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Abstract

We investigate how well Gaussian process regression can learn functions de-
fined on graphs, using large regular random graphs as a paradigmatic example.
Random-walk based kernels are shown to have some non-trivial properties: within
the standard approximation of a locally tree-like graph structure, the kernel does
not become constant, i.e. neighbouring function values do not become fully cor-
related, when the lengthscale σ of the kernel is made large. Instead the kernel
attains a non-trivial limiting form, which we calculate. The fully correlated limit
is reached only once loops become relevant, and we estimate where the crossover
to this regime occurs. Our main subject are learning curves of Bayes error versus
training set size. We show that these are qualitatively well predicted by a simple
approximation using only the spectrum of a large tree as input, and generically
scale with n/V , the number of training examples per vertex. We also explore how
this behaviour changes for kernel lengthscales that are large enough for loops to
become important.

1 Motivation and Outline

Gaussian processes (GPs) have become a standard part of the machine learning toolbox [1]. Learning
curves are a convenient way of characterizing their capabilities: they give the generalization error
ε as a function of the number of training examples n, averaged over all datasets of size n under
appropriate assumptions about the process generating the data. We focus here on the case of GP
regression, where a real-valued output function f(x) is to be learned. The general behaviour of GP
learning curves is then relatively well understood for the scenario where the inputs x come from
a continuous space, typically Rn [2, 3, 4, 5, 6, 7, 8, 9, 10]. For large n, the learning curves then
typically decay as a power law ε ∝ n−α with an exponent α ≤ 1 that depends on the dimensionality
n of the space as well as the smoothness properties of the function f(x) as encoded in the covariance
function.

But there are many interesting application domains that involve discrete input spaces, where x could
be a string, an amino acid sequence (with f(x) some measure of secondary structure or biological
function), a research paper (with f(x) related to impact), a web page (with f(x) giving a score
used to rank pages), etc. In many such situations, similarity between different inputs – which will
govern our prior beliefs about how closely related the corresponding function values are – can be
represented by edges in a graph. One would then like to know how well GP regression can work
in such problem domains; see also [11] for a related online regression algorithm. We study this
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problem here theoretically by focussing on the paradigmatic example of random regular graphs,
where every node has the same connectivity.

Sec. 2 discusses the properties of random-walk inspired kernels [12] on such random graphs. These
are analogous to the standard radial basis function kernels exp[−(x− x′)2/(2σ2)], but we find that
they have surprising properties on large graphs. In particular, while loops in large random graphs
are long and can be neglected for many purposes, by approximating the graph structure as locally
tree-like, here this leads to a non-trivial limiting form of the kernel for σ → ∞ that is not constant.
The fully correlated limit, where the kernel is constant, is obtained only because of the presence of
loops, and we estimate when the crossover to this regime takes place.

In Sec. 3 we move on to the learning curves themselves. A simple approximation based on the graph
eigenvalues, using only the known spectrum of a large tree as input, works well qualitatively and
predicts the exact asymptotics for large numbers of training examples. When the kernel lengthscale
is not too large, below the crossover discussed in Sec. 2 for the covariance kernel, the learning curves
depend on the number of examples per vertex. We also explore how this behaviour changes as the
kernel lengthscale is made larger. Sec. 4 summarizes the results and discusses some open questions.

2 Kernels on graphs and trees

We assume that we are trying to learn a function defined on the vertices of a graph. Vertices are
labelled by i = 1 . . . V , instead of the generic input label x we used in the introduction, and the
associated function values are denoted fi ∈ R. By taking the prior P (f) over these functions
f = (f1, . . . , fV ) as a (zero mean) Gaussian process we are saying that P (f) ∝ exp(− 1

2fTC−1f).
The covariance function or kernel C is then, in our graph setting, just a positive definite V × V
matrix.

The graph structure is characterized by a V ×V adjacency matrix, with Aij = 1 if nodes i and j are
connected by an edge, and 0 otherwise. All links are assumed to be undirected, so that Aij = Aji,
and there are no self-loops (Aii = 0). The degree of each node is then defined as di =

∑V
j=1Aij .

