t yet specified the arithmetic properties of addi-
tion. Such situations of under-specifications occur, e.g., in

3

object-oriented design. Here, it is often the case that library
functions are used whose exact functionality is specified at
a later stage. In CSP-CASL, we can express functionality by
suitable axioms:
ccspec BCALC3 =
data

sort Number
ops ,  : Number;

+ : Number × Number →? Number

axioms  +  = ;  +  = ;  +  = 
channel

Button, Display : Number
process

P3 = ?x : Button → Display!x
→ ?y : Button → Display!(x + y) → P3

end
In BCALC3, we specify the results of the + operator with
three axioms. We deliberately under-specify the + opera-
tor: there is no axiom for 1 + 1. Consequently, BCALC3
has models with 1 + 1 = 0, models with 1 + 1 = 1 and
models in which 1 + 1 is undefined. This means that in this
case the specification does not constrain the SUT in the re-
sult of the + operator. Such a situation might for example
arise when the functionality of border cases or exceptions is
not constrained in the basic specification. E.g., in many pro-
gramming languages the value of an integer variable in case
of overflow is not defined. However, we want to design test
cases which cover the normal, non-exceptional behaviour,
and to re-use these test cases later on. With such a speci-
fication, we expect to be able to test whether the calculator
behaves correctly, e.g., for the input of 0 and 1.

Taking the standard arithmetic CARDINAL from the
CASL library of Basic Datatypes [15], we specify a one bit
calculator where 1+1 is seen as an arithmetic overflow and
therefore is an undefined term.
ccspec BCALC4 =
data

CARDINAL [op WordLength = 1 : Nat]
with sort CARDINAL 7→ Number

channel
Button, Display : Number

process
P4 = ?x : Button → Display!x

→ ?y : Button → Display!(x + y) → P4

end
For this specification all models of the data part are iso-
morphic, and in the process part there is no internal non-
determinism. Such a specification can be completely tested.

4 Test processes

In this section we define a classification of test processes
based on the semantics of a CSP-CASL specification. Then

we show that this classification can also be captured on the
syntactical level.

4.1 Colouring test processes

In this subsection we formulate the notion of a test case
and the colour of a test case with respect to a specification.
Each test case reflects some intentions described in the spec-
ification. Intuitively, green test cases reflect required be-
haviour of the specification. Red test cases reflect forbidden
behaviour of the specification. A test is coloured yellow if it
depends on an open design decision, i.e., if the specification
does neither require nor disallow the respective behaviour.

Let (Sp, P) be a CSP-CASL specification such that Sp is
consistent, and let X = (Xs)s∈S be a variable system over the
signature Σ of the data part Sp. A test case T is any CSP-
CASL process in the signature of Sp and the variable system
X. The colour of a test case T with respect to (Sp, P) is a
value c ∈ {red, yellow, green}, such that

• colour(T) = green iff for all models M ∈ Mod(Sp)
and all variable evaluations ν : X → M it holds that:

1. traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M)) and
2. for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all

1 ≤ i ≤ n it holds that:
(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]∅:∅→β(M))

• colour(T) = red iff for all models M ∈ Mod(Sp) and
all variable evaluations ν : X → M it holds that:

traces([[T]]ν) 6⊆ traces([[P]]∅:∅→β(M))

• colour(T) = yellow otherwise.

In other words: a test case T is green, if all models agree (1)
that all its traces are possible system runs (2) whose execu-
tion can’t be refused. A test case T is red, if all models agree
that not all of its traces are possible system runs and, finally,
a test case T is yellow, if the execution of some possible sys-
tem run can also lead to failure, or the process T has a trace
which some models consider as a possible system run while
others don’t.

Our colouring has the following simple properties:

• The test process Stop which gives rise to the empty
observation 〈〉 is always coloured green.

• With the specification (Sp, Stop) all test cases different
from Stop are coloured red.

• Test cases which differ only on termination informa-
tion have the same colour.

• A CSP-CASL specification with an inconsistent data
part Sp does not reflect any intention, and, conse-
quently, such a specification does not lead to any
colouring of test cases.

4

• If T and T ′ are test cases such that colour(T) = c,
colour(T ′) = c′, and traces([[T ′]]ν) ⊆ traces([[T]]ν) for
all models M ∈ Mod(Sp) and all variable evaluations
ν : X → M, then c = green implies c′ = green and
c′ = red implies c = red.

