
On testing

and specifying

Dusko Pavlovic

(work in progress with Bart Jacobs)

September 2005

1

Some approaches to software development:

correct-by-construction:

spec → refine → . . .→ prog
√

hacking:

prog → test → prog → test . . .

development cycle:

spec → refine → prog → test → spec . . .

2

Testing goals:

correctness: ”Does system satisfy spec?”

• ”How closely?”

assurance:

bugs ⇒

• ”How bad?”

• ”How likely am I to find more?”

no bugs ⇒

• ”How good?”

– ”How much assurance do I get from 20 tests?”

– ”Which tests are more informative?”

3

Task:

Define experimental method for software sci-

ence:

• experiment design techniques for

– test suites

– blind sampling

• statistical data analysis for

– quantitative view of

– computational behaviors

4

Outline

1. Testing frameworks

2. Examples

3. Behaviors and representation

5

1. Testing frameworks

Facets of testing.

Syst×Test
|=

// Obs

testing equivalence∗ on Syst:

R ∼ S ⇐⇒ ∀t ∈ Test. (R|= t) = (S|= t)

debugging:

R#εS ⇐⇒ ∃bug ∈ Test. (R|= bug) > (S|= bug) + ε ∨
∃req ∈ Test. (R|= req) + ε < (S|= req)

⇐⇒ ∃t. (R|= t) 6∈
[
(S|= t)− ε, (S|= t) + ε

]
authentication:

∃sA ∈ Test. X|= sA =⇒ X = A

∗e.g., system R satisfies spec S

(”real function” vs ”ideal functionality”)

6

1.1. Systems

given

• category S of ”(state) spaces”

• monad R : S−→S of ”next-state spaces”

represent

• systems as G-coalgebras X−→GX for

– reactive (read): GrX = RXA

– generating (write): GwX = R(A×X)

– read-write: GrwX = R(A×X)A

• We test reactive systems as the final G-

coalgebra

Syst = νX. RXA

7

1.2. Tests

given

• category T of ”(data) types”

• monad L : S−→S of ”test algebras”

– pointed by 1
0−→ L

represent

• tests (for reactive systems) as the ele-
ments of F -algebras FX−→X for

– F`X = LX + A×X

• type of tests as the initial F -algebra

Test = µX. LX + A×X

8

1.3. Connections and duality

Def. A connection is a contravariant adjunc-
tion

M a P : Sop−→T

where

• PX ⊆ ObsX represents a ”type of predi-
cates over the space X”,

• MY ⊆ ObsY represents a ”space of models
over the type Y ”, i.e.

– the underlying sets of predicates PX and of mod-
els MY consist of functions X → ObsT and Y →
ObsS respectively,

– the space ObsS ∈ S and the type ObsT ∈ T have
the same underlying set Obs of ”observations”∗

(continued. . .)

∗In T they form the type ”propositions” or ”truth val-
ues”. In S they form the space of ”coordinates”.

9

. . .

• ObsS has an L-algebra structure,

• ObsT has an R-algebra structure.

A connection is a duality if it is an equivalence.

10

Examples of connections.

1. ℘op a ℘ : Setop−→Set

2. Stone duality

3. pt a O : Espop−→Frm

4. C a S : Espop−→Rng

5. Priestley duality, and the various lattice cor-

respondences

6. Scott duality: injective spaces and domains

11

1.4 Behaviors

Def. A testing framework consists of

• a system monad R : S−→S

• a test monad L : T −→T , and

• a connection M a P : Sop−→T

Def. For a given testing framework, with the
final coalgebra Syst of systems and the initial
algebra Test of tests, the space Behv of be-
haviors is defined by

Test
=|

// P(Syst) ⊆ ObsSyst

Syst
|=

//

����

M(Test) ⊆ ObsTest

Behv
& �

33hhhhhhhhhhhhhhhhhhhhh

12

Since the test algebra is Test = µX. LX + A×
X, a test t must be in the form

t ::= c | f(t0 . . . tn) | a.t

where c is a constant and f an operation from

the signature of the algebraic theory of the

monad L.

13

Testing semantics |= is defined by combining

induction over Test and coinduction over Syst

(
P |= c

)
= c(

P |= f(t0 . . . tn)
)

= f
(
(P |= t0) . . . (P |= tn)

)
(
P |= a.t

)
=

(
%(P, a)|= t

)

where

% : Syst×A−→R(Syst)

is (the transpose of) the final G-coalgebra struc-

ture on Syst, and |= extends along

Syst
η

//

|=
::

::
::

::
::

��:
::

::
::

::

R(Syst)

|=
�

�
�

�
�

���
�

�
�

�

ObsTest

because Obs is an R-algebra.