The covariance kernels we discuss in this paper are the natural generalizations of the squared-
exponential kernel in Euclidean space [12]. They can be expressed in terms of the normalized
graph Laplacian, defined as L = 1 −D−1/2AD−1/2, where D is a diagonal matrix with entries
d1, . . . , dV and 1 is the V ×V identity matrix. An advantage of L over the unnormalized Laplacian
D−A, which was used in the earlier paper [13], is that the eigenvalues of L (again a V ×V matrix)
lie in the interval [0,2] (see e.g. [14]).

From the graph Laplacian, the covariance kernels we consider here are constructed as follows. The
p-step random walk kernel is (for a ≥ 2)

C ∝ (1− a−1L)p =
[(

1− a−1
)
1 + a−1D−1/2AD−1/2

]p
(1)

while the diffusion kernel is given by

C ∝ exp
(
− 1

2σ
2L
)
∝ exp

(
1
2σ

2D−1/2AD−1/2
)

(2)

We will always normalize these so that (1/V )
∑
i Cii = 1, which corresponds to setting the average

(over vertices) prior variance of the function to be learned to unity.

To see the connection of the above kernels to random walks, assume we have a walker on the graph
who at each time step selects randomly one of the neighbouring vertices and moves to it. The
probability for a move from vertex j to i is then Aij/dj . The transition matrix after s steps follows
as (AD−1)s: its ij-element gives the probability of being on vertex i, having started at j. We can
now compare this with the p-step kernel by expanding the p-th power in (1):

C∝
p∑
s=0

( ps )a−s(1−a−1)p−s(D−1/2AD−1/2)s=D−1/2

p∑
s=0

( ps )a−s(1−a−1)p−s(AD−1)sD1/2

(3)
Thus C is essentially a random walk transition matrix, averaged over the number of steps s with

s ∼ Binomial(p, 1/a) (4)
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Figure 1: (Left) Random walk kernel C`,p plotted vs distance ` along graph, for increasing number
of steps p and a = 2, d = 3. Note the convergence to a limiting shape for large p that is not the naive
fully correlated limit C`,p→∞ = 1. (Right) Numerical results for average covariance K1 between
neighbouring nodes, averaged over neighbours and over randomly generated regular graphs.

This shows that 1/a can be interpreted as the probability of actually taking a step at each of p
“attempts”. To obtain the actual C the resulting averaged transition matrix is premultiplied by
D−1/2 and postmultiplied by D1/2, which ensures that the kernel C is symmetric. For the diffusion
kernel, one finds an analogous result but the number of random walk steps is now distributed as
s ∼ Poisson(σ2/2). This implies in particular that the diffusion kernel is the limit of the p-step
kernel for p, a → ∞ at constant p/a = σ2/2. Accordingly, we discuss mainly the p-step kernel in
this paper because results for the diffusion kernel can be retrieved as limiting cases.

In the limit of a large number of steps s, the random walk on a graph will reach its stationary distribu-
tion p∞ ∝De where e = (1, . . . , 1). (This form of p∞ can be verified by checking that it remains
unchanged after multiplication with the transition matrix AD−1.) The s-step transition matrix for
large s is then p∞eT = DeeT because we converge from any starting vertex to the stationary dis-
tribution. It follows that for large p or σ2 the covariance kernel becomes C ∝ D1/2eeTD1/2, i.e.
Cij ∝ (didj)1/2. This is consistent with the interpretation of σ or (p/a)1/2 as a lengthscale over
which the random walk can diffuse along the graph: once this lengthscale becomes large, the covari-
ance kernel Cij is essentially independent of the distance (along the graph) between the vertices i
and j, and the function f becomes fully correlated across the graph. (Explicitly f = vD1/2e under
the prior, with v a single Gaussian random variable.) As we next show, however, the approach to
this fully correlated limit as p or σ are increased is non-trivial.

