
Enhanced Distributed Behavioral Cartography
of Parametric Timed Automata?

Étienne André, Camille Coti, Hoang Gia Nguyen

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, Villetaneuse, France

Abstract. Parametric timed automata (PTA) allow the specification
and verification of timed systems incompletely specified, or subject to
future changes. The behavioral cartography splits the parameter space
of PTA in tiles in which the discrete behavior is uniform. Applications
include the optimization of timing constants, and the measure of the sys-
tem robustness w.r.t. the untimed language. Here, we present enhanced
distributed algorithms to compute the cartography efficiently. Experi-
mental results show that our new algorithms significantly outperform
previous distribution techniques.

Keywords: parametric verification, distributed algorithms, real-time systems

1 Introduction

Systems combining concurrent aspects with real-time constraints are notoriously
difficult to exhaustively test, and their failure due to unsuspected bugs may lead
to dramatic consequences. Model checking concurrent real-time systems aims at
formally verifying the correctness of the system model w.r.t. a property.

The notion of timed automata (TA) is a well-known formalism for specifying
and verifying concurrent real-time systems. TA extend finite-state automata with
a set of clocks (real-time variables growing linearly) that can be compared with
integer constants. TA are used in several powerful tools such as Uppaal [LPY97]
or PAT [SLDP09]. However, the binary answer (“yes” or “no”) output by model
checking is not always satisfactory: indeed, it does not allow to change or opti-
mize some values of the system constants, nor (in general) to evaluate the system
robustness, i.e. the infinitesimal variation of timing constants while preserving
the reachability or language. Parametric timed automata (PTA) [AHV93] extend
TA with rational-valued parameters allowed in place of constants.

In [AF10], the behavioral cartography (BC) of PTA was proposed: given
a bounded parameter domain D, BC partitions D in tiles, i.e. in parameter

? This is the author version of the paper of the same name accepted for publication at
ICFEM 2015. The final publication is available at http://www.springer.com. This
work was partially supported by a BQR grant “SynPaTiC”, by the ANR national
research program “PACS” (ANR-2014), and the INS2I PEPS JCJC 2015 “PSyCoS”
project.

1

http://www.springer.com


subspaces where the discrete (untimed) behavior is uniform. That is, the set
of satisfied linear time properties is the same for any rational-valued parameter
valuation (“point”) in a tile. This helps to identify robust subspaces, in which the
timing constants can vary with no harm w.r.t. the system correctness expressed
in terms of the untimed language. In [ACE14], we sketched two master-worker
point distribution algorithms to compute BC in a distributed fashion.

Contribution The goal of this paper is to propose efficient distributed al-
gorithms to compute BC efficiently using parallel, distributed computing re-
sources. We formalize the existing point-by-point distribution algorithms (Seq
and Random), that were only informally sketched in [ACE14].1 Then, our main
contribution is to propose three new distributed algorithms to speed up the car-
tography: the first one (Static) is a static domain decomposition scheme, where
each node works independently on its own parameter subdomain; the second
one (Shuffle) addresses the drawbacks of Seq and Random; finally, the third one
(Subdomain) is a new master-worker, dynamic, distributed domain decomposi-
tion process. We then evaluate our algorithms on real-time case studies. In all
cases, our new algorithms Shuffle and (a variant of) Subdomain outperform the
algorithms of [ACE14]. We also discuss how to choose the appropriate algorithm
depending on the case study.

Related works The design of efficient parameter synthesis techniques has
been tackled in various works, e.g. using SMT-based model checking techniques
[CGMT13], or using symbolic techniques for integer synthesis [JLR15]. BC helps
to quantify the system robustness; this has also been tackled using the “ASAP”
semantics [DWDR05] (see, e.g. [Mar11] for a survey), but usually in only one
dimension (a single variation δ of the timing delays is considered, whereas BC
allows as many dimensions as parameters). To the best of our knowledge, with
the exception of [ACE14], distributed computing techniques were not applied
yet to parameter synthesis for PTA.

