
Distributed Behavioral Cartography of Timed Automata∗

Étienne André, Camille Coti, Sami Evangelista
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France

{first.last}@univ-paris13.fr

ABSTRACT
Real-time systems, characterized by a set of timings con-
stants (internal delays, timers, clock speeds), need to be
perfectly reliable. Formal methods can prove their correct-
ness but, if one of the timing constants changes, verifica-
tion needs to be restarted from scratch. Also, variations of
some delays (even infinitesimal) may lead to the specifica-
tion violation. It is thus interesting to reason parametrically,
and synthesize constraints on the timing constants seen as
parameters to formally guarantee the specification. We pro-
pose here an attempt to distribute a synthesis algorithm, the
behavioral cartography, and we evaluate two work distribu-
tion algorithms. The parallelization gives promising results
and opens perspectives toward verification of larger models.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Ver-
ification—Formal methods; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed program-
ming

Keywords
Parameter synthesis, formal verification, message passing,
master–worker parallelization, work scheduling heuristics

1. INTRODUCTION
Real-time systems need to be perfectly reliable, in terms

of both functional (discrete behavior) and timed correctness
(e.g., all deadlines met). Formal methods can prove that a
system, characterized by a set of timings constants (internal
delays, timers, clock speeds), satisfies both a functional and
a timed specification. However, this is not entirely satisfac-
tory for several reasons. First, if one of the timing constants

∗(This work is partially supported by Université Paris 13’s
Projet BQR SynPaTiC (“Synthèse de paramètres distribuée
et multi-cœurs”).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMPI/ASIA ’14, September 9-12 2014, Kyoto, Japan
Copyright 2014 ACM 978-1-4503-2875-3/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642769.2642784.

changes (e.g., if a component is replaced with another one
that has a different delay), then the specification may not
hold anymore, and the design process shall be restarted from
the beginning. Second, once the system is implemented, in-
finitesimal variations of some delays may lead to dramatic
changes in the global behavior, and lead to a violation of the
specification. It is thus interesting to reason parametrically,
and synthesize constraints on the timing constants seen as
parameters to formally guarantee the specification.

Contribution.
In [3], we proposed the behavioral cartography algorithm

(BC), that covers a bounded parameter domain with tiles,
i.e., parametric zones of uniform discrete behavior. BC
relies on iterative calls to another algorithm (the “inverse
method” IM), that builds a tile from a reference valuation
(or point). The advantage of BC is that, in any tile, choos-
ing another point within the tile will have no impact on
the global, discrete system behavior. This parameter do-
main exploration is very time-consuming. In order to tackle
larger case studies, we aim at taking advantage of the power
of distributed systems such as clusters. Parallel execution
on several cores is a way to speed-up the execution of a
program: the computation is shared between the cores that
participate to the computation. In contrast to other syn-
thesis algorithms, BC is a priori well-suited for distributed
executions due to its intrinsically decomposed nature. How-
ever, although the data handled by each instance of IM are
independent from each other, it is not easy to efficiently dis-
tribute BC since finding the right points on which to call
IM so as to avoid overlapping is not trivial. Overlapping
two tiles leads to redundant computations and therefore,
slows down the overall performance. In this work, we eval-
uate different exploration heuristics, aiming at minimizing
this tile overlapping. To the best of our knowledge, this is
the first distributed algorithm for the synthesis of timing
parameters. We implemented a master-worker parallel im-
plementation of Imitator [4] (that implements BC) and we
present an evaluation of two work distribution algorithms.
We show that the speed-up obtained by the parallelization
of the code depends on some properties of the model. Over-
all, the parallelization of the parameter domain exploration
gives promising results and opens perspectives toward veri-
fication of larger models at larger scale.

