
Externalized and Internalized Notions of
Behavioral Refinement ?

Michel Bidoit 1 Rolf Hennicker 2

1 Laboratoire Spécification et Vérification (LSV), CNRS & ENS de Cachan, France
2 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

Abstract. Many different behavioral refinement notions for algebraic
specifications have been proposed in the literature but the relationship
between the various concepts is still unclear. In this paper we provide a
classification and a comparative study of behavioral refinements accord-
ing to two directions, the externalized approach which uses an explicit
behavioral abstraction operator that is applied to the specification to
be implemented, and the internalized approach which uses a built-in
behavioral semantics of specifications. We show that both concepts are
equivalent under suitable conditions. The formal basis of our study is
provided by the COL institution (constructor-based observational logic).
Hence, as a side-effect of our study on internalized behavioral refine-
ments, we introduce also a novel concept of behavioral refinement for
COL-specifications.

1 Introduction

The investigation of behavioral refinement notions is motivated by the fact that,
in general, an implementation does not need to satisfy literally the properties
of an abstract specification but it can nevertheless be considered as correct if
this implementation respects the observable consequences of the specification to
be implemented. In the framework of algebraic specifications this idea has been
taken into account in many approaches in the literature proposing behavioral
(or observational) refinement (or implementation) concepts; see e.g. [9, 17, 19, 12,
13, 4] and, for an overview, [16, 8]. However, due to the various different formal-
izations, there is still no clear picture of the relationships between the various
approaches.

In this paper we propose a classification based on two principal directions
that can be identified when we analyze behavioral refinement concepts. The
first direction, in the following called the externalized view, uses an explicit be-
havioral abstraction operator to relax the (semantics of the) specification to
be implemented. The general idea is then that the models of an implementing
specification not necessarily have to lie in the model class of the specification
to be implemented but it is sufficient if they lie in its “abstracted” model class

? This work is partially supported by the German BMBF-project GLOWA-Danube.



(see e.g. [17, 19, 16, 4]). Of course, there is again a variety of proposed behav-
ioral abstraction operators which are either based on observational equivalences
between algebras (see, e.g., [17, 16]) or on observational equalities between the
elements of algebras (see, e.g., [4]). Since in many cases both approaches can be
expressed by each other (see [7]), we will restrict here to behavioral abstraction
operators that are based on observational equalities between elements. As a con-
crete formalism we use the notion of observational equality defined in [5] which is
based on distinguished sets of constructor operations (determining the relevant
values from the user’s point of view) and observer operations (determining the
indistinguishability of elements). As a first result, we show in Section 3 (Theo-
rem 1) that behavioral refinement relations based on the externalized view can
be characterized by standard, non-behavioral refinements if we use a quotient
construction as an implementation constructor.

Then, in Section 4, we consider the second direction to behavioral refinement,
in the following called the internalized view. Here the idea is to use a built-in be-
havioral semantics that is used both for the specification to be implemented and
for the implementing specification. A built-in behavioral semantics is most ap-
propriately obtained by the use of a behavioral institution that provides a logical
system focusing on the behavioral aspects of system specifications (as with hid-
den algebra [10] or the constructor-based observational logic COL [5]). A behav-
ioral refinement concept based on hidden algebra is studied in [13], a behavioral
refinement concept for COL-specifications is introduced in Section 4. This refine-
ment concept is based on the notion of a COL-implementation constructor which
can be applied to the models of the implementing COL-specification SPICOL to
produce models of the COL-specification SPCOL to be implemented. A crucial
property of COL-implementation constructors is that they have to be compati-
ble with behavioral isomorphisms. We show that under mild assumptions reduct
functors along (standard) signature morphisms are indeed COL-implementation
constructors (Lemma 1) and we discuss the need for such constructions (in con-
trast to reduct functors along COL-signature morphisms which are appropriate
for encapsulation of specifications but not adequate for refinement).

In Section 5 we discuss the relationships between the externalized and the
internalized views on behavioral refinements. We show that the behavioral com-
patibility assumption of COL-implementation constructors is closely related to
the notion of stability (introduced by Schoett [20]) which requires that imple-
mentation constructors preserve observational equivalences between algebras.
Indeed, considering the externalized view, stability is the crucial criterion to ob-
tain composability of behavioral refinement steps (see [19]), also called vertical
composition. For the internalized view vertical composition of behavioral refine-
ments is guaranteed by definition, according to the built-in behavioral semantics
of the implementing specification. As the central result of this paper we show in
Theorem 2 that, under suitable assumptions, externalized and internalized no-
tions of behavioral refinement can be expressed by each other. As pointed out in
Section 6, this leads to a useful proof rule for internalized behavioral refinements.



2 Basic Concepts

2.1 Algebraic Preliminaries and Structured Specifications

We assume that the reader is familiar with the basic notions of algebraic spec-
ifications (see, e.g., [22, 1]), like the notions of (many-sorted) signature Σ =
(S, OP) (where S is a set of sorts and OP is a set of operation symbols op :
s1, . . . , sn → s), signature morphism σ : Σ → Σ′, (total) Σ-algebra A =
((As)s∈S , (opA)op∈OP), The class of all Σ-algebras is denoted by Alg(Σ). To-
gether with Σ-morphisms this class forms a category which, for simplicity, is
also denoted by Alg(Σ). For any signature morphism σ : Σ → Σ′, the reduct
functor |σ : Alg(Σ′) → Alg(Σ) is defined as usual.