Formal verification can be made in parallel in two ways: modeling languages
can be designed to be easy to use in a distributed fashion, or the verifica-
tion algorithms themselves can be parallelized. Our approach fits in the sec-
ond category. In recent years, some model checkers were extended to paral-
lel computing, i.e. running on multicore computers. This is the case of PKind
[KT11], APMC (a probabilistic model checker) [HBE+10], and FDR3 (for CSP
refinement checking). More recently, two algorithms were proposed to address
multi-core LTL verification [ELPP12] and emptiness checking of timed Büchi
automata [LOD+13]. However, with the exception of FDR3 (that can run either
on multicore or on clusters), these works run verification on multicore comput-
ers (with a shared memory) whereas our primary goal is to run verification on
a cluster (where each node has its own memory). Furthermore, none of these
works considered parameter synthesis.

1 [ACE14] was published in a distributed computing community and focused on the
parallelization technique used for this particular application, and the paper did not
go into formal details. This is not an actual contribution of the current paper, but
makes it standalone.

2



Outline We introduce the necessary notations in Section 2. We briefly define in
Section 3 the static domain decomposition algorithm (Static). Then, we formalize
in Section 4 the master-worker scheme and the two point distribution algorithms
of [ACE14]; we also introduce a third point distribution algorithm (Shuffle).
We introduce in Section 5 our new dynamic domain decomposition algorithm
(Subdomain). We conduct experiments in Section 6 and conclude in Section 7.

2 Preliminaries

Parameter Constraints We assume here a set X = {x1, . . . , xH} of clocks,
i.e. real-valued variables that evolve at the same rate. A clock valuation w is a
function w : X → R+. We denote by X = 0 the conjunction of equalities that
assigns 0 to all clocks in X.

We assume a set P = {p1, . . . , pM} of parameters, i.e. unknown constants.
A parameter valuation v is a function v : P → Q+. We will often identify a
valuation v with the point (v(p1), . . . , v(pM )). An integer point is a valuation
v : P → N. We denote by 0 the valuation assigning 0 to all parameters.

An inequality over X and P is e ≺ 0, where ≺∈ {<,≤,≥, >}, and e is a
linear term

∑
1≤i≤N αizi + d for some N ∈ N, where zi ∈ X ∪ P , αi ∈ Q, for

1 ≤ i ≤ N , and d ∈ Q. A (linear) constraint over X and P is a set of inequalities
over X and P . We define in a similar manner inequalities and constraints over P .
A guard is a set of inequalities each of them referring to at most one clock.

Given a parameter valuation v, C[v] denotes the constraint over X obtained
by replacing each parameter p in C with v(p). We say that v satisfies C, denoted
by v |= C, if the set of clock valuations satisfying C[v] is nonempty.

We denote by C↓P the projection of C onto P , i.e. obtained by eliminating
the clock variables (using existential quantification). We define the time elapsing
of C, denoted by C↗, as the constraint over X and P obtained from C by
delaying an arbitrary amount of time. Given R ⊆ X, we define the reset of C,
denoted by [C]R, as the constraint obtained from C by resetting the clocks in R,
and keeping the other clocks unchanged.

Definition 1. A PTA A is a tuple A = (Σ,L, l0, X, P, I, E), where: 1) Σ is
a finite set of actions, 2) L is a finite set of locations, 3) l0 ∈ L is the initial
location, 4) X is a set of clocks, 5) P is a set of parameters, 6) I is the invariant,
assigning to every l ∈ L a guard I(l), and 7) E is a set of edges (l, g, a,R, l′)
where l, l′ ∈ L are the source and destination locations, g is the transition guard,
a ∈ Σ, and R ⊆ X is a set of clocks to be reset.

Given a PTA A = (Σ,L, l0, X, P, I, E), and a parameter valuation v, A[v]
denotes the TA obtained from A by substituting every occurrence of a parameter
pi by the constant v(pi) in the guards and invariants.

Symbolic semantics. A symbolic state is a pair (l, C) with l a location, and
C a constraint over X ∪ P . The initial state of A is s0 = (l0, (X = 0)↗ ∧ I(l0)),
i.e. clocks are initially set to 0, and can evolve as long as I(l0) is satisfied. The

3



K

v v′ v′′

(a) Graphical example

K2v1 v2

v3 v4

(b) Redundancy

v1 v2 v3 K

(c) Choosing points

Fig. 1: Graphical representations and challenges

computation of the state space is as follows: Given a symbolic state s = (l, C),

Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =
(
[(C ∧ g)]R

)↗ ∩ I(l′)}.
A symbolic run of a PTA is an alternating sequence of symbolic states and

actions of the form s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . ,m − 1,
ai ∈ Σ, and si

ai⇒ si+1 is such that si+1 belongs to Succ(si) and is obtained via
action ai. In the following, we simply refer to the symbolic states belonging to
a run of A starting from s0 as states of A. Given a run (l0, C0)

a0⇒ (l1, C1)
a1⇒

· · · am−1⇒ (lm, Cm), its corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of
all traces of a TA is called its trace set.