We focus in this paper on kernels on random regular graphs. This means we consider adjacency
matrices A which are regular in the sense that they give for each vertex the same degree, di = d. A
uniform probability distribution is then taken across all A that obey this constraint [15]. What will
the above kernels look like on typical samples drawn from this distribution? Such random regular
graphs will have long loops, of length of order ln(V ) or larger if V is large. Their local structure
is then that of a regular tree of degree d, which suggests that it should be possible to calculate the
kernel accurately within a tree approximation. In a regular tree all nodes are equivalent, so the kernel
can only depend on the distance ` between two nodes i and j. Denoting this kernel value C`,p for a
p-step random walk kernel, one has then C`,p=0 = δ`,0 and

γp+1C0,p+1 =
(
1− 1

a

)
C0,p + 1

a C1,p (5)

γp+1C`,p+1 = 1
ad C`−1,p +

(
1− 1

a

)
C`,p + d−1

ad C`+1,p for ` ≥ 1 (6)

where γp is chosen to achieve the desired normalization C0,p = 1 of the prior variance for every p.

Fig. 1(left) shows results obtained by iterating this recursion numerically, for a regular graph (in the
tree approximation) with degree d = 3, and a = 2. As expected the kernel becomes more long-
ranged initially as p increases, but eventually it is seen to approach a non-trivial limiting form. This
can be calculated as

C`,p→∞ = [1 + `(d− 1)/d](d− 1)−`/2 (7)
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and is also plotted in the figure, showing good agreement with the numerical iteration. There are
(at least) two ways of obtaining the result (7). One is to take the limit σ → ∞ of the integral
representation of the diffusion kernel on regular trees given in [16] (which is also quoted in [13] but
with a typographical error that effectively removes the factor (d− 1)−`/2). Another route is to find
the steady state of the recursion for C`,p. This is easy to do but requires as input the unknown steady
state value of γp. To determine this, one can map fromC`,p to the total random walk probability S`,p
in each “shell” of vertices at distance ` from the starting vertex, changing variables to S0,p = C0,p

and S`,p = d(d − 1)`−1C`,p (` ≥ 1). Omitting the factors γp, this results in a recursion for S`,p
that simply describes a biased random walk on ` = 0, 1, 2, . . ., with a probability of 1 − 1/a of
remaining at the current `, probability 1/(ad) of moving to the left and probability (d − 1)/(ad)
of moving to the right. The point ` = 0 is a reflecting barrier where only moves to the right are
allowed, with probability 1/a. The time evolution of this random walk starting from ` = 0 can now
be analysed as in [17]. As expected from the balance of moves to the left and right, S`,p for large
p is peaked around the average position of the walk, ` = p(d − 2)/(ad). For ` smaller than this
S`,p has a tail behaving as ∝ (d − 1)`/2, and converting back to C`,p gives the large-` scaling of
C`,p→∞ ∝ (d− 1)−`/2; this in turn fixes the value of γp→∞ and so eventually gives (7).

The above analysis shows that for large p the random walk kernel, calculated in the absence of loops,
does not approach the expected fully correlated limit; given that all vertices have the same degree,
the latter would correspond to C`,p→∞ = 1. This implies, conversely, that the fully correlated limit
is reached only because of the presence of loops in the graph. It is then interesting to ask at what
point, as p is increased, the tree approximation for the kernel breaks down. To estimate this, we note
that a regular tree of depth ` has V = 1 + d(d − 1)`−1 nodes. So a regular graph can be tree-like
at most out to ` ≈ ln(V )/ ln(d− 1). Comparing with the typical number of steps our random walk
takes, which is p/a from (4), we then expect loop effects to appear in the covariance kernel when

p/a ≈ ln(V )/ ln(d− 1) (8)

To check this prediction, we measure the analogue of C1,p on randomly generated [15] regular
graphs. Because of the presence of loops, the local kernel values are not all identical, so the appro-
priate estimate of what would be C1,p on a tree is K1 = Cij/

√
CiiCjj for neighbouring nodes i

and j. Averaging over all pairs of such neighbours, and then over a number of randomly generated
graphs we find the results in Fig. 1(right). The results forK1 (symbols) accurately track the tree pre-
dictions (lines) for small p/a, and start to deviate just around the values of p/a expected from (8), as
marked by the arrow. The deviations manifest themselves in larger values of K1, which eventually
– now that p/a is large enough for the kernel to “notice” the loops - approach the fully correlated
limit K1 = 1.

