
1

Swansea, sept. 2005 1

Doing and undoing in the framework of
Web services

Marie-Claude Gaudel
LRI, Univ. de Paris-Sud & CNRS

(Programming and SE group)
Thanks to:

Michel Beaudouin-Lafon and Stéphane Conversy, LRI (Man-
Machine Interaction group)

and to Valérie Issarny (INRIA), Nicole Levy (Univ. de Versailles),
and the other IST DSoS project members

Swansea, sept. 2005 2

This talk is not on testing J
• A. Denise, M.-C. Gaudel, and S.D. Gouraud. A generic method for statistical testing.

In Proceedings of the 15th IEEE International Symposium on Software Reliability Engineering
(ISSRE 2004), pages 25-34, Saint-Malo, France, November 2004.

• S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre. A new way of automating statistical
testing methods. In Proceedings of the 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San Diego, CA, USA,
pages 5-12. IEEE Computer Society, 2001.

• M.-C. Gaudel. Problems and methods for testing infinite state machines. In VI Workshop de
Métodos Formais (WMF 2003), volume 95, Campina Grande, BR, October 2003. Electronic Notes
in Theoretical Computer Science (ENTCS).

• G. Lestiennes and M.-C. Gaudel. Testing Processes from Formal Specification with
Inputs,Outputs and Data Types. In Proceedings of the 13th International Symposium on
Software Reliability Engineering (ISSRE 2002), 12-15 November 2002, Annapolis, MD, USA, pages
3-14. IEEE Computer Society, 2002.

• Gregory Lestiennes, Marie-Claude Gaudel . Test de systèmes réactifs non réceptifs, MSR,
Autrans, Oct. 2005 (english version available)

http://www.lri.fr/asspro/membres/gaudel.fr.html

Swansea, sept. 2005 3

Dependable composition of web
services

• Component web services are shared with an
unknown population of other users

• They are managed by independent entities
• Composite web services cannot :

– lock a component web service for a long time
– rely on roll back or backward recovery when something

goes wrong (impossibility to successfully complete a
composed operation, or crash of one component, …)

– assume that some «!pre-commit!» feature is available in
a component web service

Swansea, sept. 2005 4

The travel agent case study

2

Swansea, sept. 2005 5

Example of «!transactions!»

Swansea, sept. 2005 6

Aim and outline of the talk

• Composition of Web services raises some problems of
atomicity
– There is a need to undo some sub-operations when a “composed

transaction” cannot succeed
• Similarities with “Undo” in collaborative work (for

instance group editors)
• Presentation outline

– Good old “undo” and “redo”
– “undo” and “redo” in group editors
– Transposition to composite Web services

Swansea, sept. 2005 7

What is undo? J
un·do v
1. vti to open, unfasten, untie, or unwrap something
2. vt to cancel or reverse the effect of an action
3. vt to cancel the effect of the last command or

action done on a computer, restoring the material
being worked on to its previous condition

4. vt to bring somebody or something to ruin or
disaster L

Encarta® World English Dictionary © 1999 Microsoft
Corporation. All rights reserved. Developed for Microsoft
by Bloomsbury Publishing Plc.

Swansea, sept. 2005 8

Undo-Redo: the good old style

• “linear undo”:
– Only the previous action is

undoable
– And then the previous one,

etc
– => stacks of possible

“undo.s” and “redo.s”
• some actions are not

undoable in some states

Undo typing

Cut
Paste
…

Edit

Undo cut

Cut
Paste
…

Edit

Undo paste

Cut
Paste
…

Edit

Undo cut
Redo paste
Cut
Paste
…

Edit

3

Swansea, sept. 2005 9

Bases of the implementation

• History buffer + “redo” stack

• Execution of a new command => addition to the history
list

• Undoing the last action of the history list => moving it to
the “redo” stack

• Redoing the top action of the Redo stack => moving it to
the history list

• “Undo” and “Redo” do not appear in the history list
(meta-actions)