The notion of an institution was introduced by Goguen and Burstall [11] to
formalize the general concept of a logical system from a model-theoretic point
of view; see [21] for an overview on the basic definitions and the theory of in-
stitutions. Any institution provides a suitable framework for defining a set of
specification-building operators which are independent from the concrete form
of the institution. We will use the following four fundamental operators intro-
duced in [18] for constructing structured specifications over an institution I. The
semantics of a specification SP is always determined by its signature, denoted
by Sig [SP], and by its class of models, denoted by Mod [SP].

presentation: Any pair 〈Σ, Φ〉 consisting of a signature Σ and of a set Φ of
Σ-sentences is a specification with semantics:
Sig [〈Σ, Φ〉] def= Σ

Mod [〈Σ, Φ〉] def= {M ∈ Mod(Σ) | M |=Σ Φ}

union: For any two specifications SP1 and SP2 with the same signature Sig [SP1] =
Sig [SP2] = Σ, the expression SP1 ∪ SP2 is a specification with semantics:
Sig [SP1 ∪ SP2]

def= Σ

Mod [SP1 ∪ SP2]
def= Mod [SP1] ∩Mod [SP2]

translation: For any specification SP and signature morphism σ : Sig [SP] →
Σ, the expression translate SP by σ is a specification with semantics:
Sig [translate SP by σ] def= Σ

Mod [translate SP by σ] def= {M ∈ Mod(Σ) | M |σ ∈Mod [SP]}

hiding : For any specification SP and signature morphism σ : Σ → Sig [SP], the
expression derive from SP by σ is a specification with semantics:
Sig [derive from SP by σ] def= Σ

Mod [derive from SP by σ] def= IsoΣ({M |σ | M ∈Mod [SP]}) ,
where IsoΣ( ) denotes the closure under Σ-isomorphisms in Mod(Σ).



2.2 Observability Concepts

In this section we recall the underlying observability notions that will be used
hereafter to formalize behavioral refinements (see [5] for more details). Note,
however, that the forthcoming study of behavioral refinement notions is in prin-
ciple independent of the chosen formal basis.

To capture the behavioral aspects of system specifications we consider distin-
guished sets of constructor and observer operations. Intuitively, the constructor
operations determine those elements which are of interest from the user’s point
of view while the observers determine a set of observable experiments that a user
can perform to examine hidden states. Thus we can abstract from junk elements
and also from concrete state representations whereby two states are considered
to be “observationally equal” if they cannot be distinguished by observable ex-
periments.

Formally, a constructor operation is an operation symbol cons : s1, . . . , sn →
s with n ≥ 0. The result sort s of cons is called a constrained sort. An observer
operation is a pair (obs, i) where obs is an operation symbol obs : s1, . . . , sn → s
with n ≥ 1 and 1 ≤ i ≤ n. The distinguished argument sort si of obs is called a
state sort (or hidden sort). If obs : s1 → s is a unary observer we simply write
obs instead of (obs, 1).

If we consider a standard algebraic signature Σ = (S, OP) together with
a distinguished set OPCons of constructor operations and a distinguished set
OPObs of observer operations we obtain a so-called COL-signature ΣCOL =
(Σ, OPCons,OPObs) with underlying (standard) signature Σ.1 The set SCons ⊆ S
of constrained sorts (w.r.t. OPCons) consists of all sorts s such that there exists
at least one constructor in OPCons with range s. The set SLoose ⊆ S of loose sorts
consists of all non-constrained sorts, i.e. SLoose = S \ SCons . The set SState ⊆ S
of state sorts (or hidden sorts, w.r.t. OPObs) consists of all sorts si such that
there exists at least one observer (obs, i) in OPObs , obs : s1, . . . , si, . . . , sn → s.
The set SObs ⊆ S of observable sorts consists of all sorts which are not a state
sort, i.e. SObs = S \ SState .

The set OPCons of constructor operations (of a COL-signature ΣCOL) de-
termines a set of constructor terms. A constructor term is a term t of a con-
strained sort s ∈ SCons which is built only from constructor operations of OPCons

and from variables of loose sorts. In particular, if all sorts are constrained, i.e.,
SCons = S, the constructor terms are exactly the (S, OPCons)-ground terms
which are built by the constructor symbols. The set of constructor terms deter-
mines, for any Σ-algebra A, a family of subsets of the carrier sets of A, called
the generated part and denoted by GenΣCOL(A), which consists of those ele-
ments that can be constructed by the interpretations of the given constructors
(starting from constants and from arbitrary elements of loose sorts, if any). The
ΣCOL-generated part represents those elements which are of interest from the
1 The terminology “COL-signature” stems from the constructor-based observational

logic institution COL. Our study is however independent from the COL institution
as long as we do not consider the internalized view of behavioral refinements studied
in Section 4.



user’s point of view according to the given constructor operations. A Σ-algebra
A is reachable (w.r.t. ΣCOL) if its carrier sets coincide with the carrier sets of
its ΣCOL-generated part.

The set OPObs of observer operations determines a set of observable contexts
which represent the observable experiments that a user can perform. An observ-
able context is a term c of observable sort s′ ∈ SObs which is built only from
observer operations of OPObs and which contains a distinguished variable zs of
some hidden sort s ∈ SState. s is called the application sort and s′ is called the
observable result sort of c. The set of observable contexts determines, for any
Σ-algebra A, an indistinguishability relation, called observational equality and
denoted by ≈ΣCOL,A. For any two elements a, b ∈ A, a ≈ΣCOL,A b holds if
either a = b and a, b are observable (i.e. belong to a carrier set of observable sort
s ∈ SObs) or if a and b cannot be distinguished by the application of observ-
able contexts. A Σ-algebra A is fully abstract if the observational ΣCOL-equality
coincides with the set-theoretic equality.