3 Learning curves

We now turn to the analysis of learning curves for GP regression on random regular graphs. We
assume that the target function f∗ is drawn from a GP prior with a p-step random walk covariance
kernel C. Training examples are input-output pairs (iµ, f∗iµ + ξµ) where ξµ is i.i.d. Gaussian noise
of variance σ2; the distribution of training inputs iµ is taken to be uniform across vertices. Inference
from a data set D of n such examples µ = 1, . . . , n takes place using the prior defined by C and
a Gaussian likelihood with noise variance σ2. We thus assume an inference model that is matched
to the data generating process. This is obviously an over-simplification but is appropriate for the
present first exploration of learning curves on random graphs. We emphasize that as n is increased
we see more and more function values from the same graph, which is fixed by the problem domain;
the graph does not grow.

The generalization error ε is the squared difference between the estimated function f̂i and the target
f∗i , averaged across the (uniform) input distribution, the posterior distribution of f∗ given D, the
distribution of datasets D, and finally – in our non-Euclidean setting – the random graph ensemble.
Given the assumption of a matched inference model, this is just the average Bayes error, or the
average posterior variance, which can be expressed explicitly as [1]

ε(n) = V −1
∑
i

〈
Cii − k(i)TKk−1(i)

〉
D,graphs

(9)
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where the average is over data sets and over graphs, K is an n × n matrix with elements Kµµ′ =
Ciµ,iµ′ + σ2δµµ′ and k(i) is a vector with entries kµ(i) = Ci,iµ . The resulting learning curve
depends, in addition to n, on the graph structure as determined by V and d, and the kernel and noise
level as specified by p, a and σ2. We fix d = 3 throughout to avoid having too many parameters to
vary, although similar results are obtained for larger d.

Exact prediction of learning curves by analytical calculation is very difficult due to the complicated
way in which the random selection of training inputs enters the matrix K and vector k in (9).
However, by first expressing these quantities in terms of kernel eigenvalues (see below) and then
approximating the average over datasets, one can derive the approximation [3, 6]

ε = g

(
n

ε+ σ2

)
, g(h) =

V∑
α=1

(λ−1
α + h)−1 (10)

This equation for ε has to be solved self-consistently because ε also appears on the r.h.s. In the
Euclidean case the resulting predictions approximate the true learning curves quite reliably. The
derivation of (10) for inputs on a fixed graph is unchanged from [3], provided the kernel eigen-
values λα appearing in the function g(h) are defined appropriately, by the eigenfunction condition
〈Cijφj〉 = λφi; the average here is over the input distribution, i.e. 〈. . .〉 = V −1

∑
j . . . From the

definition (1) of the p-step kernel, we see that then λα = κV −1(1 − λLα/a)p in terms of the cor-
responding eigenvalue of the graph Laplacian L. The constant κ has to be chosen to enforce our
normalization convention

∑
α λα = 〈Cjj〉 = 1.

Fortunately, for large V the spectrum of the Laplacian of a random regular graph can be approxi-
mated by that of the corresponding large regular tree, which has spectral density [14]

ρ(λL) =

√
4(d−1)
d2 − (λL − 1)2

2πdλL(2− λL)
(11)

in the range λL ∈ [λL−, λ
L
+], λL± = 1 + 2d−1(d − 1)1/2, where the term under the square root is

positive. (There are also two isolated eigenvalues λL = 0, 2 but these have weight 1/V each and so
can be ignored for large V .) Rewriting (10) as ε = V −1

∑
α[(V λα)−1 + (n/V )(ε+ σ2)−1]−1 and

then replacing the average over kernel eigenvalues by an integral over the spectral density leads to
the following prediction for the learning curve:

ε =
∫
dλLρ(λL)[κ−1(1− λL/a)−p + ν/(ε+ σ2)]−1 (12)

with κ determined from κ
∫
dλLρ(λL)(1− λL/a)p = 1. A general consequence of the form of this

result is that the learning curve depends on n and V only through the ratio ν = n/V , i.e. the number
of training examples per vertex. The approximation (12) also predicts that the learning curve will
have two regimes, one for small ν where ε � σ2 and the generalization error will be essentially
independent of σ2; and another for large ν where ε� σ2 so that ε can be neglected on the r.h.s. and
one has a fully explicit expression for ε.