Related Work.
Formal verification can be made in parallel in two ways:

modeling languages can be designed to be easy to use in

a distributed fashion, or the verification algorithms them-
selves can be parallelized. Our approach fits in the second
category. There were many works on distributed verification
algorithms, so we name only a few. APMC is a probabilistic
model-checker relying on random path generation and ex-
ploration. This exploration can be made in parallel on dif-
ferent processes [13]. PKind [14] is another parallel model
checker, using an event-based parallel execution model: pro-
cesses compute their data set, and send invariants they find
to all the other processes. Eventually, a synchronizing pro-
cess (sort of“master process”) decides when the computation
needs to end. PReach [8] was implemented in the functional
language for distributed systems Erlang. It uses a depth-first
search algorithm across the parallel processes: the tree ex-
ploration is made in parallel. More recently, two algorithms
were proposed to address multi-core LTL verification [9] and
emptiness checking of timed Büchi automata [15]. Finally,
the master-worker parallelization scheme has been widely
used to compute tasks that are independent from each other.
In [18] it was also shown how it can give good load balancing
between the parallel processes.

Outline.
Section 2 recalls the necessary preliminaries and states our

main objective. Section 3 proposes distributed algorithms
for parameter synthesis. Section 4 gives our practical so-
lution relying on MPI. Section 5 compares our algorithms
experimentally. Section 6 gives future perspectives.

2. PRELIMINARIES

2.1 Parameter Constraints
Throughout this paper, we assume a set P = {p1, . . . , pM}

of M parameters, i.e., unknown constants. A (parameter)
valuation π is a function π : P → QM

+ . We will often identify
a valuation π with the point (π(p1), . . . , π(pM)). An integer
point is a valuation π : P → NM . A (linear) constraint
on the parameters is a set of linear inequalities on P , and
can be seen as a polyhedron in M dimensions. Given a
point π and a constraint K, we write π |= K if π satisfies
K; geometrically speaking, this corresponds to the fact that
the polyhedron K contains the point π.

2.2 Parametric Timed Automata
Timed Automata (TA) are finite state automata (made

of control states and transitions labeled with actions), ex-
tended with clocks, i.e., real-valued variables evolving at the
same constant rate. Clocks can be compared with constants
in guards (condition to be verified when taking a transition)
and invariants (condition to be verified to remain in a control
state), and can be reset along transitions. In this work, given
a TA A, we call its discrete behavior the set of all possible
alternating sequences of control states and actions allowed
in A. Parametric Timed Automata (PTA) [1] extend (TA)
by allowing parameters in place of constants. The synthesis
problem consists in deriving parameter valuations (usually
in the form of a constraint) such that a given property is sat-
isfied, e.g., the non-reachability of some control state. PTA
and their extensions have been extensively used in the past
two decades to model and verify real-time systems, typically
hardware components, scheduling problems or communica-
tion protocols. Several tools were developed (e.g., TReX [6],
Roméo [16], SpaceEx [11], or Imitator [4]). (For syntax and

semantics of (P)TA, see, e.g., [1, 2].) Given a PTA A and a
point π, we denote by A[π] the (non-parametric) TA where
each parameter pi was replaced with π(pi).

2.3 The Inverse Method
In [2], the inverse method (IM) was proposed: given a

PTA A, this semi-algorithm takes advantage of a reference
point π, and generalizes it in the form of a tile, i.e., a linear
constraint K on the parameters where the discrete behavior
is uniform (see Figure 1a). That is, for any point π′ satisfy-
ing K, the discrete behavior of A[π′] is equal to the discrete
behavior of A[π]. As a consequence, any linear-time prop-
erty (expressed using, e.g., LTL) valid for A[π] is also valid
for A[π′], and vice-versa.

An application of IM is to derive robustness conditions
for the system. The study of the robustness in real-time
systems (see, e.g., [17]) aims at deciding whether infinites-
imal variations of time (due to, e.g., slightly extended or
shrunk deadlines, or clock drifts) may impact the overall,
discrete system behavior. The inverse method was shown
to give a measure of the system robustness, and conditions
can be derived to render robust a non-robust system (see,
e.g., [5] in the setting of parametric time Petri nets). How-
ever, IM suffers from several drawbacks: 1) It may not
terminate. Indeed, parameter synthesis for PTA is known
to be undecidable [1]. Nevertheless, it behaves “well” in the
sense that it terminates for all case studies we considered,
except for small examples designed on purpose to show non-
termination. 2) It is non-confluent: given A and π, different
calls to IM (A, π) may yield different constraints incompa-
rable with each other. This situation is graphically depicted
in Figure 1b: a first execution of IM (A, π) gives K, whereas
a second execution may give K′. 3) Non-confluence im-
plies non-completeness: there may exist points π′ outside
IM (A, π) such that A[π] and A[π′] have the same discrete
behavior. Again, in Figure 1b, if IM (A, π) gives K, then
any point π′ in K′ \ K has the same discrete behavior as
A[π] but does not belong to K.