The constructor and the observer operations induce certain constraints on
Σ-algebras. First, since the constructor operations determine the values of inter-
est, we require that the non-constructor operations should (up to observational
equality) respect the constructor-generated part of an algebra, i.e. by the ap-
plication of non-constructor operations one should at most be able to obtain
elements which are observationally equal to some element of the constructor-
generated part. Technically this means that for a given Σ-algebra A we first
consider the smallest Σ-subalgebra 〈GenΣCOL(A)〉Σ of A containing the ΣCOL-
generated part because this subalgebra represents the only elements a user can
compute (over the loose carrier sets) by invoking operations of Σ. Then we
require that each element of 〈GenΣCOL(A)〉Σ is observationally equal to some
element of the ΣCOL-generated part GenΣCOL(A) of A. This condition is called
reachability constraint.

Secondly, since the declaration of observer operations determines a particu-
lar observational equality on any Σ-algebra A, the (interpretations of the) non-
observer operations should respect this observational equality, i.e. a non-observer
operation should not contribute to distinguish non-observable elements. To en-
sure this we require that the observational equality is a Σ-congruence on the sub-
algebra 〈GenΣCOL(A)〉Σ . (Note that it is sufficient to consider 〈GenΣCOL(A)〉Σ
instead of A because computations performed by a user can only lead to elements
in the Σ-subalgebra 〈GenΣCOL(A)〉Σ .) This condition is called observability con-
straint.

A Σ-algebra A which satisfies both the reachability and the observability
constraints induced by a COL-signature ΣCOL = (Σ,OPCons,OPObs) is called
ΣCOL-algebra (or simply COL-algebra). Note that any Σ-algebra A which is
reachable and fully abstract w.r.t. ΣCOL is a ΣCOL-algebra. The class of all
ΣCOL-algebras is denoted by AlgCOL(ΣCOL).

The satisfaction of the reachability and observability constraints allows us
to construct for each ΣCOL-algebra A its black box view which is a reachable
and fully abstract algebra representing the behavior of A from the user’s point



of view. The black box view is constructed in two steps. First, we restrict to
the ΣCOL-generated subalgebra 〈GenΣCOL(A)〉Σ of A thus forgetting junk val-
ues. Then, we identify all elements of 〈GenΣCOL(A)〉Σ which are observationally
equal. Hence the black box view of a ΣCOL-algebra A is given by the quo-
tient algebra of 〈GenΣCOL(A)〉Σ w.r.t. ≈ΣCOL,A which, for simplicity, will be
denoted by A/≈ΣCOL,A. Two ΣCOL-algebras A and B are observationally equiv-
alent (w.r.t. ΣCOL), denoted by A ≡ΣCOL B, if their black box views A/≈ΣCOL,A

and B/≈ΣCOL,B are isomorphic Σ-algebras.
The observability notions defined above provide a generalization of the ap-

proach in [7] which is based on partial observational equalities ≈Obs,In,A. The dif-
ference here is the declaration of the constructor and observer operations which
provide much more flexibility than declaring just observable sorts Obs and input
sorts In as done in [7]. In fact, any standard signature Σ = (S, OP) together
with distinguished sets In ⊆ S of input sorts and Obs ⊆ S of observable sorts in-
duces a COL-signature ΣIn,Obs

COL = (Σ, OPCons,OPObs) where OPCons consists of
all operation symbols cons ∈ OP with range s ∈ S \In and OPObs consists of all
pairs (obs, i) with obs ∈ OP, obs : s1, . . . , si, . . . , sn → s and si ∈ S \Obs. Then,
for any Σ-algebra A, the partial observational equality ≈Obs,In,A coincides (on
〈GenΣCOL(A)〉Σ) with ≈ΣCOL,A. In particular, in this case each Σ-algebra is also
a COL-algebra. Hence the results on behavioral refinements developed in the
following sections are also valid for all observability notions based on fixed sets
of observable sorts (and input sorts) which are frequently found in the literature,
see, e.g., [15, 17].

3 Behavioral Refinement: The Externalized View

In this section we consider the institution FOLEq of many-sorted first-order logic
with equality (as detailed, e.g., in [3]) and we consider structured specifications
over FOLEq built by the specification building operations defined in Section 2.1.
A simple refinement relation between two specifications SP (the abstract spec-
ification to be implemented) and SPI (the implementing specification) can be
defined by requiring that both specifications have the same signature and that
the model class of the implementing specification SPI is included in the model
class of SP, see, e.g., [22]. To take into account that an implementation usually
involves some construction steps the notion of constructor implementation has
been introduced in [19] (and similarly in other implementation concepts; see [16,
8] for an overview). According to [19] an implementation constructor is a func-
tion which maps algebras over the signature of the implementing specification
to algebras over the signature of the abstract specification. Since an implemen-
tation construction must not necessarily be defined on all algebras but only on
the models of the implementing specification we allow partial functions as im-
plementation constructors. (An example of a partial implementation constructor
is the formation of observational quotients used below.) On the other hand, we
assume that implementation constructions are performed in a uniform way, i.e.
preserve isomorphisms.



Definition 1 (Implementation constructor). Let Σ, ΣI be two signatures.
An implementation constructor from ΣI to Σ (also simply called a constructor)
is a partial function κ : Alg(ΣI ) → Alg(Σ) which is iso-preserving, i.e. for all
AI,BI ∈ Alg(ΣI ),

if AI is ΣI -isomorphic to BI and κ(AI) is defined
then κ(BI) is defined and κ(AI) is Σ-isomorphic to κ(BI).

The definition domain of κ is denoted by Dom(κ).

An example of an implementation constructor is, for a given signature mor-
phism σ : Σ → ΣI which renames abstract sorts and operations into those
offered by the implementation, the reduct functor |σ : Alg(ΣI ) → Alg(Σ) (see
also [19]). Note that in FOLEq this constructor can also be expressed by the
derive specification-building primitive.