We compare the above prediction in Fig. 2(left) to the results of numerical simulations of the learn-
ing curves, averaged over datasets and random regular graphs. The two regimes predicted by the
approximation are clearly visible; the approximation works well inside each regime but less well in
the crossover between the two. One striking observation is that the approximation seems to predict
the asymptotic large-n behaviour exactly; this is distinct to the Euclidean case, where generally only
the power-law of the n-dependence but not its prefactor come out accurately. To see why, we exploit
that for large n (where ε� σ2) the approximation (9) effectively neglects fluctuations in the training
input “density” of a randomly drawn set of training inputs [3, 6]. This is justified in the graph case
for large ν = n/V , because the number of training inputs each vertex receives, Binomial(n, 1/V ),
has negligible relative fluctuations away from its mean ν. In the Euclidean case there is no similar
result, because all training inputs are different with probability one even for large n.

Fig. 2(right) illustrates that for larger a the difference in the crossover region between the true (nu-
merically simulated) learning curves and our approximation becomes larger. This is because the
average number of steps p/a of the random walk kernel then decreases: we get closer to the limit
of uncorrelated function values (a → ∞, Cij = δij). In that limit and for low σ2 and large V the
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Figure 2: (Left) Learning curves for GP regression on random regular graphs with degree d = 3 and
V = 500 (small filled circles) and V = 1000 (empty circles) vertices. Plotting generalization error
versus ν = n/V superimposes the results for both values of V , as expected from the approximation
(12). The lines are the quantitative predictions of this approximation. Noise level as shown, kernel
parameters a = 2, p = 10. (Right) As on the left but with V = 500 only and for larger a = 4.
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Figure 3: (Left) Learning curves for GP regression on random regular graphs with degree d = 3
and V = 500, and kernel parameters a = 2, p = 20; noise level σ2 as shown. Circles: numerical
simulations; lines: approximation (12). (Right) As on the left but for much larger p = 200 and for
a single random graph, with σ2 = 0.1. Dotted line: naive estimate ε = 1/(1 + n/σ2). Dashed
line: approximation (10) using the tree spectrum and the large p-limit, see (17). Solid line: (10) with
numerically determined graph eigenvalues λLα as input.

true learning curve is ε = exp(−ν), reflecting the probability of a training input set not containing
a particular vertex, while the approximation can be shown to predict ε = max{1 − ν, 0}, i.e. a
decay of the error to zero at ν = 1. Plotting these two curves (not displayed here) indeed shows the
same “shape” of disagreement as in Fig. 2(right), with the approximation underestimating the true
generalization error.

Increasing p has the effect of making the kernel longer ranged, giving an effect opposite to that of
increasing a. In line with this, larger values of p improve the accuracy of the approximation (12):
see Fig. 3(left).

One may ask about the shape of the learning curves for large number of training examples (per
vertex) ν. The roughly straight lines on the right of the log-log plots discussed so far suggest that
ε ∝ 1/ν in this regime. This is correct in the mathematical limit ν → ∞ because the graph kernel
has a nonzero minimal eigenvalue λ− = κV −1(1−λL+/a)p: for ν � σ2/(V λ−), the square bracket
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in (12) can then be approximated by ν/(ε+σ2) and one gets (because also ε� σ2 in the asymptotic
regime) ε ≈ σ2/ν.