Typical examples of open design decisions which lead to
yellow test cases are the following:

Internal nondeterminism In the specification Choice =
(a → b → (P ||| Q)) u (b → a → (P ||| Q)),
the order of a and b is left open. Only the additional
specification of a scheduling mechanism would en-
force that, e.g., a is executed at the first step. Consider
the test case T = a → Stop. As Choice has the failure
(〈〉, {a}), the colour of T is yellow. At the first step of
Choice neither the execution of a nor the execution of
b can be guaranteed.

Loose specification In the same way, a heterogeneous
model class of the data part can lead to a yellow test.
Take for example the process (if foo(1) = 2 then
(continue → Skip) else (shutDown → Skip)). Here,
the signal continue is sent in models where foo is, e.g.,
the successor function. In other models, foo might be
the predecessor function and shutDown is sent. If the
interpretation of foo is still an open design decision
in the current specification, there are two correct im-
plementations behaving differently. Consequently, the
test case (continue → Skip) is coloured yellow.

The latter example illustrates also that the classification
of a test process as green, red, or yellow is in general unde-
cidable, as CASL includes full first order logic and arbitrary
CASL predicates are allowed in case distinctions. This is
called the test oracle problem, see e.g. [13][12].

4.2 Syntactic Characterisation

Using techniques originally developed in the context of
full abstraction proofs for CSP [17], the above definition of
colouring test processes has an equivalent syntactical char-
acterisation for certain test processes. A test processes T is
called linear if it can be written as T = t1 → . . . → tn →
Stop.

Concerning trace inclusion with respect to a linear test
process T of length n ≥ 0, we define the following system
of process equations

checkT = ((P ‖ T)[[Rs1]] . . . [[Rsh]]
|[A]| count(n)) \ s1 \ . . . \ sn

count(n : Nat) = if n = 0 then Ok → Stop else count(k − 1)

To make this a valid process part of a CSP-CASL specifi-
cation, we take the original data part and extend it conser-
vatively, i.e. without loosing any model of the data part. To

this end we add a datatype Nat with the standard operations,
a free type A consisting only of the constant a, a free type
OK consisting only of the constant Ok, and for each sort
s1 . . . sk in which T could possibly communicate a renam-
ing predicate Rsi,A : si × A with the axiom ∀ x : si • R(x, a).

We briefly sketch the idea behind this process definition:
The synchronous parallel operator ‖ forces P and T to agree
on all communications. Should P agree to execute the com-
munications t1, . . . , tn of T in exactly this order, this results
in a sequence of n communications. All these communica-
tions are renamed into a via the predicates Rsi,A. The pro-
cess count communicates Ok after the execution of n a′s.
Hiding the communication a makes only this Ok visible.

Now, one can prove the following: Given a model M ∈
Mod(Sp) and a variable evaluation ν : X → M, then

traces([[T]]ν) ⊆ traces([[P]]∅:∅→β(M))
⇔

traces([[checkT]]ν) = traces([[Ok → Stop]]ν)

Thus, a test process is red, iff

∀ x1 : s1, . . . , xl : sn • checkT 6=T Ok → Stop.

And for a test process to be green, it is necessary that

∀ x1 : s1, . . . , xl : sn • checkT =T Ok → Stop.

Here x1, . . . , xl is the list of variables occurring in the terms.
A similar result can be obtained for the condition on the

failures, which occurs in the colouring of a green test case.

5 Testing and Refinement

In the previous section, we defined the expected result
of a test process with respect to a specification in terms of
the colours green, red and yellow. In this section, we define
how to execute a test case with respect to a particular SUT.
Then, we study if the colouring of test cases is preserved
under refinement. Finally, we show that the green test cases
of a specification actually refine this very specification.

5.1 The overall test setting

Here, we define the execution of a test process with re-
spect to a particular SUT, see Figure 3. The test verdict is
obtained during the execution of the SUT from the expected
result defined by the colour of the test process.

A point of control and observation (PCO) P =
(A, ‖...‖,D) of an SUT consists of

• an alphabet A of primitive events which can be com-
municated at this point,

• a mapping ‖...‖ : A −→ TΣ(X) which returns for each
a ∈ A a term (usually a constant) over Σ, and

5

• a direction D : A −→ {ts2sut, sut2ts}.

ts2sut stands for signals which are sent from the testing sys-
tem to the system under test, and sut2ts stands for signals
which are sent in the other direction. In telecommunica-
tions, the mapping ‖...‖ is called a coding rule. For the data
type definition language ASN.1 (Abstract Syntax Notation
One) [4] there are standardized coding rules for many fre-
quently used PCOs.