Finally note that, in general, tiles have no predefined
“shape”: they are general polyhedra in M dimensions that
can have arbitrary size, number of vertices, and edge angles.

2.4 The Behavioral Cartography
IM was extended in [3] into the behavioral cartography

algorithm (BC): given a PTA A and a bounded param-
eter domain D (usually a rectangle in M dimensions), by
repeatedly calling IM on (some of the) integer points of D
(of which there is a finite number), one is able to cover D
with tiles. Hence, the result is a cartography of the tiles in
which the discrete behavior is uniform in A. Unfortunately,
the general “shape” of the cartography is entirely arbitrary,
since tiles can have any shape themselves. Figure 2 gives ex-
amples of cartographies in 2 dimensions. Whereas Figure 2a
is rather homogeneous in terms of size and positions of the
tiles, this is not at all the cases for the other ones.

2.5 Objective
In order to tackle larger case studies, our objective is to

take advantage of the iterative nature of the cartography
(in contrast to most, if not all, other known synthesis algo-
rithms), and to distribute it on N processes. There is no
theoretical obstacle in doing so, since all calls to IM are
independent from each other. The challenge is rather to

π

K

(a) Graphical example of IM

π

K

K′

(b) Non-confluence of IM

π1 π2 π3 K

(c) Choosing points

Figure 1: The inverse method: graphical representation of examples and problems

(a) SPSMALL memory (b) Flip-flop circuit (c) Scheduling problem (d) Root contention protocol

Figure 2: Examples of graphical behavioral cartographies in 2 dimensions

optimize the points on which IM is called, so that as few
redundant constraints as possible are computed.

3. DISTRIBUTING THE CARTOGRAPHY

3.1 The Non-distributed Cartography
Unfortunately, finding the set of integer points not cov-

ered by a list of polyhedra is a problem that has no known
efficient practical solution. Hence, there is no other choice
than enumerating all points. In the non-distributed cartog-
raphy, an empty set of tiles S is first created. Then, each
point in D is sequentially checked to see if it is covered by
any tile in S. If not, IM is called on this point, and the
result is added to S.1 When all points are enumerated, the
algorithm returns the set of tiles.

3.2 Master-Worker Parallelization Scheme
A simple solution could have been to split the rectangle

D into N subparts, and then ask each process to handle
its own subpart in an independent manner. This domain
decomposition method is often used for regular data dis-
tributions, where all subparts require the same processing
time, and preferably on domain shapes such as rectangles
or hypercubes, that can easily be mapped on a grid of pro-
cesses. Unfortunately, this solution is not satisfactory due
to the unknown “shape” of the cartography. Indeed, it often
happens that some tiles use most of the space in D, whereas
other tiles can be concentrated in a very small area (see, e.g.,
Figures 2b and 2d); this cannot be known before computing
the cartography. We thus propose here master–workers al-
gorithms. Workers ask the master for a point on which to
call IM , then execute IM from that point, and finally send

1Note that, due to the non-complete nature of IM , one could
call IM on a point already covered by another tile; however,
experiments showed that it is always more costly to do so.

the corresponding result to the master. This is a pull-based
algorithm, since workers pull work from the master.

The master will not call IM itself, but will instead dis-
tribute points to the workers. Whereas this may be a loss
of efficiency for few processes (since the master is not call-
ing IM), this shall be compensated for a large number of
processes. Moreover, since workers pull work when they are
done with their previous computation, this parallel compu-
tation scheme balances the load between workers automat-
ically. If a worker takes a long time to compute its part of
work, the other workers can compute several parts of work in
the meantime. As a consequence, pull-based master-worker
parallelization schemes are particularly interesting for BC ,
regarding the specificities of the computation made by IM .

Note that the master does not itself take part to the
cartography; although this could be achieved using non-
blocking communication, the risk is that its own compu-
tations be too frequently interrupted to be useful.