However, once p becomes reasonably large, V λ− can be shown – by analysing the scaling of κ, see
Appendix – to be extremely (exponentially in p) small; for the parameter values in Fig. 3(left) it is
around 4 × 10−30. The “terminal” asymptotic regime ε ≈ σ2/ν is then essentially unreachable. A
more detailed analysis of (12) for large p and large (but not exponentially large) ν, as sketched in
the Appendix, yields

ε ∝ (cσ2/ν) ln3/2(ν/(cσ2)), c ∝ p−3/2 (13)

This shows that there are logarithmic corrections to the naive σ2/ν scaling that would apply in the
true terminal regime. More intriguing is the scaling of the coefficient c with p, which implies that to
reach a specified (low) generalization error one needs a number of training examples per vertex of
order ν ∝ cσ2 ∝ p−3/2σ2. Even though the covariance kernelC`,p – in the same tree approximation
that also went into (12) – approaches a limiting form for large p as discussed in Sec. 2, generalization
performance thus continues to improve with increasing p. The explanation for this must presumably
be that C`,p converges to the limit (7) only at fixed `, while in the tail ` ∝ p, it continues to change.

For finite graph sizes V we know of course that loops will eventually become important as p in-
creases, around the crossover point estimated in (8). The approximation for the learning curve in
(12) should then break down. The most naive estimate beyond this point would be to say that the
kernel becomes nearly fully correlated, Cij ∝ (didj)1/2 which in the regular case simplifies to
Cij = 1. With only one function value to learn, and correspondingly only one nonzero kernel eigen-
value λα=1 = 1, one would predict ε = 1/(1 + n/σ2). Fig. 3(right) shows, however, that this sig-
nificantly underestimates the actual generalization error, even though for this graph λα=1 = 0.994
is very close to unity so that the other eigenvalues sum to no more than 0.006. An almost perfect
prediction is obtained, on the other hand, from the approximation (10) with the numerically calcu-
lated values of the Laplacian – and hence kernel – eigenvalues. The presence of the small kernel
eigenvalues is again seen to cause logarithmic corrections to the naive ε ∝ 1/n scaling. Using the
tree spectrum as an approximation and exploiting the large-p limit, one finds indeed (see Appendix,
Eq. (17)) that ε ∝ (c′σ2/n) ln3/2(n/c′σ2) where now n enters rather than ν = n/V , c′ being a
constant dependent only on p and a: informally, the function to be learned only has a finite (rather
than ∝ V ) number of degrees of freedom. The approximation (17) in fact provides a qualitatively
accurate description of the data Fig. 3(right), as the dashed line in the figure shows. We thus have the
somewhat unusual situation that the tree spectrum is enough to give a good description of the learn-
ing curves even when loops are important, while (see Sec. 2) this is not so as far as the evaluation of
the covariance kernel itself is concerned.

4 Summary and Outlook

We have studied theoretically the generalization performance of GP regression on graphs, focussing
on the paradigmatic case of random regular graphs where every vertex has the same degree d. Our
initial concern was with the behaviour of p-step random walk kernels on such graphs. If these are
calculated within the usual approximation of a locally tree-like structure, then they converge to a
non-trivial limiting form (7) when p – or the corresponding lengthscale σ in the closely related
diffusion kernel – becomes large. The limit of full correlation between all function values on the
graph is only reached because of the presence of loops, and we have estimated in (8) the values of
p around which the crossover to this loop-dominated regime occurs; numerical data for correlations
of function values on neighbouring vertices support this result.

In the second part of the paper we concentrated on the learning curves themselves. We assumed
that inference is performed with the correct parameters describing the data generating process; the
generalization error is then just the Bayes error. The approximation (12) gives a good qualitative
description of the learning curve using only the known spectrum of a large regular tree as input. It
predicts in particular that the key parameter that determines the generalization error is ν = n/V ,
the number of training examples per vertex. We demonstrated also that the approximation is in fact
more useful than in the Euclidean case because it gives exact asymptotics for the limit ν � 1.

Quantitatively, we found that the learning curves decay as ε ∝ σ2/ν with non-trivial logarithmic
correction terms. Slower power laws ∝ ν−α with α < 1, as in the Euclidean case, do not appear.
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We attribute this to the fact that on a graph there is no analogue of the local roughness of a target
function because there is a minimum distance (one step along the graph) between different input
points. Finally we looked at the learning curves for larger p, where loops become important. These
can still be predicted quite accurately by using the tree eigenvalue spectrum as an approximation, if
one keeps track of the zero graph Laplacian eigenvalue which we were able to ignore previously; the
approximation shows that the generalization error scales as σ2/nwith again logarithmic corrections.