• Undo can be performed via state recovery or reverse
operations

O1 O2 O4 O4

O3 O3

animation! Swansea, sept. 2005 10

Non Linear Undo
• A nice wish : any past action is undoable … “if that is

meaningful” KKK
• Interlisp (1975)

– “The user is explicitly warned that nonlinear undo might have
unpredictable effect”

• “Selective undo” (Berlage 1994): the user is not able to
select “undo” of a command when “it does not make
sense” (?).
– Collaborative graphic editor: GINA system

• “Undo any operation at any time in group editors”
Chengzeng Sun, Proc. of 2000 ACM conf. On Computer-
Supported Cooperative Work
– REDUCE system

Swansea, sept. 2005 11

Collaborative editing: a scenario
time site 0 site 1 site 2

O1 O2

O3
O4

O1 O2 O4 O3 O2 O1 O3 O4 O2 O4 O3 O1

generation
and
execution execution

Swansea, sept. 2005 12

Collaborative editing: consistency
• Causal ordering relation (dependent operations)

– Oa generated at site i, Ob generated at site j, Oa Æ Ob iff
• i =j and Oa generated before Ob
• i≠j and the execution of Oa at site j happened before the generation of Ob

• Independent operations
– neither Oa Æ Ob nor Ob Æ Oa : Oa || Ob

• Intention of an operation
– The intention of an operation O is the execution effect that can be

achieved when applying O to the state from which O was generated
• Consistency

– Convergence (same state after the same set of operations), and
causality preservation (time stamping), and intention preservation

4

Swansea, sept. 2005 13

Back to the example

• O1 Æ O3 and O2 Æ O3 and O2 Æ O4
• O1 || O2 , O1 || O4 and O3 || O4
• More about independent operations

– assume as initial state «!abc!»
– O1 is Insert[2,X] => intention: «!aXbc!»
– O2 is Insert[3,Y] => intention: «!abYc!»
– Global intention: «!aXbYc!»
– Site 0: O1 O2… «!aXYbc!» => intention violation L

• Solution for intention preservation: Operational
transformations

– Site 0: O1 O’2…, with O’2 = Insert[4, Y]
– O’2 is the result of the so-called Inclusion Transformation IT(O2, O1)

O1 O2

O3
O4

Swansea, sept. 2005 14

Transformations (Sun & al, 98, 2000)

• Inclusion Transformation of Oa against Ob:
– IT(Oa,Ob) transforms Oa into O’a, in such a way that the impact of Ob

is included in the new parameters of O’a

• Exclusion Transformation:
– ET(Oa,Ob) transforms Oa in such a way that the impact of Ob is

excluded from the new parameters of O’a
– Example: O1 || O4 but IT(O4,O1) is not sufficient at site 0
– O1 and O4 are generated at different states, because of the execution of

O2 at site 2 before O4
– At site 0, when arriving after O1O2,

• O4 is transformed into O’4 = ET(O4,O2), because O2 Æ O4 ,
• and then into IT(O’4, O1), because O1 || O4

Swansea, sept. 2005 15

Some Technicalities

• To make a long story short… IT and ET must be defined
for any couple of basic operations. Very often the result is
the identity. IT and ET are application dependent.

• Context of an operation O:
– CTO , list of operations needed to bring the system from some

initial state to the state on which O is defined
• “context equivalent” relation

– Oa ! Ob ¤ CTOa = CTOb
• “context preceding” relation

– Oa A Ob ¤ CTOb = CTOa+[Ob]
• Reversibility requirement

– if Oa ! Ob, then Oa = ET(IT(Oa, Ob), Ob)
– if Oa A Ob, then Oa = IT(ET(Oa, Ob), Ob)

Swansea, sept. 2005 16

This was «!doing!», what about
«!undoing!» ?