3.3 An Abstract Algorithm for the Master
We describe here an “abstract” algorithm for the Master.

The master starts by creating an empty set of tiles. The
workers send a work request to mean that they are ready to
receive some work. The master then sends an initial point
to each process that requested some work. Then, while D
is not entirely covered, every time a process sends a result,
the master stores it, and sends a new point to the process,
computed using function choosePoint(). Finally, once all in-
teger points are covered, the master receives the remaining
processes and sends stop signals. choosePoint() is a generic
function that picks a new uncovered point; it will be instan-
tiated in Sections 3.4 and 3.5, leading to concrete algorithms
for the master.

The way points are picked by the master to be distributed
to the workers is therefore a highly critical question. Choos-
ing points in a wrong manner can lead to a dramatic loss of
efficiency. For example, choosing points very close to each

other may most probably lead to the redundant computation
of the same tile. This situation is graphically depicted in Fig-
ure 1c, where points π1, π2, π3 may yield the same tile C. In
the remainder of this section, we will consider two Master–
Workers algorithms, that will instantiate choosePoint().

3.4 Sequential Enumeration
Our first concrete algorithm is a direct extension of the

monolithic algorithm: as in the non-distributed BC , we enu-
merate all points one after the other. The choosePoint()
function thus returns the next point (considered using a se-
quential order, e.g., dimension after dimension) that is not
yet covered by any tile. Its main advantage is that it is
cheap on the master side. Its main drawback is the risk of
redundant computation by the workers, due to the situation
graphically depicted in Figure 1c: for example, at the begin-
ning, the N processes will ask for work, and the master will
give them the first sequential N points, all very close to each
other, with a high risk of redundant computation. Neverthe-
less, if the tiles are “small”, i.e., if they contain few integer
points, or if the computation time for each tile is large, then
this algorithm may turn out to be not too inefficient (though
not too good either), as we will see in Section 5.

3.5 Random Selection and Sequential
In order to prevent the problem of redundancy coming

from the sequential algorithm, we design a random-based
algorithm. In this second algorithm, the choosePoint() func-
tion randomly computes a point, and then checks whether
it is covered by any tile; if not, it is returned. Otherwise, a
second try is made, and so on, until a given maximum num-
ber (max) of attempts is reached. In that latter case, we
switch to the sequential algorithm until all points are cov-
ered. This step is necessary to guarantee the full coverage
of the integer points. Indeed, stopping after max tries could
give a probabilistic coverage (e.g., 99 %) of integer points,
but cannot guarantee the full coverage. Once more, since
finding the points not covered by a list of tiles has no prac-
tical solution, this sequential check is the only option. The
need for running a sequential check so that all points are
covered could lead to the same problem as in the first algo-
rithm. We will see in Section 5 that this algorithm behaves
much better than the purely sequential one.

4. DISTRIBUTING IMITATOR WITH MPI
Imitator [4] is a tool implementing IM and BC (among

other synthesis algorithms), entirely written in the func-
tional, object-oriented language OCaml, and relying on the
Parma Polyhedra Library (PPL) [7] for polyhedra opera-
tions. Until this work, Imitator was entirely sequential,
i.e., single process and single-threaded. In order to imple-
ment the algorithms of Section 3 and use Imitator in a
distributed setting, we had to significantly modify its inter-
nal structure.

Message Passing.
We distributed Imitator using the Message Passing In-

terface [10, 12], which is the de facto standard library for
programming parallel applications on a distributed memory
model. MPI official bindings are available in C, C++, For-
tran 77 and Fortran 90. We used OCamlMPI2, a package

2https://forge.ocamlcore.org/projects/ocamlmpi/

featuring OCaml bindings for MPI functions.
MPI send and receive functions use a tag to identify mes-

sages and ranks to identify processes in a unique way. For
example, a message sent from a process with a given tag can
only be matched by a reception that specifies that the mes-
sage must carry this tag and come from this sender. Recep-
tions can use wildcards, i.e., receive from any source and/or
with any tag. The actual sender and/or the tag are found
in a data structure filled by the receive function: its status.
As a consequence, tags can be used for signaling purpose.
When a worker asks the master for a point, it can either send
a result (the result of the previous computation) or simply
ask for some work (at the beginning of the computation).
We use two different tags to tell the master whether the
current communication is a simple work request or a result
is coming in the next communication. We also use wildcards
for tags on workers in order to differentiate communications
that come from the master. Three kinds of messages can be
sent by the master. Most messages are work inputs. When
the master has distributed all the points, it has no work to
distribute anymore: instead, it sends a message carrying a
termination tag. In some cases (e.g., when a time limit is
reached), the master can tell a worker to stop working. This
communication carries the third type of tag.