We say that a test case T is executable at a PCO P with
respect to a specification (Sp, P), if

• for each term t occurring in T there is exactly one
at ∈ A such that at and t are equal2. This requirement
ensures that each term in the test case corresponds to
some observable or controllable event in the SUT.

• for a, b ∈ A, if ‖a‖ equals ‖b‖ then a and b are the
same primitive event. This requirement ensures that
different observations or control events represent dif-
ferent values.

For test execution, we consider the SUT to be a process
over the alphabet A, where the internal structure is hidden.
Hence, the SUT can engage in communications at the PCO.
Communications a with D(a) = sut2ts are initiated by the
SUT and are matched by the testing system with the ex-
pected event from the test case. Communications a with
D(a) = ts2sut are initiated by the testing system and can-
not be refused by the SUT. However, if the SUT sends an
event without a stimulus, the SUT deviates from the speci-
fied behaviour. If the SUT internally refuses some commu-
nication, this can only be observed by the fact that it doesn’t
answer, i.e., the testing system waits for some event sut2ts,
but this event does not happen. Testing is concerned with
safety properties only; thus we say that in such a case a
timeout happens.

The test verdict of a test case is defined relatively to a par-
ticular CSP-CASL specification and a particular SUT. The
verdict is either pass, fail or inconclusive. Intuitively, the
verdict pass means that the test execution increases our con-
fidence that the SUT is correct with respect to the specifica-
tion. The verdict fail means that the test case exhibits a fault
in the SUT, i.e., a violation of the intentions described in the
specification. The verdict inconclusive means that the test
execution neither increases nor destroyes our confidence in
the correctness of the SUT.

Let T = (t1 → t2 → . . . → tn → Stop) be a linear test
case. Assume colour(T) = c with respect to a specification

2Strictly speaking, this is the case if at and t are of the same sort and
Sp |= (∀X • ‖at‖ = t). Here, X is a variable system including all vari-
ables of ‖at‖ and t. Since in general equality of CASL terms is undecid-
able, in general it is undecidable if an arbitrary test case is executable with
respect to a PCO. However, for all practical purposes equality is easily
decidable.

(Sp, P). Assume further that T is executable at a PCO P =
(A, ‖...‖,D). The test verdict of the test case T with colour
c at the PCO P relatively to an execution of the SUT is
defined inductively as follows:

• If n = 0 the colour c of the test case yields the test
verdict as follows: if c = green the test verdict is pass,
if c = red the test verdict is fail, if c = yellow the test
verdict is inconclusive.

• If n > 0, let a be the primitive event with ‖a‖ equals
t1. Assume that the colour c is

– green: If the direction D(a) = sut2ts and we re-
ceive a, then we inductively determine the test
verdict by continuing to execute the SUT against
the remaining linear test case (t2 → . . . → tn →
Stop).
If the direction D(a) = sut2ts and we receive
some b different from a or if a timeout occurs,
then the test verdict is fail.
If the direction D(a) = ts2tsut and we receive an
event from the SUT within the timeout period,
then the test verdict is fail.
If the direction D(a) = ts2sut and we do not
receive an event during the timeout period, then
we send a to the SUT and obtain the test verdict
by continuing to execute the SUT against the re-
maining linear test case (t2 → . . . → tn → Stop).

– red: If the direction D(a) = sut2ts and we re-
ceive a we obtain the test verdict by continuing
to execute the SUT against the remaining linear
test case (t2 → . . . → tn → Stop).
If the direction D(a) = sut2ts and we receive
some b different from a or if a timeout occurs,
then the test verdict is pass.
If the direction D(a) = ts2tsut and we receive an
event from the SUT within the timeout period,
then the test verdict is pass.
If the direction D(a) = ts2sut and we do not
receive an event during the timeout period, then
we send a to the SUT and obtain the test verdict
by continuing to execute the SUT against the re-
maining linear test case (t2 → . . . → tn → Stop).

– yellow: the test verdict is inconclusive.