14

1.5 Metrics

Indistinguishability = testing equivalence

R ∼ S ⇐⇒ ∀t ∈ Test. (R|= t) = (S|= t)

refines to

d(R, S) =
∨

t∈Test

∣∣∣(R|= t)− (S|= t)
∣∣∣

(R#εS becomes d(R, S) > ε. . .)

15

2. Examples

2.1. Linear time – branching time

With

S = Set<ω

R = ℘ : Set<ω−→Set<ω

we capture possibilistic nondeterminism∗

X−→(℘X)A

where A is a fixed set of actions.

The space of systems

Syst = AHSet<ω

consists of finite A-labelled hypersets.

(It lives in Set, not in Set<ω.)

∗reading = writing, because (℘X)A ∼= ℘(A×X)

16

Moreover, in all of the following examples, take

T = Set<ω

Obs = 2 = {0,1} and

T = ℘ : Set<ω
op−→Set<ω

S = ℘op a ℘

17

2.1.1. Testing with traces: LX = 1 = {〈〉}

Test = A∗

(P |= 〈〉) = 1

(P |= a.t) =
∨

Q∈%(P,a)

(Q|= t)

18

2.1.2. . . . complete traces: LX = {〈〉} again,

but A is extended to A + κ, i.e.

Test = (A + κ)∗

Extend each system by a final state
√

, so that

each run must be completed by κ:

X ×A
%

// ℘X

(X +
√

)× (A + κ)
%κ // ℘(X +

√
)

by setting

%κ(P, a) =

%(P, a) if P ∈ X ∧ a ∈ A

{
√
} if P ∈ X ∧ a = κ ∧ ~P = ∅

∅ otherwise

where ~P = {a ∈ A | %(P, a) 6= ∅}.

19

The semantics definition

(P |= 〈〉) = 1

(P |= a.t) =
∨

Q∈%κ(P,a)

(Q|= t)

now unfolds to

(P |= κ.t) =

(
√
|= t) if ~P = ∅

0 otherwise

where

(
√
|= t) =

1 if t = 〈〉∨
∅ = 0 otherwise

20

i.e. to

(P |= 〈〉) = 1

(P |= a.t) =
∨

Q∈%(P,a)

(Q|= t)

(P |= κ.t) =

1 if ~P = ∅ ∧ t = 〈〉
0 otherwise

21

2.1.3. Failures LX = {〈〉} again, but A is

extended to A + ℘A, i.e.

Test = (A + ℘A)∗

The final state
√

is now reached reached by

testing, at the end of a run, by a failure set

α ∈ ℘A:

X ×A
%

// ℘X

(X +
√

)× (A + ℘A)
%fail

// ℘(X +
√

)

by setting

%fail(P, α) =

%(P, α) if P ∈ X ∧ α ∈ A

{
√
} if P ∈ X ∧ α ∈ ℘A ∧ α ∩ ~P = ∅

∅ otherwise

where ~P = {a ∈ A | %(P, a) 6= ∅}.

22

The semantics definition

(P |= 〈〉) = 1

(P |= α.t) =
∨

Q∈%fail(P,α)

(Q|= t)

now unfolds to

(P |= α.t) =

∨
Q∈%(P,α)(Q|= t) if α ∈ A

1 if

α ∈ ℘A ∧
α ∩ ~P = ∅ ∧
t = 〈〉

0 otherwise

23

2.1.4. Refusal LX = {〈〉} again, but A is

extended to A + ℘A, i.e.

Test = (A + ℘A)∗

Test systems not only by the accepted actions

a ∈ A, but also by the refused sets α ∈ ℘A:

X ×A
%

// ℘X

X × (A + ℘A)
%ref

// ℘X

by setting

%ref(P, α) =

%(P, α) if α ∈ A

{P} if α ∈ ℘A ∧ α ∩ ~P = ∅
∅ otherwise

where ~P = {a ∈ A | %(P, a) 6= ∅}.

24

The semantics definition

(P |= 〈〉) = 1

(P |= α.t) =
∨

Q∈%ref(P,α)

(Q|= t)

now unfolds to

(P |= α.t) =

∨
Q∈%(P,α)(Q|= t) if α ∈ A

(P |= t) if

 α ∈ ℘A ∧
α ∩ ~P = ∅

0 otherwise

25

2.1.5. Acceptance-refusal LX = {〈〉} again,

but A is extended to A + 2×℘A, i.e.