Definition 2 (Refinement). Let SP, SPI be two specifications with signatures
Σ, ΣI resp. and let κ be a constructor from ΣI to Σ. SPI is a refinement of
SP w.r.t. κ, denoted by SP κ SPI, if

Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆Mod [SP].

Many examples show that the above refinement definition is too restrictive
since an implementation does not need to satisfy literally all requirements of
an abstract specification but can nevertheless be considered as correct if the
implementation respects the observable properties of the specification to be im-
plemented. This fact has inspired a lot of work on adequate notions of behavioral
refinement relations. A popular idea is to relax the model class of the specifi-
cation SP to be implemented by some behavioral abstraction operation, see,
e.g., [17, 19, 16, 4]. We call this direction the externalized view of behavioral re-
finement because, only for the purpose of refinement, a behavioral abstraction
operation is applied on top of the given (standard) model class of SP. In con-
trast to that idea, other approaches use a built-in behavioral semantics which
is used for both specifications, the specification to be implemented and the im-
plementing specification, see [13]. We call this direction the internalized view of
behavioral refinement which will be more closely considered in the next section.
In this section we focus on the externalized view using as a behavioral abstrac-
tion operation the following behavior operator which constructs for a given class
C of Σ-algebras the class of all algebras whose black box view belongs to C.
The behavior operator is defined according to distinguished sets of constructor
operations and observer operations, i.e. w.r.t. a COL-signature.

Definition 3 (Behavior operator). Let ΣCOL = (Σ, OPCons,OPObs) be a
COL-signature. For any class C of Σ-algebras,

BehΣCOL(C) def= {A ∈ AlgCOL(ΣCOL) | A/≈ΣCOL,A ∈ C}.

A class C of Σ-algebras is called behaviorally closed w.r.t. a COL-signature
ΣCOL if C ⊆ BehΣCOL(C) or, equivalently, if any Σ-algebra A ∈ C is a COL-
algebra and its black box view A/≈ΣCOL,A belongs also to C. A specification SP
is behaviorally closed if its model class Mod [SP] is behaviorally closed.



When considering the externalized view of behavioral refinement the idea is,
of course, to apply the behavior operator to the model class of the specification
to be implemented. This leads to the following notion of behavioral refinement.

Definition 4 (Behavioral refinement: the externalized view). Let SP,
SPI be two specifications with signatures Σ, ΣI resp., let ΣCOL be a COL-
signature of the form (Σ, OPCons,OPObs) and let κ : Alg(ΣI ) → Alg(Σ) be a
constructor. SPI is a behavioral refinement of SP w.r.t. ΣCOL and κ, denoted
by SP ΣCOL  κ SPI, if

Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]).

The given behavioral refinement notion is essentially based on the use of
the observational equality of elements induced by a COL-signature. Other ap-
proaches in the literature, which follow the externalized view, use for behav-
ioral abstraction not an indistinguishability relation between elements but an
abstraction equivalence between algebras, see, e.g., [17, 15]. According to the
results in [7, 4] there is, however, no difference between both approaches if the
abstraction equivalence is factorizable (see [7]) and if the specification to be
implemented is behaviorally closed.

Example 1. The following specification Set specifies properties of sets of natural
numbers.
spec Set =

sorts bool , nat , set
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : set ; add : nat × set → set ;
isin : nat × set → bool ;

axioms
∀x , y : nat ; s : set
%% standard axioms for booleans and natural numbers, plus

• isin(x , empty) = false
• isin(x , add(x , s)) = true
• x 6= y ⇒ isin(x , add(y , s)) = isin(x , s)
• add(x , add(x , s)) = add(x , s) (1)

• add(x , add(y , s)) = add(y , add(x , s)) (2)

end
For the implementation of sets we first abstract from the Set specification by
using as an observer operation the membership test isin to observe sets. More
precisely, we consider the COL-signature ΣSetCOL = (Sig [Set], ∅, {(isin, 2)}).
For the concrete implementation we use the specification List shown below and a
signature morphism σSetasList : Sig [Set] → Sig [List] such that σSetasList(set) =
list, σSetasList(add) = cons and σSetasList(x) = x otherwise. Hence the imple-
mentation constructor κ is the reduct functor |σSetasList

: Alg(Sig [List]) →
Alg(Sig [Set]).



Thus we obtain the refinement relation Set ΣSetCOL  κ List.2

spec List =
sorts bool , nat , list
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : list ; cons : nat × list → list ;
head : list → nat ; tail : list → list ;
isin : nat × list → bool ;

axioms
∀x , y : nat ; l : list
%% standard axioms for booleans and natural numbers, plus

• head(cons(x , l)) = x
• tail(cons(x , l)) = l
• isin(x , empty) = false
• isin(x , cons(x , l)) = true
• x 6= y ⇒ isin(x , cons(y , l)) = isin(x , l)

end

Let us still point out that inspired by the results in [3] we can characterize
externalized behavioral refinements by standard refinements in the sense of Def-
inition 2 if we use behavioral quotient constructors which are induced by the
black box views of COL-algebras.

Definition 5 (Behavioral quotient constructor). Let ΣCOL be a COL-
signature with underlying signature Σ. The behavioral quotient constructor (w.r.t.
ΣCOL) is given by /≈ΣCOL : Alg(Σ) → Alg(Σ), where

/≈ΣCOL(A) def= A/≈ΣCOL,A if A is a ΣCOL-algebra,
/≈ΣCOL(A) is undefined otherwise.3

Theorem 1 (Characterization of externalized behavioral refinements).
Let SP, SPI be two specifications with signatures Σ, ΣI resp., let ΣCOL be a
COL-signature with underlying signature Σ and let κ : Alg(ΣI ) → Alg(Σ) be a
constructor.