The verdict of a yellow test case is always inconclusive and
does not require any execution of the SUT. Recall that a
yellow test case reflects an open design decision. Con-
sequently, such a test case can neither reveal a deviation
from the intended behaviour, nor can it increase the confi-
dence that the system is apt to its intended use. After taking
this design decision, however, i.e. turning the property into

6

an intended or a forbidden one, the colour of the test will
change and we will obtain pass or fail as a verdict. In the
next section we will discuss how the colouring of test cases
changes under refinement.

Figure 3: Overall formal testing framework

5.2 Properties of Test-Suites

Let ≤ be a binary relation over CSP-CASL specifica-
tions such that (Sp, P) ≤ (Sp′, P′) implies that the sig-
nature of Sp is included in the signature of Sp′. We call
such a relation to be ≤ well-behaved, if, given specifica-
tions (Sp, P) ≤ (Sp′, P′) with consistent data parts Sp and
Sp′ and a variable system X over the signature of Sp, the
following holds for any test process T over Sp:

1. colour(T) = green with respect to (Sp, P) implies
colour(T) = green with respect to (Sp′, P′), and

2. colour(T) = red with respect to (Sp, P) implies
colour(T) = red with respect to (Sp′, P′).

Interpreting ≤ as a development step, this means: If a test
case T reflects a desired behavioural property in (Sp, P),
i.e. colour(T) = green, after a well-behaved development
step from (Sp, P) to (Sp′, P′) this property remains a de-
sired one and the colour of T is green. If a test case
reflects a forbidden behavioural property in (Sp, P), i.e.
colour(T) = red, after a well-behaved development step
from (Sp, P) to (Sp′, P′) this property remains a forbidden
one and the colour of T is red. A well-behaved development
step can change only the colour of a test case T involving
an open design decision, i.e. colour(T) = yellow. Figure 4
illustrates this effect in the context of the test verdict.

In the following, we study for various refinement rela-
tions if they are well-behaved.

5.2.1 Data refinement is well-behaved

Let (Sp, P) ;D (Sp′, P) hold via data refinement, i.e.
Σ(Sp) = Σ(Sp′) and Mod(Sp′) ⊆ Mod(Sp). Then ;D is

Figure 4: Test colouring and test verdict under well-behaved
refinement

well-behaved independent of the choice of the CSP model
D. Especially, data refinement over the traces model T , the
failures/divergences model N , the stable failures model F ,
and the stable revivals model R [18] are well behaved.

Of this proof we consider only the case that the test pro-
cess T is green over (Sp, P). Let M′ be model of Sp′. As
Mod(Sp′) ⊆ Mod(Sp), we obtain: M′ is also a model of
Sp. For the models of Sp, however, the conditions 1. and 2.
for a green test case hold by assumption.

5.2.2 Model T : process refinement is not well-behaved

As the CSP trace refinement does not guarantee the preser-
vation of behaviour, it is to be expected that the CSP-
CASL notion of process refinement based on T fails to be
well-behaved. This is illustrated by the following counter-
example:

ccspec DOONEA =
data sort s

op a : s
process

a → Stop
end

ccspec DONOTHING =
data sort s

op a : s
process

Stop
end

As Stop refines any process in the CSP traces model T , we
have DOONEA ;T DONOTHING via process refinement.
The process T = a → Stop has the colour green over
DOONEA, however has the colour red over DONOTHING.

5.2.3 Models N , F and R: process refinement is well-
behaved for divergence free processes

CSP-CASL process refinement based on CSP models N , F
and R is well-behaved, provided the processes involved are
divergence-free.

Concerning N and F it is sufficient to prove this for
F only, as failures divergences refinement and stable fail-
ures refinement are equivalent on divergence free processes.
Again, we consider only the case of a green test process.

Let (Sp, P) ;F (Sp, P′) hold via process refinement.
Let the test process T be green with respect to (Sp, P). Let
M be a model, let ν be a variable evaluation. We prove by
induction on the length n of traces t ∈ traces([[T]]ν) that t ∈
traces([[P]]∅:∅→β(M)). For n = 0 this is obviously the case.
Let t = 〈t1, . . . , tn, tn+1〉 ∈ traces([[P]]∅:∅→β(M)). Then

7

〈t1, . . . , tn〉 ∈ traces([[P]]∅:∅→β(M)) and thus by induction
hypothesis also 〈t1, . . . , tn〉 ∈ traces([[P′]]∅:∅→β(M)). Let us
assume that 〈t1, . . . , tn, tn+1〉 /∈ traces([[P′]]∅:∅→β(M)). As a
divergence free process, P′ has the failure (〈t1, . . . , tn〉, ∅).
Thus, by healthiness of the stable failures domain, P′ has
also failure (〈t1, . . . , tn〉, {tn+1}) – which is a contradic-
tion to failures([[P′]]∅:∅→β(M)) ⊆ failures([[P]]∅:∅→β(M)) 63
(〈t1, . . . , tn〉, {tn+1}). The proof of the 2nd condition is triv-
ial.

