Refinement and security

Ongoing works

Dominique Méry and the DESIRS project
Université Henri Poincaré Nancy 1 and LORIA

IFIP WG1.3 Meeting
Swansea, September 2005

Starting point

< Integration of security properties into action systems

< Security properties: permission, interdiction, obligation

< Links with deontic logic

< Integration of state-based approach and IA-based approach

<& Access control and Flow control

Case studies

< Control of transactions in a bank

< Management of patients records in a hospital (OrBaC model)

<> Access control in a general settlement

Three points on the topics

e Relating ORBAC models to B models

e Extending events models for permissions, interdiction and obligation

e Management of permissions/interdictions

Construct a system wrt to (security) requirements

SYSTEM ——P» | SECURITY POLICY

3¢ security policy: permissions, interdictions, obligations

Ir system: actions, states, variables, ...

Refine a system wrt to (security) requirements

3t security policy: permissions, interdictions, obligations

3t system: actions, states, variables, ...

3t system may have different levels of abstractions and some parts may
exist

3t generation of the control part

system _part, control _part —T SYSTEM — security policy (1)

Resetting the problem with respect to modelling lan-
guages

3t Expressing the security policy with OrBaC (Organisation-based Access
Control Model)

3t ORBAC model identify roles, activities, contexts ...

3t ORBAC model assigns permanent permissions

3t Defining the system in event B

3t Establishing the (proved) link between the security policy and the system

3t ... without obligation

3t Next case study.....

Problem of the accounting office for a social security
company

< When a patient sends a request, the record is first processed by an ad-
ministrative agent, then validated by the head of the service and finally a
check is written by the accounter for the patient.

1. Processing of the record by the administrative agent.
2. Validation by the head of the service.

3. Emission of a check by the accounter.

<& Workflow problem

Problem of the accounting office for a social security
company

Rules for accessing files of patients

e Files of the personnel can be accessed by the head of office and the
accounter.

e Files of accounting can be accessed by the head of office and the ac-
counter but can only modify by the accounter.

e Separation of duties: processing and writing a check can not be done by
the same person

Problem of the accounting office for a social security
company

Rules for accessing files of patients

e The accounter should update files of accounting, after the writing of the
check (obligation).

e At the end of the validation, a record can be rejected and no check is
written.

ORBAC modelling

ROLES={agt_admin,ch_serv,account}
ACTIONS={consult,traiter,validate,emit,modify}
VIEWS={f patient,f account,f personnel,cheques}

OBJECTS={fm1,fm2,fm3,fp1,fp2,fc,cheque}
SUBJECTS={empl,emp2,emp3,chef_service,accountable}

ORBAC modelling

use(f patient,fm1l)
use(f patient,fm2)
use(f patient,fm3)
use(f patient,fm1l)
use(f_personnel,fpl)
use(f_personnel,fp2)
use(f _account,fc)
use(cheques,cheque)

empower(agt_admin,empl)
empower(agt_admin,emp?2)
empower(agt_admin,emp3)
empower(ch_serv,chef _service)
empower(account,accountable)

ORBAC modelling

/[permissions
permission(office,agt_admin,traiter,f patient)
permission(office,ch_serv,validate,f patient)
permission(office,ch_serv,consult,f personnel)
permission(office,ch_serv,consult,f account)
permission(office,account,emit,cheques)
permission(office,account,consult,f _account)
permission(office,account,modify,f account)

/[hierarchy of roles :
specialized_role(account,agt_admin)
senior_role(ch_serv,agt_admin)

Checking the ORBAC model

e Checking the absence of inconsistency

e Eliminating inconsistencies by automatic checking using a PROLOG-like ex-
pression

e We do not care of this phase and we assume that the ORBAC model is sound.

e Applications of fusion techniques ...

Events System Models

An event system model is made of
State constants and state variables constrained by a state invariant
A finite set of events
Proofs ensures the consistency between the invariant and the events
An event system model can be refined

Proofs must ensure the correctness of refinement

B models

MODEL
m
SETS
S
CONSTANTS
c ZI A model hasa name m
PROPERTIES 7] the clause SETS, CONSTANTS and the clause
P(s,c) PROPERTIES introduce information related to the
VARIABLES mathematical structure of the problem to solve
L I The invariant I(x) types the variable =z, which is
INVARIANT R . .
I(z) gssumeq .to be |n|t|aI|?ed.W|th respect to the ini-
ASSERTIONS tial conditions and which is preserved by events
A(x) (or transitions) of the list of events.
INITIALISATION
<substitution>
EVENTS
<listof events>
END

Meaning of the model

& s, cand P(s, ¢) define the mathematical structure of the problem: (s,c).

<& Each computation starts by a state satisfying Init(x).

<& The list of possible eventsis {eq,...,en} and any event e is characterized
by a binary relation BA(e)(z,z’) over possible values of .

< For each event e, there is a condition called a guard which is true, when
the event is observed.