SP ΣCOL  κ SPI if and only if SP κ; /≈ΣCOL SPI.

Proof. The proof is a direct consequence of the definitions, in particular of
the fact that κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]) is equivalent to the inclusion
κ(Mod [SPI])/≈ΣCOL ⊆Mod [SP]. ut

2 The correctness proof is easy: First, the implementation indeed satisfies the non-
observable equations (1) and (2) of Set due to the behavioral abstraction. That
the reduct functor yields COL-algebras w.r.t. ΣSetCOL follows from the observer
complete form of the axioms; see [6] for more details.

3 Obviously, /≈ΣCOL is iso-preserving.



4 Behavioral Refinement: The Internalized View

The idea of the internalized view of behavioral refinement is to use a built-in
behavioral semantics for specifications. For this purpose behavioral institutions
which are tailored towards the behavioral aspects of system specifications pro-
vide an appropriate basis. Examples of such institutions are the framework of
hidden algebra (see [10]) and the constructor-based observational logic institu-
tion COL (see [5]). In the following we will consider the COL institution for
which no behavioral refinement concept has been investigated yet while for hid-
den algebra a refinement notion has been discussed in [13]. The COL institution
has as signatures COL-signatures and as models COL-algebras as described in
Section 2. COL-signature morphisms are standard signature morphisms which
fulfill additional properties related to the preservation of constructor and ob-
server operations and COL-morphisms between COL-algebras reflect behavioral
relationships (see [5] for details). In particular, two ΣCOL-algebras A and B
are ΣCOL-isomorphic if they are observationally equivalent (w.r.t. ΣCOL), i.e. if
A ≡ΣCOL B.

A crucial concept to obtain a built-in behavioral semantics is the behavioral
satisfaction relation, denoted by |=ΣCOL , which generalizes the standard satis-
faction relation of first-order logic by abstracting with respect to reachability
and observability. From the reachability point of view, the valuations of vari-
ables are restricted to the elements of the ΣCOL-generated part GenΣCOL(A)
only. From the observability point of view, the equality symbol “=” occurring
in a first-order formula ϕ is not interpreted by the set-theoretic equality but by
the observational equality ≈ΣCOL,A of elements.

In the following of this section we consider structured specifications over
COL built by the specification building operations defined in Section 2.1. For
instance, a basic COL specification SPCOL = 〈ΣCOL,Ax〉 consists of a COL-
signature ΣCOL and a set Ax of Σ-sentences, called axioms. The semantics of
SPCOL is given by its signature ΣCOL and by its class of models

Mod [SPCOL] = {A ∈ AlgCOL(ΣCOL) | A |=ΣCOL Ax}.

In order to define behavioral refinements for COL-specifications we can simply
transfer the notions of implementation constructor and refinement used for the
FOLEq institution in Definitions 1 and 2 to the COL institution. In particular,
this means that COL-implementation constructors are required to preserve COL-
isomorphisms, i.e. behavioral equivalences of algebras.

Definition 6 (COL-implementation constructor). Let ΣCOL, ΣICOL be two
COL-signatures. A COL-implementation constructor from ΣICOL to ΣCOL (also
simply called a COL-constructor) is a partial function κCOL : AlgCOL(ΣICOL) →
AlgCOL(ΣCOL) which is COL-iso-preserving, i.e. for all AI,BI ∈ AlgCOL(ΣICOL),

if AI ≡ΣICOL BI and κCOL(AI) is defined
then κCOL(BI) is defined and κCOL(AI) ≡ΣCOL κCOL(BI).

The definition domain of κCOL is denoted by Dom(κCOL).



Definition 7 (Behavioral refinement: the internalized view). Let SPCOL,
SPICOL be two COL-specifications with signatures ΣCOL, ΣICOL resp. and let
κCOL be a COL-constructor from ΣICOL to ΣCOL. SPICOL is a behavioral re-
finement of SPCOL w.r.t. κCOL, denoted by SPCOL  κCOL SPICOL, if

Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆Mod [SPCOL].

An important question is, of course, which implementation constructors are
appropriate for COL-refinements. As a first approach one could simply con-
sider COL-signature morphisms σCOL : ΣCOL → ΣICOL. Since COL is an in-
stitution, the corresponding COL-reduct functor |σCOL : AlgCOL(ΣICOL) →
AlgCOL(ΣCOL) preserves COL-isomorphisms, i.e. is a COL-implementation con-
structor. Hence it is tempting to consider COL-refinements where the syntactic
relationship between the specification SPCOL to be implemented and the imple-
menting specification SPICOL is established by a COL-signature morphism. This
approach has, however, a serious drawback because the implementing specifica-
tion SPICOL usually has constructor and observer operations OPICons, OPIObs

which are unrelated to the constructor and observer operations OPCons, OPObs

of the specification SPCOL to be implemented. As a simple example we con-
sider below the implementation of sets by lists where the observer for sets is the
membership test isin while the observer operations for lists are, as usual, the
head and tail operations. Hence the COL-specifications of sets and lists cannot
be related by a COL-signature morphism which would require the preservation
of constructor and observer operations.This is the reason why we want to con-
sider standard signature morphisms and their reduct functors as implementation
constructors for COL-specifications.

But before let us still point out that from a methodological point of view
it is indeed adequate not to stick to COL-signature morphisms when we con-
struct implementations. COL-signature morphisms are the appropriate tool to
ensure encapsulation of COL-specifications (formally expressed by the satisfac-
tion condition of an institution) which is indeed important when we construct
large specifications in a modular way (often called horizontal composition). But
when we discuss refinements and compositions of refinement steps (often called
vertical composition) this is a totally different matter. Indeed, talking about en-
capsulation when relating abstract and concrete specifications makes no sense.
An extensive discussion of this issue can also be found in [13].