The proof for R follows the same line of argument.

5.3 Green test cases form a refinement

Besides the question whether refinements are well be-
haved with respect to test case colouring, one can also ask
the other way round: Is there a refinement between the
specification and the test processes? Here, we have the re-
lation: Given a green test T over a CSP-CASL specifica-
tion (Sp, P). Then (Sp, P) ;T (Sp, T), i.e. every green
test process is a CSP-CASL process refinement with re-
spect to the traces model T . Let Green(Sp,P) be the set
of all green test processes with respect to (Sp, P). Then
(Sp, P) ;T (Sp,uGreen(Sp,P)).

6 The calculator example revisted

In this section we re-consider the calculator example
stated in Section 3 and establish the informal claims and
promises made in that section. We prove refinement re-
lations between the various specifications, construct a test
suite, and determine the colour of its test cases with respect
to the specification of Section 3. Finally, we show how the
test cases can be implemented with a software simulation of
the calculator.

6.1 Refinements

We first show by fixed point induction that BCALC0 re-
fines to BCALC1 via process refinement within the stable
failures model F .

(?x : Button → P0) u (!y : Display → P0)
=F (?x : Button → ((?x : Button → P0)

u (!y : Display → P0))) u (!y : Display → P0)
vF ?x : Button → ((?x : Button → P0)

u (!y : Display → P0))
vF ?x : Button →!y : Display → P0

The proofs uses standard CSP laws: First, we unwind the
recursion at the first occurrence of P0. Then we leave out
the second branch of the last internal choice. Finally, we
select the second branch of the internal choice.

Next, we show that BCALC1 refines to BCALC2 via pro-
cess refinement within the stable failures model F .

?x : Button → !y : Display → P1

=F ?x : Button → !y : Display
→ ?x′ : Button → !y : Display → P1

vF ?x : Button → Display!x →?x′ : Button
→ Display!(x + x′) → P1

=F ?x : Button → Display!x →?y : Button
→ Display!(x + y) → P1

Again, we first unwind the recursion of P1. As P1 is inde-
pendent of x we can rename x into x′. Chosing the specific
values x and x + x′ for the two occurences of !y : Display
is a refinement. Finally, renaming x′ into y preserves the
semantics of the process.

As all processes involved are divergence free, our proofs
also carry over to the failure/divergences model N .

Adding axioms to a signature without changing the pro-
cess part always results in a data refinement. Consequently,
BCALC2 refines to BCALC3 via data refinement. As the
axioms stated in BCALC3 hold, e.g., for the natural num-
bers, the data part of BCALC3 is consistent.

The axioms for 0 and 1 stated in BCALC3 hold in
the specification CARDINAL. As the process part is not
changed, BCALC3 refines to BCALC4 via a data refine-
ment.

6.2 Colouring of test cases

In this subsection we define some meaningful test cases
for the calculator.

T0 : Stop
T1 : Button!1 → Stop
T2 : Display!1 → Stop
T3 : Button!0 → Button!1 → Stop
T4 : Button!1 → Display!1 → Stop
T5 : Button!1 → Display!0 → Stop
T6 : Button!0 → Display!0 → Button!1 → Display!1 → Stop
T7 : Button!1 → Display!1 → Button!1 → Display!0 → Stop

The following table shows how these test process are
coloured with respect to the specifications of Section 3:

T0 T1 T2 T3 T4 T5 T6 T7

P0 G Y Y Y Y Y Y Y
P1 G G R R Y Y Y Y
P2 G G R R G Y Y Y
P3 G G R R G R G Y
P4 G G R R G R G R

The empty observation T0 is green with respect to all spec-
ifications. T1 becomes green for P1 as P1 cannot refuse the
event Button!1 after the empty trace. T2 becomes red for P2

as Display!1 is not an initial event of P2. T6 stays yellow for

8

P0 to P2, as the result of 0 + 1 has yet not been specified.
The axiom 0 + 1 = 1 in P3 turns this test case green. How-
ever, the result of 1 + 1 is still not specified in P3. Thus, T7

is still yellow in P3. Only for P4 we know that 1 + 1 is un-
defined. As the constant 1 is defined, however, P7 becomes
red over P4. Note that – in accordance to our theoretical re-
sults – the colour of a green or red test case does not change
under refinement.

