What is a Multi-Modelling Language?*

Artur Boronat!, Alexander Knapp?, Jose Meseguer®, and Martin Wirsing?

1 University of Leicester
2 Ludwig-Maximilians-Universitidt Miinchen
3 University of Illinois at Urbana-Champaign

1 Abstract

In an ideal software engineering world, development teams would follow well-defined
processes in which one single modelling language is used for all requirements and de-
sign documents; but in practice “multi-modelling” happens: in a large software project
entity relationship diagrams and XML may be used for domain modelling, BPEL for
business process orchestration, and UML for design and deployment. UML itself can
be seen as a multi-modelling language comprising several sublanguages such as class
diagrams, OCL and state machines; each submodelling language provides a particular
view on a software system. Such views have the advantage of complexity reduction:
a software engineer can concentrate on a particular aspect of the system such as the
domain architecture or dynamic interactions between objects.

On the other hand, multi-modelling raises a number of methodological and seman-
tical questions: are the different sublanguages semantically consistent, how can we cor-
rectly transform an abstract model of one modelling language into a more concrete one
in another language? More generally, is there a notion of “multi-modelling language”
which provides more insight than just a bunch of modelling languages together? Is it
possible to give a semantics to multi-modelling languages which allows one to deal with
consistency, validation and verification but retain the advantages of views by providing
a local semantics and local reasoning capabilities for each modelling language?

In the literature, there are three complementary approaches for interrelating mod-
elling notations: the ”system model approach”, the ”model-driven architecture approach”,
and the “heterogeneous semantics and development approach”. In the system model
approach the different modelling languages are translated into a common (formally de-
fined) modelling notation called system model [1] which serves as unique semantic ba-
sis and for analysing consistency of software engineering models. In the "model-driven
architecture approach” [2] model transformations are used for semi-automatically trans-
forming platform-independent models into platform-specific models; consistency ques-
tions are typically dealt with at the syntactic level of the modelling notation. In the
third approach different modelling languages are interrelated by semantic-preserving
mappings [3,4]; a mathematical semantics is given locally for each modelling language
and the consistency between different languages is analysed semantically through the
semantic-preserving mappings. All three approaches have been applied to several mod-
elling languages including UML, but to our knowledge, multi-modelling languages
have never been systematically studied.

* This work has been partially sponsored by the project SENSORIA IST-2005-016004



In this paper we combine ideas from model-driven architecture and heterogeneous
semantics and propose a new, semantically well-founded notion of a multi-modelling
language and a new notion of semantic correctness for model transformations.

In particular, our formal definition of a multi-modelling language L

uses the Meta-Object Facility MOF and their algebraic semantics [5] for describing
the metamodels and models of the sublanguages of L

associates an institution to each sublanguage S of L and a gives a mathematical
semantics to each software engineering model  of S by a corresponding (logical)
theory in the institution of S

defines the links between different sublanguages of S by model transformations and
provides a notion of semantic correctness for such transformations

provides a notion of consistent heterogeneous (software engineering) model of the
multi-modelling language L which is derived from a notion of a category of hetero-
geneous mathematical models at the institution level.

In the full paper we will illustrate these ideas in the context of existing modelling
languages by presenting a case study which involves models in several modelling lan-
guages, and explain how our concepts can be applied to show the consistency of soft-
ware engineering models and the semantic correctness of model transformations. In par-
ticular, we choose UML and entity relationship diagrams as modelling languages and
combine them via a semantically correct model transformations to a multi-modelling
language. Based on earlier work [4] we show that class diagrams and OCL form a
multi-modelling language where class diagrams are related to OCL by a semantically
correct model transformation. Then we obtain the full multimodelling language by a
semantically correct model transformation from class diagrams to entity relationship
diagrams.

References

1. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML — Towards a System Model for
UML: The Structural Data Model. Technical Report TUM-10612, Institut fiir Informatik,
Technische Universitidt Miinchen (2006)

2. Object Management Group (OMG): MDA Guide Version 1.0.1. Technical report, OMG
(2003) www .omg.org/docs/omg/03-06-01.pdf.

3. Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitation
thesis, Universitdt Bremen (2005)

4. Cengarle, M. V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML
Semantics. In: Festschrift for Ugo Montanari. Volume 5019 of Lect. Notes in Comp. Sci.,
Springer (2008) To appear.

5. Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. In: FASE 2008, Budapest,
Hungary, March 29-April 6, Proceedings. Lect. Notes in Comp. Sci., Springer (2008)

IS

For distinguishing semantic models from the models of a modelling language we write “’soft-
ware engineering model” for a (syntactic) description of a model in a modelling language such
as UML. In contrast to this, ’(semantic) models” are part of the mathematical semantics of a
modelling language and therefore a semantic model can be understood as a model of a theory
in a suitable logic.