Hence, let us consider two COL-specifications SPCOL, SPICOL with sig-
natures ΣCOL, ΣICOL resp. together with a (standard) signature morphism
σ : Σ → ΣI (where Σ and ΣI are the underlying standard signatures of ΣCOL

and ΣICOL resp.). Moreover, let us consider the reduct functor |σ : Alg(ΣI ) →
Alg(Σ) as a partial function |σ : AlgCOL(ΣICOL) → AlgCOL(ΣCOL),4 where

|σ(AI) def= AI|σ if AI|σ is a ΣCOL-algebra,
|σ(AI) is undefined otherwise.

4 By abuse of notation we use the same symbol |σ for the (total) reduct functor on
Alg(ΣI ) and for its induced partial reduct function on AlgCOL(ΣICOL).



The next lemma provides a simple criterion under which the (partial) reduct
function on COL-algebras is COL-iso-preserving, i.e. is a COL-implementation
constructor.

Lemma 1. Let ΣCOL, ΣICOL be COL-signatures with underlying signatures Σ,
ΣI resp. Let SObs, SIObs be the observable sorts and SLoose, SILoose be the loose
sorts induced by ΣCOL, ΣICOL resp. (see Section 2). If σ(SObs) ⊆ SIObs and
σ(SLoose) ⊆ SILoose then |σ : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) is a COL-
implementation constructor.

Proof. We have to show that for all AI,BI ∈ AlgCOL(ΣICOL) the following
holds:

1. If AI ≡ΣICOL BI and AI|σ is a ΣCOL-algebra then BI|σ is a ΣCOL-algebra.
2. If AI ≡ΣICOL BI then AI|σ ≡ΣCOL BI|σ.

Proof of (1): Let AI ≡ΣICOL BI and AI|σ be a ΣCOL-algebra. Then AI/≈ΣICOL,AI

iso BI/≈ΣICOL,BI . Hence (AI/≈ΣICOL,AI)|σ iso (BI/≈ΣICOL,BI)|σ. Due to the
assumption σ(SObs) ⊆ SIObs and σ(SLoose) ⊆ SILoose, we can conclude that
AI|σ is a ΣCOL-algebra iff (AI/≈ΣICOL,AI)|σ is a ΣCOL-algebra. Hence,
(AI/≈ΣICOL,AI)|σ is a ΣCOL-algebra and so is (BI/≈ΣICOL,BI)|σ. Again, by
using the assumption, we conclude that BI|σ is a ΣCOL-algebra
Proof of (2): Let In

def= SLoose, Obs
def= SObs, InI

def= SILoose, and ObsI
def= SIObs.

Due to the assumption σ(In) ⊆ InI, σ(Obs) ⊆ ObsI and according to [4] (Ex-
ample 3.15), the reduct functor |σ : Alg(ΣI ) → Alg(Σ) is behavior respecting
w.r.t. the partial observational equalities ≈Obs,In and ≈ObsI,InI in the sense of [4]
(Def. 3.12). Since AI,BI are ΣICOL-algebras, ≈ObsI,InI,AI = ≈ΣICOL,AI and
≈ObsI,InI,BI = ≈ΣICOL,BI and hence AI ≡ΣICOL BI iff AI ≡ObI,InI BI.
Since |σ is behavior respecting, AI|σ ≡Obs,In BI|σ. Since both reducts are
ΣCOL-algebras this is equivalent to AI|σ ≡ΣCOL BI|σ. ut

Example 2. In contrast to Example 1 let us now consider COL-specifications of
sets and lists. First, the COL-specification SetCOL of sets is given by including
the observer isin into the COL-signature of the specification. (For simplicity, we
do not consider constructor operations here.)
spec SetCOL =

sorts bool , nat , set
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : set ; add : nat × set → set ;
isin : nat × set → bool ;

observer (isin, 2 )
axioms
%% the same axioms as in Set (see Example 1)

end
The following specification ListCOL provides a COL-specification of lists. As
in any usual approach for a behavioral specification of lists we use the operations
head and tail as observers for lists.



spec ListCOL =
sorts bool , nat , list
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : list ; cons : nat × list → list ;
head : list → nat ; tail : list → list ;
isin : nat × list → bool ;

observers head , tail
axioms
%% the same axioms as in List (see Example 1)

end
For the implementation construction we use the same (standard) signature mor-
phism σSetasList as in Example 1 and the partial function

|σSetasList
: AlgCOL(Sig [ListCOL]) → AlgCOL(Sig [SetCOL])

induced by the reduct functor |σSetasList
on standard algebras. It is important

to note that the (image of the) observable sorts of SetCOL are included in the
observable sorts of ListCOL and hence, due to Lemma 1, the reduct functor
is indeed a COL-implementation constructor, denoted by κCOL. Thus we obtain
the refinement relation SetCOL κCOL ListCOL.5

5 Relating the Externalized and the Internalized Views
of Behavioral Refinements

Let us first relate the implementation constructors used in the different ap-
proaches. Since any COL-algebra is also a (standard) algebra it is obvious that
any implementation constructor κ : Alg(ΣI ) → Alg(Σ) gives rise to a (partial)
function κCOL : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) where

κCOL(AI) def= κ(AI) if κ(AI) is defined and is a ΣCOL-algebra,
κCOL(AI) is undefined otherwise.