We also give a sample proof for these colourings using
the syntactical characterisations stated in Section 4.2. We
show that the test case T6 is coloured green with respect to
P3:

checkT
= (((?x : Button → Display!x →

?y : Button → Display!(x + y) → P3)
‖ (Button!0 → Display!0 →

Button!1 → Display!1 → Stop)
)[[a/Button!0, . . . , a/Display!1]] |[a]| count(4)) \ {a}

= ((Button!0 → Display!0 →
Button!1 → Display!1 → Stop)

[[a/Button!0, . . . , a/Display!1]] |[a]| count(4)) \ {a}
= (a → a → a → a → Ok → Stop) \ {a}
= Ok → Stop

Thus, the traces condition for green is fulfilled. As P3

does not have any internal non-determinism, also the fail-
ures condition becomes true. Consequently, the colour of
the test case T6 is green.

6.3 Establishing a SUT and PCO

In order to demonstrate how our approach can be used
for testing an implementation, we sketch a Java program
which realizes the specification BCALC4. We give only the
parts necessary to understand the communication and omit
most of the control part.

import j a v a . awt . ∗ ;
p u b l i c c l a s s BCalc ex tends JFrame {

. . .
p u b l i c BCalc () { i n i t i a l i z e () ; }
p r i v a t e J P a n e l g e t J C o n t e n t P a n e ()
{ . . .
b u t t o n 0 =new J B u t t o n () ;
b u t t o n 0 . a d d A c t i o n L i s t e n e r

(new A c t i o n L i s t e n e r ()
{ p u b l i c vo id a c t i o n P e r f o r m e d

(A c t i o n E v e n t e)
{ e x e c u t e (0) ; }}) ;
pane1 . add (b u t t o n 0) ;
. . .
d i s p l a y = new J T e x t F i e l d (1 2) ;
pane2 . add (d i s p l a y) ;
. . . }

p r o t e c t e d void e x e c u t e (i n t v a l u e)
{ i f (f i r s t P r e s s)
{ d i s p l a y V a l u e = v a l u e ;

f i r s t P r e s s = f a l s e ;
d i s p l a y . s e t T e x t (” ”+ d i s p l a y V a l u e) ; }

e l s e { i f (d i s p l a y V a l u e ==0 && v a l u e ==0)
{ d i s p l a y V a l u e =0;

d i s p l a y . s e t T e x t (” ”+ d i s p l a y V a l u e) ;
f i r s t P r e s s = t rue ; }

e l s e { . . . } } }

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
{ new BCalc () ; } }

Upon startup, this program creates objects for the but-
tons and display. For each button there is a private method
actionPerformed which is called by the Java runtime
library whenever the button is pressed with the mouse. The
program then uses the method setText inherited from
JTextField to write the result to the screen.

For the point of control and observation of
this SUT we use the alphabet of primitive events
A = {button0, button1, display0, display1}. We de-
fine ‖buttoni‖ = Button.i, ‖displayi‖ = Display.i for
i = 0, 1. The direction of button events is ts2sut, while it is
sut2ts for display events. The test cases T1 to T7 of Section
6.2 are executable at the above PCO with respect to all
specifications of Section 3.

In order to execute the test cases the testing system must
be able

• to invoke the appropriate method
actionPerformed for each button event and

• to observe the respective display event whenever the
method setText is called.

For the execution of the test processes, we define 2 secs as
the period of time in which we expect a response from the
SUT. Interesting test executions arise from the test cases T2

and T3. Here, we first show a test protocol of the execution
of T2 at our implementation of BCALC4 in Java:

Colour of the test: red
Start time of the test: 7:28:21:021
No event was recieved after 2 sec: timeout.

Test verdict: pass.

As T2 is red over BCALC4 and a timeout occurs, the test
verdict is pass.