Test = (A + 2×℘A)∗

Extend each system to test it not only by the

accepted actions a ∈ A, but also by the refused

sets α ∈ {0} × ℘A and by the accepted sets

α ∈ {1} ×℘A:

X ×A
%

// ℘X

X × (A + 2×℘A)
%ar // ℘X

by setting

%ar(P, α) =

%(P, α) if α ∈ A

{P} if

 α = 〈0, α′〉 ∧ α′ ∩ ~P = ∅
or α = 〈1, α′〉 ∧ α′ ⊆ ~P

∅ otherwise

where ~P = {a ∈ A | %(P, a) 6= ∅}.

26

The semantics definition

(P |= 〈〉) = 1

(P |= α.t) =
∨

Q∈%ar(P,α)

(Q|= t)

now unfolds to

(P |= α.t) =

∨
Q∈%(P,α)(Q|= t) if α ∈ A

(P |= t) if

α = 〈0, α′〉
∧ α′ ∩ ~P = ∅
or α = 〈1, α′〉
∧ α′ ⊆ ~P

0 otherwise

27

2.1.6. Simulation testing LX = ℘X

Test = A− edge labelled sets∗

= positive Hennessy-Milner formulas

(P |= ∅) = 1

(P |= {t1 . . . tn}) =
n∧

i=1

(P |= ti)

(P |= a.t) =
∨

Q∈%(P,a)

(Q|= t)

28

2.1.7. Bisimulation testing LX = 2×℘X

Test = A− edge labelled

2− node labelled sets

= Hennessy-Milner formulas

(P |= 〈ι, ∅〉) = ι

(P |= 〈ι, {t1 . . . tn}〉) = ι⊕
n∧

i=1

(P |= ti)

(P |= a.t) =
∨

Q∈%(P,a)

(Q|= t)

29

2.2. Probabilistic systems

X ×A
%−→ VX

where for finite X

VX = {µ : X → [0,1] |
∑

x∈X

µ(x) ≤ 1}

or for general measurable X, and V : Mes−→Mes

VX = {µ : O(X)−→[0,1] | µ(X) ≤ 1}

30

2.2.1. Possibilistic observations

Reduce finite X ×A−→VX to the framework

S = T = Set<ω

S a T = ℘op a ℘ : Set<ω
op−→Set<ω

Obs = 2

R = ℘ : Set<ω−→Set<ω

by setting

X ×A
%

// VX

X ×A× [0,1]
%

// ℘X

%(P, a, p) = {Q ∈ X | %(P, a)(Q) ≥ p}

31

With the labels from A× [0,1] and LX = ℘X,

we get

Test = A× [0,1]− edge labelled sets

and semantics

(P |= ∅) = 1

(P |= {t1 . . . tn}) =
n∧

i=1

(P |= ti)

(P |= 〈a, p〉.t) =
∨

Q∈%(P,a,p)

(Q|= t)

=
∨

%(P,a)(Q)≥p

(Q|= t)

32

2.2.2. Probabilistic observations

For V : Mes−→Mes and Obs = [0,1], testing by

LX = MX suffices:

Test = A− edge labelled wf-trees

and semantics

(P |= ∅) = 1

(P |= {t1 . . . tn}) =
n∏

i=1

(P |= ti)

(P |= a.t) =
∑

Q∈X

(Q|= t)%(P, a)(Q)

33

2.2.2. Probabilistic observations

For V : Mes−→Mes and Obs = [0,1], testing by

LX = MX suffices:

Test = A− edge labelled wf-trees

and semantics

(P |= ∅) = 1

(P |= {t1 . . . tn}) =
n∏

i=1

(P |= ti)

(P |= a.t) =
∫
Q∈X

(Q|= t)d%(P,a)

34

Remarkably,

∀t ∈ Testposs. (R|= t) = (S|= t)

m
∀t ∈ Testprob. (R|= t) = (S|= t)

although, of course

dposs.(R, S)

6=
dprob(R, S)

35

2.3. Cryptanalysis as testing

Secrecy is indistinguishability

36

2.4. Quantum systems

37

3. Behaviors and representation

Test
=|

// ObsSyst

Syst
|=

//

%% %%LLLLLLLLLL ObsTest

Behv
*

77oooooooooooo

Thm. [FoSSACS04] The bisimilarity classes
of probabilistic systems (LMPs) correspond to
the monoid homomorphisms Test−→[0,1].

The category of LMPs is dual to the category
of PMLs.

Proof sketches. [FoSSACS] Generate the
free C∗-algebra over the monoid Test and use
Stone-Gelfand duality. (The states of a prob-
abilistic system are the characters of this C∗-
algebra. Their weak topology is compact Haus-
dorff.)

38

[Soft proof.] Use LX = Z[X] and develop test-

ing framework. . .

Gaussian error estimate (central limit theorem)

to determine how much more testing is needed

for how much assurance.

39