If this partial function is COL-iso-preserving then κCOL is a COL-implementation
constructor induced by κ. In particular this means that κ is compatible with ob-
servational equivalences between COL-algebras, a property which is frequently
used in the literature in different contexts having its origin in the notion of
stability introduced by Schoett [20]. Thus constructors κ which induce COL-
constructors will synonymously be called stable constructors. A criterion for the
stability of reduct functors along standard signature morphisms has been pro-
vided in Lemma 1. The following lemma states a useful consequence of stable
constructors.
5 The correctness proof can be reduced to the proof of the refinement relation of Exam-

ple 1 due to the forthcoming Theorem 2 which relates externalized and internalized
views of behavioral refinements.



Lemma 2. Let κ be a constructor from ΣI to Σ and κCOL be a COL-constructor
from ΣICOL to ΣCOL induced by κ. Then, for any class CI ⊆ Alg(ΣI ) of ΣI -
algebras and for any iso-closed class C ⊆ Alg(Σ) of Σ-algebras, it holds:
If CI ⊆ Dom(κ) and κ(CI) ⊆ BehΣCOL(C)
then BehΣICOL(CI) ⊆ Dom(κ) and κ(BehΣICOL(CI)) ⊆ BehΣCOL(C).

Proof. Let AI ∈ BehΣICOL(CI). Then AI/≈ΣICOL,AI ∈ CI and, by assump-
tion, κ(AI/≈ΣICOL,AI) ∈ BehΣCOL(C). Hence, in particular, κ(AI/≈ΣICOL,AI)
is a ΣCOL-algebra. Thus κCOL(AI/≈ΣICOL,AI) is defined. Since AI ≡ΣICOL

AI/≈ΣICOL,AI and κCOL is a COL-constructor, κCOL(AI) is defined as well,
i.e. κ(AI) is a ΣCOL-algebra and thus BehΣICOL(CI) ⊆ Dom(κ).

Moreover, since κCOL is COL-iso-preserving, κ(AI) = κCOL(AI) ≡ΣCOL

κCOL(AI/≈ΣICOL,AI) = κ(AI/≈ΣICOL,AI) ∈ BehΣCOL(C). Since C is iso closed,
BehΣCOL(C) is closed under COL-iso, i.e. under ≡ΣCOL . Thus we obtain, as de-
sired, κ(AI) ∈ BehΣCOL(C). ut

From Lemma 2 we can easily conclude that for stable constructors, behavioral
refinement steps according to the externalized view compose, i.e.

SP ΣCOL  κ SPI, SPI ΣICOL  κ′
SPI′ implies SP ΣCOL  κ′; κ SPI′.

Indeed, it has been pointed out already in [19] that the preservation of ob-
servational equivalences is crucial to guarantee vertical composition of so-called
abstractor implementations which are a variant of the externalized approach. For
the internalized approach, vertical composition is trivially guaranteed according
to the built-in behavioral semantics which is used for both the specification to
be implemented and for the implementing specification, i.e.

SPCOL  κCOL SPICOL, SPICOL  κ′
COL SPI′COL implies

SPCOL
ΣICOL  κ′

COL; κCOL SPI′COL.

In the following of this section we will show that under certain conditions (sta-
bility of constructors and behavioral closedness of specifications), externalized
behavioral refinements and internalized behavioral refinements are expressible
by each other. To relate the two approaches we first define a trivial syntactic
translation ForgetCOL from COL-specifications into standard specifications over
FOLEq according to the structure of specifications:

ForgetCOL(〈ΣCOL,Ax〉) def= 〈Σ, Ax〉
where Σ is the underlying standard signature of ΣCOL

ForgetCOL(SP1,COL ∪ SP2,COL) def=
ForgetCOL(SP1,COL) ∪ ForgetCOL(SP2,COL)

ForgetCOL(translate SPCOL by σCOL) def=
translate ForgetCOL(SPCOL) by σ



where σ is the underlying standard signature morphism of σCOL

ForgetCOL(derive from SPCOL by σCOL) def=
derive from ForgetCOL(SPCOL) by σ
where σ is the underlying standard signature morphism of σCOL

We implicitly assume in the following that for any structured COL-specification
SPCOL its associated FOLEq-specification ForgetCOL(SPCOL) is denoted by SP
and similarly for SPICOL etc. The following lemma states that COL-specifications
and behavioral abstractions of their associated FOLEq-specifications are seman-
tically equivalent.

Lemma 3. Let SPCOL be a COL-specification with signature ΣCOL and let SP
be its associated FOLEq-specification. Assume that in the structured specification
SP, each occurrence of the derive construct (if any) is applied to a behaviorally
closed specification. Then Mod [SPCOL] = BehΣCOL(Mod [SP]).6

Proof. The proof of the lemma is straightforward by induction on the structure
of specifications. For the basic step we use the fact (see [5]) that for any ΣCOL-
algebra A and Σ-sentence ϕ, A |=ΣCOL ϕ iff A/≈ΣCOL,A |= ϕ (where |= denotes
the standard satisfaction relation of first-order logic). The induction step for
the union of two specifications is trivial and the induction steps for translate
and derive utilize the fact that reduct functors w.r.t. COL-signature morphisms
commute with black box constructions; see Theorem 51 of [5]. ut

Theorem 2 (Relating externalized and internalized behavioral refine-
ments). Let SPCOL, SPICOL be two COL-specifications with signatures ΣCOL,
ΣICOL resp. and let SP, SPI be the associated FOLEq-specifications with sig-
natures Σ, ΣI resp. Again we assume that in the structured specifications SP
and SPI, each occurrence of the derive construct (if any) is applied to a behav-
iorally closed specification. Let κCOL be a COL-constructor from ΣICOL to ΣCOL

induced by a constructor κ from ΣI to Σ.