Concerning T3 we obtain the following execution proto-
col:

Colour of the test: red
Start time of the test: 7:30:22:031
button0 was pressed at time 7:30:24:036
display0 was received at time 7:30:25:236
no events were expected from the SUT

Test verdict: pass.

9

Within the defined period of 2 secs we do not receive an
event from the SUT. Thus, we press button0 and continue
executing the test case. We then receive display0 from the
SUT within 2 secs – as D(button1) = ts2sut, the test verdict
is pass.

7 Summary and Future Work

In this paper, we have developed a theory for the evalua-
tion of test cases with respect to formal specifications. The
major innovations are:

• We separate the test oracle and the test evaluation prob-
lem by defining the expected result (green, red and yel-
low) and the verdict (pass, fail and inconclusive) of a
test case.

• We use a three-valued colouring scheme for the ex-
pected result, which allows specification transforma-
tion and refinement, and

• We use a three-valued evaluation scheme for the ver-
dict, which allows tests to be performed at all stages in
a system’s design.

We obtained some theoretical results on our approach and
gave a practical example.

There are a number of questions which arise from this
work and could not be addressed in the present paper. We
already mentioned the question of test generation and test
coverage. Although our framework suggests an algorithm
for online test execution and monitoring based on CSP-
CASL-provers, a practical implementation of such an algo-
rithm is still missing. On the theoretical side, there are other
refinement and simulation notions which could be consid-
ered and analysed for well-behavedness. Lastly, we want
to consider relations between specifications which also al-
low to change the signature of the data part. Such enhance-
ment relations would enable us to re-use test suites for new
products in a product line, where each product specification
enhances the previous one.

Acknowledgement The authors would like to thank
Erwin R Catesbeiana (jr) for pointing out the possibility of
on-the-fly evaluation of test verdicts.

References

[1] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner,
P. D. Mosses, D. Sannella, and A. Tarlecki. CASL: the com-
mon algebraic specification language. Theoretical Computer
Science, 286(2):153–196, Sept. 2002.

[2] M. Bidoit and P. D. Mosses. CASL User Manual. LNCS
2900. Springer, 2004.

[3] E. Brinksma, G. Scollo, and C. Steenbergen. Lotos Specifi-
cations, their Implementations, and their Tests. In Protocol
Specification, Testing and Verification, pages 349–360. El-
sevier, 1987.

[4] O. Dubuisson. ASN.1 communication between heteroge-
neous systems. Morgan Kaufmann, 2000.

[5] M.-C. Gaudel. Testing can be formal, too. In CAAP/FASE,
LNCS 915. Springer, 1995.

[6] M.-C. Gaudel and P. R. James. Testing algebraic data types
and processes: a unifying theory. Formal Aspects of Com-
puting, 1999.

[7] A. Gimblett, M. Roggenbach, and H. Schlingloff. Towards
a formal specification of an electronic payment systems in
CSP-CASL. In WADT’04, LNCS 3423. Springer, 2005.

[8] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[9] ISO 8807. Lotos — a formal description technique based on
the temporal ordering of observational behaviour, 1989.

[10] C. Lüth, M. Roggenbach, and L. Schröder. CCC —the
CASL Consistency Checker. In WADT 2004, LNCS 3423.
Springer, 2005.

[11] K. Lüttich and T. Mossakowski. Reasoning support for
CASL with automated theorem proving systems. In WADT
2006, LNCS 4409, 2007.

[12] P. D. L. Machado. On oracles for interpreting test results
against algebraic specifications. In AMAST’99, LNCS 1548.
Springer, 1999.

[13] P. D. L. Machado. Testing from Structured Algebraic Spec-
ifications: The Oracle Problem. PhD thesis, University Ed-
inburgh, 2000.

[14] T. Mossakowski, C. Maeder, and K. Lüttich. The heteroge-
neous tool set. In TACAS 2007, LNCS 4424, 2007.

[15] P. D. Mosses, editor. CASL Reference Manual. LNCS 2960.
Springer, 2004.

[16] M. Roggenbach. CSP-CASL – A new integration of process
algebra and algebraic specification. Theoretical Computer
Science, 354:42–71, 2006.

[17] A. Roscoe. The theory and practice of concurrency. Prentice
Hall, 1998.

[18] B. Roscoe. Revivals,stuckness and responsiveness, 2005.
unpublished draft.

10