MPI functions send buffers of datatypes. Hence, the data
sent between the master and the workers must be linearized
in order to be sent by MPI functions. We implemented ad
hoc serialization functions that represent points and con-
straints as strings, which are then converted by OCamlMPI
into arrays of characters. However, the data sent by MPI
communications have varying sizes. Hence, each data com-
munication is made of two steps: the first communication
sends an integer that provides the size of the buffer com-
ing with the second communication. The master must be
able to receive results from the workers without any pre-
defined ordering. Hence, we use the any source wildcard
in reception on the master’s side. However, we discovered
that OCamlMPI had an unexpected behavior related to this
any source wildcard: the source rank obtained in the status
of the reception does not always give the correct rank for the
sender. The workaround we use here consists in sending the
rank of the sender in a first communication when a worker
sends a message to the master. For pull-only communica-
tions, the rank is simply sent in the payload of the message.
On the other hand, communications that send a result al-
ready use this payload to carry the size of the result buffer.
As a consequence, we had to use an extra message, which is
sent before the size of the result buffer. This extra message
can be avoided by sending both the size of the buffer and the
worker’s rank in a single message. However, such small MPI
messages are sent in eager mode and can be easily pipelined
by the MPI library and the underlying network, so the la-
tency introduced by this extra message should not harm the
performance critically.

5. EXPERIMENTAL VALIDATION
We measured the performance of the distributed Imita-

tor3 and compared the two point selection algorithms de-
scribed in Section 3.3 on a Linux-based cluster. The nodes
of this cluster feature two 6-core Intel Xeon X5670 running

3Source, binaries, models and results are available at
http://www.lipn.fr/~andre/patator/

https://forge.ocamlcore.org/projects/ocamlmpi/
http://www.lipn.fr/~andre/patator/

at 2.93 GHz CPUs (therefore, 12 cores in a NUMA fashion).
Each node has 24 GiB of memory and runs a 64-bit Linux
3.2 kernel. The code was compiled using OCaml 3.12.1. The
message-passing library we used is Bull’s OpenMPI variant
for Bullx, and the nodes are interconnected by a 40 Gb/s
InfiniBand network.

We focused the performance evaluation on the speed-up
yielded by the two parallelization algorithms. Algorithm
choosePoint affects the performance of the parallel program
mainly on how the areas computed by the workers over-
lap, as described in Section 3.2. Hence, we also measured
the number of constraints computed by the program in or-
der to have an idea of the rate of redundant computations.
This measure only gives an idea, due to the non-determinism
in BC : since IM is non-deterministic, BC can yield a differ-
ent number of tiles. Furthermore, in the distributed setting,
the order in which the points are called may also lead to non-
determinism. Note that redundant constraints are harmful
in terms of efficiency (since this means a same computation
has been performed several times), but not in terms of re-
sult: either the redundant constraints can be kept (which
is no problem for drawing graphics such as in Figure 2), or
they can be eliminated using equality (or inclusion) checks,
which adds only a small overhead.

We evaluated the scalability of the parallel implementa-
tion of Imitator on several use-cases: we summarize here
results on two case studies, i.e., Simop, a model of a net-
worked automation system, and Sched3, a model of a schedu-
lability problem. We measured their scalability on up to 36
processes. This can seem as a not very large scale when
compared to many scientific parallel applications. However,
this explains by several reasons: first, this is a first tentative
distribution of a parameter synthesis algorithm, and hence
our algorithms are exploratory. Second, the number of pro-
cesses is intrinsically limited by the number of tiles (a few
dozens for these two use-cases).