1. If SP ΣCOL  κ SPI then SPCOL  κCOL SPICOL.
2. If SPI is behaviorally closed w.r.t. ΣICOL then

SP ΣCOL  κ SPI if and only if SPCOL  κCOL SPICOL.

Proof. (1): By assumption,
Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]).

Hence, by Lemma 2 (and since Mod [SP] is iso-closed)
BehΣICOL(Mod [SPI]) ⊆ Dom(κ) and
κ(BehΣICOL(Mod [SPI])) ⊆ BehΣCOL(Mod [SP]).

Since, by Lemma 3,
Mod [SPICOL] = BehΣICOL(Mod [SPI]) andMod [SPCOL] = BehΣCOL(Mod [SP])

we obtain, as desired,
6 In this equation the ΣCOL-algebras on the left-hand side are considered as standard

Σ-algebras.



Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆Mod [SPCOL].
(2): Conversely, if

Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆Mod [SPCOL],
then we obtain, again by Lemma 3,

BehΣICOL(Mod [SPI]) ⊆ Dom(κ) and
κ(BehΣICOL(Mod [SPI])) ⊆ BehΣCOL(Mod [SP]).

Since SPI is behaviorally closed w.r.t. ΣICOL, Mod [SPI] ⊆ BehΣICOL(Mod [SPI])
and therefore Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]). ut

6 Conclusion

We have studied the relationships between externalized and internalized behav-
ioral refinements which we believe is useful for further elaborations of behavioral
refinement notions in the context of particular specification frameworks, like,
e.g., the algebraic specification language Casl [2]. Indeed the essential results
of our study, in particular the main theorem pointing out the equivalence of the
external and the internal views of behavioral refinements (under certain assump-
tions), are in principle independent of the chosen formalism. Hence, it should be
possible to generalize our results to a more abstract category-theoretic setting,
e.g. along the lines of [14].

An important further issue concerns proof techniques to verify behavioral
refinements. It seems that the most efficient way would be to reduce both, the
externalized and the internalized notions, to the proof of refinement relations
between standard first-order logic specifications (possibly involving sort genera-
tion constraints). Indeed Theorem 1 an 2 induce immediately the following two
proof rules:

SP κ; /≈ΣCOL SPI

SP ΣCOL  κ SPI

SP ΣCOL  κ SPI

SPCOL  κCOL SPICOL

Then, further proof rules are needed for proving SP  κ; /≈ΣCOL SPI. A
useful source for this purpose are the proof techniques for the validity of first-
order sentences in behavioral quotient specifications provided in [3].

References

1. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic Founda-
tions of Systems Specification. Springer, 1999.

2. E. Astesiano, H. Kirchner M. Bidoit, B. Krieg-Brückner, P.D. Mosses, D.T. San-
nella, and A. Tarlecki. Casl: The Common Algebraic Specification Language.
Theoretical Computer Science, 286(2):153–196, 2002.



3. M. Bidoit, M.-V. Cengarle, and R. Hennicker. Proof systems for structured speci-
fications and their refinements. In [1], chapter 11, pages 385–433. Springer, 1999.

4. M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural implemen-
tations. Acta Informatica, 35:951–1005, 1998.

5. M. Bidoit and R. Hennicker. Constructor-based observational logic. Journal of
Logic and Algebraic Programming, 2005, to appear. Preliminary version available
at www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BID-HEN-JLAP.pdf.

6. Michel Bidoit and Rolf Hennicker. Observer complete definitions are behaviourally
coherent. In Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods’99,
Toulouse, France, Sep. 1999, pages 83–94. THETA, 1999.

7. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor
specifications. Science of Computer Programming, 25(2–3):149–186, 1995.

8. H. Ehrig and H.-J. Kreowski. Refinement and implementation. In [1], chapter 7,
pages 201–242. Springer, 1999.

9. J. Goguen and J.A. Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In Proc. ICALP’82, volume 140 of Lecture
Notes in Computer Science, pages 265–281. Springer, 1982.

10. J. Goguen and G. Roşu. Hiding more of hidden algebra. In J.M. Wing, J. Wood-
cock, and J. Davies, editors, Proc. Formal Methods (FM’99), volume 1709 of Lec-
ture Notes in Computer Science, pages 1704–1719. Springer, 1999.

11. Joseph Goguen and Rod Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

12. R. Hennicker. Observational implementation of algebraic specifications. Acta In-
formatica, 35:951–1005, 1998.

13. G. Malcolm and J. Goguen. Proving correctness of refinement and implementation.
Technical Report PRG-114, Oxford University Computing Laboratory, 1994.

14. Michal Misiak. Behavioural semantics of algebraic specifications in arbitrary logical
systems. In Recent Trends in Algebraic Development Techniques, volume 3423 of
LNCS, pages 144–161. Springer, 2004.

15. M.P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specifications.
In Recent Trends in Data Type Specification, volume 332 of LNCS, pages 184–207.
Springer, 1988.

16. F. Orejas, M. Navarro, and A. Sanchez. Implementation and behavioural equiva-
lence. In Recent Trends in Data Type Specification, volume 655 of Lecture Notes
in Computer Science, pages 93–125. Springer, 1993.

17. D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150–178, 1987.

18. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

19. D.T. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: implementation revisited. Acta Informatica, 25:233–281,
1988.

20. O. Schoett. Data abstraction and correctness of modular programming. Technical
Report CST-42-87, University of Edinburgh, 1987.

21. Andrzej Tarlecki. Institutions: An Abstract Framework for Formal Specification.
In [1], chapter 4, pages 105–130. Springer, 1999.

22. Martin Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 13, pages 676–788. Elsevier Science Pub-
lishers B.V., 1990.