Events

Event: & Before-After Predicate
BEGIN z : P(xzg,) END P(z,z")
SELECT G(z) THEN z : P(xq,x) END G(z) N P(x,z")

ANY t WHERE G(t,x) THEN z : P(xzg,xz,t) END It- (G(t,z) N P(z,z',t))

Guards of event

Event: F

Guard: grd(E)

BEGIN S END TRUE
SELECT G'(x) THEN T END G(x)
ANY t WHERE G(t,x) THEN T END Jt- G(t,x)

MODEL abstract model

SETS

ROLES={agt_admin,ch_serv,account};

ACTIONS={consult,traiter,validate,emit,modify};

VIEWS={f patient,f _account,f personnel,cheques}

CONSTANTS

permission

PROPERTIES

permission<:ROLES*ACTIONS*VIEWS &

(agt_admin|->traiter|->f_patient):permission &

(ch_serv|->validate|->f _patient):permission &

l(aa,vw).((@a:ACTIONS & wv:VIEWS & (agt admin|->aal->vv):permission)=>(ch_serv|->aal->vv):per

(ch_serv|->consult|->f_personnel):permission &

(ch_serv|->consult|->f_account):permission &

(account|->emit|->cheques):permission &

l(aa,w).((aa:ACTIONS & wv:VIEWS & (agt_admin|->aal->vv):permission)=>(account|->aal->vv):per!

(account|->consult]->f _account):permission &

(account|->modify|->f_account):permission &

I Perm. ((Perm <: ROLES*ACTIONS*VIEWS &

(agt_admin|->treat|->f_patient):Perm &

(ch_serv|->validate|->f _patient):Perm &

l(aa,w).((aa:ACTIONS & vv:VIEWS & (agt_admin|->aal|->vv):Perm)=>(ch_serv|->aal|->vv).:Perm) &

(account|->emite|->cheques):Perm &

I(aa,w).((aa:ACTIONS & wv:VIEWS & (agt _admin|->aal->vv):Perm)=>(account|->aa|->vv):Perm)
)=> permission<:Perm)

MODEL abstract model

VARIABLES
history
INVARIANT
history<:ROLES*ACTIONS*VIEWS &
history<:permission &
(rr,w).((rr:ROLES & VwVv:VIEWS &
(rr]->validate|->vv):history)
=>(#rr2.(rr2:ROLES &(rr2|->treat|->vv):history))) &
(rr,w).((rr:ROLES & wv:VIEWS &
(rr]->emit|->vv):history)
=>(#rr2.(rr2:ROLES &(rr2]->validate|->vv):history)))

event Action

Action =
ANY rr,vw,aa WHERE
ImROLES &
V.VIEWS &
aa:ACTIONS &
(rr]->aa|->vv):permission &
aa/=traiter & aa/=emit & aa/= validate
THEN
history:=history\/{(rr|->aal|->vv)}

END;

event Treatment

Treatment=
ANY rr,vw,aa WHERE
ImROLES &
V.VIEWS &
aa:ACTIONS &
(rr]->aa|->vv):permission &
aa=traiter
THEN
history:=history\/{(rr|->aal|->vv)}
[* treatment of the record */
END;

event Validation

Validation =
ANY rr,vw,aa WHERE
m:ROLES &
W.VIEWS &
aa:ACTIONS &
(rr]->aa|->vv):permission &
aa=validate &
#rr2.(rr2:ROLES &(rr2|->traiter|->vv):history)
THEN
history:=history\/{(rr|->aal->vv)}
[* validation of record */
END,;

event Emission

Emission =
ANY rr,vw,aa WHERE
Im:ROLES &
V. VIEWS &
aa:ACTIONS &
(rr]->aa|->vv):permission &
aa=emit &
#rr2.(rr2:ROLES &(rr2|->validate|->vv):history)
THEN
history:=history\/{(rr|->aal|->vv)}
[* emission of a check */
END

First step: relating ORBAC models to B models

e Constants and properties are defined from constants and properties of
ORBAC model: ORBAC models are supposed to be consistent with re-
spect to permissions and interdictions.

e Two B models are produced: an abstract one with roles ...and a refine-
ment with subjects (no problem of proof)

e history C permission IS the relation to maintain through further refine-
ment steps.

e The concrete model CM refines the abstract one AM and both satisfy
security properties (only permissions and interdictions).

What to do with the concrete model?

e EXxpression of ORBAC requirements in the B world.

e Refinement can start from the concret model and go further (workflow
properties, for instance)

e Replaying the game by instanciating constants for instance

Proof obligations for a model

Proof obligation

(INV1)

(s,c) + Init(z) = I(x)

(INV2)

F(s,c) F I(x) N BA(e)(z,2") = I(2)

(DEAD)

(s,c) F I(x) = (grd(ey) V ... grd(en))

(SAFE)

M(s,c) F I(x) = A(x)

(FIS)

M(s,c) F I(z) A grd(F) = 3z’ P(x,z’)

Second: Extending the model

e Extending the description of events by annotation of events with permis-
sions and interdictions

e Adding new proof obligations for checking the resulting extended model

Proof obligation

(PERMISSION)

(s,c) v I(x) N PERM(e)(x) = G(e)(x)

(INTERDICTION)

M(s,c) = I(x) N INT(e)(x) = —G(e)(x)

P/

(s,c) = I(x) N INT(e)(x) = - PERM(e)(x)

Third: void permissions

e Constants become variables for the management of security policy: void
permissions

e history C permaission can become now wrong....

e Example: Bob is a PhD student and has an access card for moving from
a university unit to another one and, when the end of the academic time
happens, he looses the access to the laboratory. However, he is in the
laboratory when he looses his status!

e history C (permission V void_permissions) iS now the good invariant.

Summary on the three points

e Relating ORBAC models to B models

e Extending events models for permissions, interdiction and obligation:
guestion on refining permissions

e Management of void permissions

Future works

e Mechanizing the translation from ORBAC models to B models

e General proved development of B models wrt to access control (case
studies)

e Extending events models for permissions, interdiction and obligation:
guestion on refining permissions

e Management of void permissions: relation to obligations, what to do with
the renegats, squatters,

e Flow Control