The speed-up obtained with these use-cases is presented
in Figures 3a and 3c. Both use-cases benefit from the paral-
lelization: their executions are sped-up when processes are
added. The rate of redundant constraints computed by Im-
itator is given in Figure 3b and 3d. This rate is computed
w.r.t. the sequential execution of Imitator: it represents
the constraints that are computed several times by several
workers because they are located in overlapping (or even
identical) tiles. Recall that two different points can lead to
the same tile, especially when they are close to one another.
We can see that the sequential point selection algorithm gen-
erates about twice as many redundant constraints than the
random algorithm. Hence, the good (and somehow surpris-
ing) news is that the random algorithm is much more effi-
cient than its sequential counterpart, even though the ran-
dom algorithm has to enumerate all points in a second phase
just as the sequential one. This is due to two reasons: first,
finding points randomly is likely to avoid redundancy (in
the first phase). Then, in the second (sequential) phase, if
very few points are not covered (i.e., if max is large enough),
then the risk of having two processes running IM on close
points is low. Finally note that the speed-up of the random
algorithm, although positive, is not linear; for Sched3, the
speed-up for 36 processes is around 12. Although this gives
space for improvement (see Section 6), we believe this is a
promising result, considering the difficulties inherent to the
problem of parameter synthesis.

We also compare, for the sole random algorithm, the effi-
ciency when varying the max constant. With no surprise, for
Simop, the larger max , the more efficient the computation,
both in terms of speed-up (Figure 3a) and redundancy (Fig-
ure 3b). For Sched3, however, there is no difference between
the two values of max .

Let us finally compare the case studies: Sched3 scales bet-
ter than Simop and induces less redundant constraints. Pro-
filing the processes of the parallel execution on 36 processes
showed that with Simop, the workers are busy about 93%
of the execution time on average, whereas with Sched3 they
are busy 98% of the time. Besides, the average relative time
spent by the master to compute the next point to be sent
to a worker is 2.3% with Sched3 and 22.3% with Simop.
Hence, with a less busy master, workers have also less idle
time (waiting for the next point), and this gives a better
hope for scalability. This is due to the structure of the case
studies: Simop contains many points, and each call to IM
is fast; conversely, Sched3 contains less points, and each call
is longer, thus leading to a small occupation of the master.

Overall, we can see that Imitator benefits from this par-
allelization, which allows it to run (much) faster than on a
single process. Besides, because of the unknown shape of
the tiles computed by IM , a random point selection algo-
rithm performs better than a sequential one, even though
the random algorithm needs to investigate all integer points
in a second phase.

6. CONCLUSION AND PERSPECTIVES
We proposed here a first attempt of distributing an al-

gorithm for the synthesis of timing parameters, leading to
two parallelization algorithms. Our goal here was to speed-
up the execution and make sure it will be able to scale on
larger models. The promising results showed by the perfor-
mance evaluation validate this approach. In the near future,
we are going to explore other point selection algorithms and
heuristics, so as to verify larger models at larger scale.

Perspectives.
The master-worker parallelization scheme is one way to

distribute computation. Another open perspective consists
in looking into other domain decomposition and paralleliza-
tion schemes, since some of them are more intrinsically scal-
able than the aforementioned scheme.

Another future work is the design of heuristics to improve
efficiency. An issue is whether to stop or not an execution
of IM when its reference point π has been covered by an-
other tile. Although it might give a different tile (due to
non-completeness), it is also likely to yield the same tile.
Finding cases in which it is generally more efficient to leave
the execution running would be an important heuristic.

Orthogonal to this work is the question of running pa-
rameter synthesis algorithms on multi-core (shared memory)
machines. We proposed a first parallel depth-first search al-
gorithm for LTL in [9]; it was then extended to emptiness
checking of timed Büchi automata in [15]. The next step
will be to extend these algorithms to parameter synthesis.