• Let Undo(Oi) generated or received at site k, with history
buffer HBk = O1…OiOi+1…On

• Assumption: for any O, there is a reverse operation O
• Reminder : backward recovery cannot be assumed

• J i = n : execution of On
• K i < n : execution of O’i obtained by transformation of Oi

such that:
– O1…OiOi+1…On O’i has the same effect as O1…Oi Oi O’i+1…O’n
– Roughly, the transformation of Oi into O’i includes the impacts of

Oi+1…On , and the transformation of Oi+1…On into O’i+1…O’n
excludes the impact of Oi

• execution of O’i and then update of HBk

animation !

5

Swansea, sept. 2005 17

Transformations for undoing

• Just the same ones as those for doing!
• Note that the strategy above is equivalent to doing Oi , with

– Ox Æ Oi for 1 ≤ x ≤ i, and
– Oi || Ox for i+1 ≤ x ≤ n

• O’i = LIT(Oi , HBk[i+1, n])
– where LIT is the generalisation of IT to lists of operations

• NB: the new HBk is not O1…OiOi+1…On O’i but
O1…Oi*O’i+1…O’n
– This allows an elegant and efficient treatment of Redo(Oi)
– See Sun & al. papers… not needed for web services

Swansea, sept. 2005 18

Transposition to Web services
time Composite Web

Service
Component Web

Service
rest of the

world
O1

O2
Ow

2

Ow
1

Undo(O1)
or O2 ?

Ow
3

Swansea, sept. 2005 19

Slightly simpler than in collaborative
editing

• No problem of causal ordering: “doing”
is straightforward (in first
approximation…)

• “undoing” could follow the
transformational model

Swansea, sept. 2005 20

Undo any operation at any time in Web
Service?

• Requirements (transactional attitude of composable Web
services, similar to Mikalsen & C°)

– All undoable “operations” in the CWS are reversible in their WS
– There is a unique history buffer for each WS, at least when

“composite transactions” are performed
– IT and ET are defined

• Back to the example: HB = O1 Ow
1 Ow

2 O2 Ow
3, and then

Undo(O2)…
– Execution of IT(O2, Ow

3)
– Modification of HB into O1 Ow

1 Ow
2 O2

* ET(Ow
3, O2)

– see next slide

6

Swansea, sept. 2005 21

Back to the example
• HB = O1 Ow

1 Ow
2 O2 Ow

3
• Undo(O2)

– Execution of IT(O2, Ow
3)

– Modification of HB into O1 Ow
1 Ow

2 O2
* ET(Ow

3, O2)

O1

O2
Ow

2

Undo(O2)
?

Ow
1

Ow
3

Swansea, sept. 2005 22

Some research issues
• It gives a nice general model. How to instantiate it?
• The “Travel Agent” case study

– O2 is some flight reservation
– Ow

3 is another reservation for the same flight
• which has been satisfied => IT(O2, Ow

3) = O2
• which is in a waiting list => IT(O2, Ow

3) satisfies the 2nd reservation
– O’w

3 is then a successful reservation
• Wanted: a definition of “has the same effect as” in

– O1…OiOi+1…On O’i has the same effect as O1…Oi Oi O’i+1…O’n
– Observational equivalence of states…
– to be extremely flexible… Actually, it may not be an equivalence

• The waiting list was full: Ow
3 will not be satisfied, even if O2 is

undone…
– Strong relation with intention preservation

Swansea, sept. 2005 23

Some other issues

• It works when transactions are not too long, the
possible operations are not too numerous, the
transformations do not take too much time (lock of
the site during the transformations…)

• Possibility of providing generic “wrappers” for
making web services composable ?

• If interested:
– «!Toward undoing in Composite Web Services!», in!:

Architecting Dependable Systems III, pp. 59-68, LNCS
3549, 2005

Swansea, sept. 2005 24

Formalisation

• A. Imine, P. Molli, G. Oster, and M. Rusinowitch.
« Proving correctness of transformation functions
in real-time groupware ».

• In K. Kuutti and al., editors, Proceedings of the
8th European Conference on Computer Supported
Cooperative Work, 14-18 September 2003,
Helsinki, Finland, pages 277-293. Kluwer, 2003.