In future work we plan to extend our analysis to graphs that are not regular, including ones from
application domains as well as artificial ones with power-law tails in the distribution of degrees
d, where qualitatively new effects are to be expected. It would also be desirable to improve the
predictions for the learning curve in the crossover region ε ≈ σ2, which should be achievable using
iterative approaches based on belief propagation that have already been shown to give accurate
approximations for graph eigenvalue spectra [18]. These tools could then be further extended to
study e.g. the effects of model mismatch in GP regression on random graphs, and how these are
mitigated by tuning appropriate hyperparameters.

Appendix

We sketch here how to derive (13) from (12) for large p. Eq. (12) writes ε = g(νV/(ε+ σ2)) with

g(h) =
∫ λL+

λL−

dλL ρ(λL)[κ−1(1− λL/a)−p + hV −1]−1 (14)

and κ determined from the condition g(0) = 1. (This g(h) is the tree spectrum approximation to the
g(h) of (10).) Turning first to g(0), the factor (1 − λL/a)p decays quickly to zero as λL increases
above λL−. One can then approximate this factor according to (1− λL−/a)p[(a− λL)/(a− λL−)]p ≈
(1 − λL−/a)p exp[−(λL − λL−)p/(a − λL−)]. In the regime near λL− one can also approximate the
spectral density (11) by its leading square-root increase, ρ(λL) = r(λL − λL−)1/2, with r = (d −
1)1/4d5/2/[π(d− 2)2]. Switching then to a new integration variable y = (λL−λL−)p/(a−λL−) and
extending the integration limit to∞ gives

1 = g(0) = κr(1− λL−/a)p[p/(a− λL−)]−3/2

∫ ∞
0

dy
√
y e−y (15)

and this fixes κ. Proceeding similarly for h > 0 gives

g(h) = κr(1−λL−/a)p[p/(a−λL−)]−3/2F (hκV −1(1−λL−/a)p), F (z) =
∫ ∞

0

dy
√
y (ey+z)−1

(16)
Dividing by g(0) = 1 shows that simply g(h) = F (hV −1c−1)/F (0), where c = 1/[κ(1 −
λL−/a)

p] = rF (0)[p/(a − λL−)]−3/2 which scales as p−3/2. In the asymptotic regime ε � σ2

we then have ε = g(νV/σ2) = F (ν/(cσ2))/F (0) and the desired result (13) follows from the
large-z behaviour of F (z) ≈ z−1 ln3/2(z).

One can proceed similarly for the regime where loops become important. Clearly the zero Laplacian
eigenvalue with weight 1/V then has to be taken into account. If we assume that the remainder of
the Laplacian spectrum can still be approximated by that of a tree [18], we get

g(h) =
(V + hκ)−1 + r(1− λL−/a)p[p/(a− λL−)]−3/2F (hκV −1(1− λL−/a)p)

V −1 + r(1− λL−/a)p[p/(a− λL−)]−3/2F (0)
(17)

The denominator here is κ−1 and the two terms are proportional respectively to the covariance kernel
eigenvalue λ1, corresponding to λL1 = 0 and the constant eigenfunction, and to 1−λ1. Dropping the
first terms in the numerator and denominator of (17) by taking V → ∞ leads back to the previous
analysis as it should. For a situation as in Fig. 3(right), on the other hand, where λ1 is close to unity,
we have κ ≈ V and so

g(h) ≈ (1 + h)−1 + rV (1− λL−/a)p[p/(a− λL−)]−3/2F (h(1− λL−/a)p) (18)
The second term, coming from the small kernel eigenvalues, is the more slowly decaying because
it corresponds to fine detail of the target function that needs many training examples to learn accu-
rately. It will therefore dominate the asymptotic behaviour of the learning curve: ε = g(n/σ2) ∝
F (n/(c′σ2)) with c′ = (1 − λL−/a)−p independent of V . The large-n tail of the learning curve in
Fig. 3(right) is consistent with this form.
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