7. REFERENCES
[1] R. Alur, T. A. Henzinger, and M. Y. Vardi.

Parametric real-time reasoning. In STOC, pages
592–601. ACM, 1993.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40

S
p
e
e
d
-
u
p

Number of processes

Random (20)

Random (10)

Sequential

(a) Scalability of the parallel Imitator on Simop

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40

R
a
t
e

o
f

r
e
d
u
n
d
a
n
t

c
o
n
s
t
r
a
i
n
t
s

Number of processes

Sequential

Random (10)

Random (20)

100%

(b) Rate of redundant constraint computations on Simop

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

S
p
e
e
d
-
u
p

Number of processes

Random (10)

Random (20)

Sequential

(c) Scalability of the parallel Imitator on Sched3

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40
R
a
t
e

o
f

r
e
d
u
n
d
a
n
t

c
o
n
s
t
r
a
i
n
t
s

Number of processes

Sequential

Random (10)

Random (20)

100%

(d) Rate of redundant constraint computations on Sched3

Figure 3: Experimental results

[2] É. André, Th. Chatain, E. Encrenaz, and L. Fribourg.
An inverse method for parametric timed automata.
IJFCS, 20(5):819–836, 2009.

[3] É. André and L. Fribourg. Behavioral cartography of
timed automata. In RP, volume 6227 of LNCS, pages
76–90. Springer, 2010.

[4] É. André, L. Fribourg, U. Kühne, and R. Soulat.
IMITATOR 2.5: A tool for analyzing robustness in
scheduling problems. In FM, volume 7436 of LNCS,
pages 33–36. Springer, 2012.

[5] É. André, L. Petrucci, and G. Pellegrino. Precise
robustness analysis of time Petri nets with inhibitor
arcs. In FORMATS, volume 8053 of LNCS, pages
1–15. Springer, 2013.

[6] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX:
A tool for reachability analysis of complex systems. In
CAV, LNCS, pages 368–372. Springer, 2001.

[7] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma
Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification
of hardware and software systems. Science of
Computer Programming, 72(1–2):3–21, 2008.

[8] F. M. De Paula, B. Bingham, J. Bingham, J. Erickson,
M. Reitblatt, and G. Singh. PREACH: A distributed
explicit state model checker. Technical Report
TR-2010-05, University of British Columbia, 2010.

[9] S. Evangelista, A. Laarman, L. Petrucci, and J. V. D.
Pol. Improved multi-core nested depth-first search. In
ATVA, volume 7561 of LNCS, pages 269–283, 2012.

[10] M. P. I. Forum. MPI: A message-passing interface
standard. Technical Report UT-CS-94-230, 1994.

[11] G. Frehse, C. L. Guernic, A. Donzé, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV, LNCS. Springer, 2011.

[12] A. Geist, W. D. Gropp, S. Huss-Lederman,
A. Lumsdaine, E. L. Lusk, W. Saphir, A. Skjellum,
and M. Snir. MPI-2: Extending the message-passing
interface. In EuroPar, volume 1123 of LNCS, pages
128–135. Springer, 1996.

[13] K. Hamidouche, A. Borghi, P. Esterie, J. Falcou, and
S. Peyronnet. Three high performance architectures in
the parallel APMC boat. In PMDC, pages 20–27.
IEEE, 2010.

[14] T. Kahsai and C. Tinelli. PKind: A parallel
k-induction based model checker. In PDMC,
volume 72 of EPTCS, pages 55–62, 2011.

[15] A. Laarman, M. C. Olesen, A. E. Dalsgaard, K. G.
Larsen, and J. Van De Pol. Multi-core emptiness
checking of timed Büchi automata using inclusion
abstraction. In CAV, volume 8044 of LNCS, 2013.

[16] D. Lime, O. H. Roux, C. Seidner, and L.-M.
Traonouez. Romeo: A parametric model-checker for
Petri nets with stopwatches. volume 5505 of LNCS,
pages 54–57, York, United Kingdom, 2009. Springer.

[17] N. Markey. Robustness in real-time systems. In SIES,
pages 28–34. IEEE Computer Society Press, 2011.

[18] G. Shao, R. Wolski, and F. Berman. Performance
effects of scheduling strategies for master/slave
distributed applications. In PDPTA, volume 99, 1998.

	Introduction
	Preliminaries
	Parameter Constraints
	Parametric Timed Automata
	The Inverse Method
	The Behavioral Cartography
	Objective

	Distributing the Cartography
	The Non-distributed Cartography
	Master-Worker Parallelization Scheme
	An Abstract Algorithm for the Master
	Sequential Enumeration
	Random Selection and Sequential

	Distributing IMITATOR With MPI
	Experimental Validation
	Conclusion and Perspectives
	References