The Inverse Method The inverse method (IM) [AS13] generalizes the behavior
of A[v] in the form of a tile, i.e. a parameter constraint K where the discrete
behavior is uniform (see Fig. 1a, where K = IM(A, v)). That is, for any point v′

satisfying K, the trace sets of A[v′] and A[v] are equal. Hence any linear-time
property (expressed in, e.g. LTL) valid in A[v] is also valid in A[v′]. Note that,
in general, tiles have no predefined “shape”: they are general polyhedra in |P |
dimensions that can have arbitrary size, number of vertices, and edge slope. The
computation time of IM also greatly varies, from milliseconds to several hours,
depending on the complexity of the model, and the size of the trace set.

The Behavioral Cartography Given a PTA A and a bounded parameter do-
main D (usually a hyperrectangle in |P | dimensions), the behavioral cartography
(BC) [AF10] repeatedly calls IM on (some of the) integer points of D (of which
there is a finite number), so as to cover D with tiles. The result gives a tiling
of D such that the discrete behavior (trace set) is uniform in each tile.

In Fig. 1a, BC first considers point v, and computes K = IM(A, v). Then,
BC iterates on the subsequent points, all already covered by K, until it meets
v′′, that is not yet covered. Hence, BC will then compute IM(A, v′′), and so on,
until all integer points in D are covered.

BC can be used for several applications: first, it identifies the system robust-
ness in the sense that, in each tile, parameters can vary as long as they remain
in the tile, without impacting the system’s discrete behavior. Second, BC can
be used to perform parameter optimization; the weakest conditions of the input
signal of an industrial asynchronous memory circuit (SPSMALL) were derived
using BC [AS13]. Third, given a set of linear time properties (i.e. that can be
verified on the trace set), it suffices to compute only once BC, and then to check

4



(a) SPSMALL (b) Flip-flop circuit (c) Schedulability (d) RCP

Fig. 2: Examples of graphical behavioral cartographies in 2 dimensions

each property on the trace set generated for each tile in order to know a complete
(or nearly complete) set of parameter valuations satisfying each property.

Remark 1. BC does not guarantee the full, dense coverage of D for two reasons.
1) IM may not terminate, as the corresponding problem is undecidable [AM15].
In our implementation of BC, this is addressed using a timeout: if IM(A, v)
does not terminate within some time bound, BC switches to the next integer
point, and v will (most probably) never be covered. However, although it was
shown possible in theory, this never happened in any of our experiments. 2) IM
generalizes integer points in the form of dense, rational-valued constraints, but
it could happen in rare cases that some tiles do not contain any integer points.
This sometimes happened in our experiments (e.g. in Fig. 2a around x = 100 and
y = 55); usually, calling BC on multiples of 1

3 instead of integers was empirically
shown to be sufficient in most cases (although in theory there might be an infinite
number of tiles in a bounded domain). Conversely, note that BC frequently covers
(parts of) the parametric space beyond D; this is the case in Figs. 2b to 2d (in
Fig. 2b, the entire parametric space is even covered).

Also note that the motivation for considering integer points is that, in most
cases, considering integers is sufficient to cover entirely (or almost entirely) the
domain D. However, as said above, our implementation allows any “step” instead
of integers (e.g. multiples of 1

3 ).

3 Static Domain Decomposition

In order to tackle larger case studies, our objective is to take advantage of the
iterative nature of the cartography (in contrast to most, if not all, other known
parameter synthesis algorithms), and to distribute it on N processes. There is
no theoretical obstacle in doing so, since all calls to IM are independent from
each other. The challenge is rather to select efficiently the points on which IM is
called, so that as few redundant constraints as possible are computed.

In this section, we briefly describe a static domain decomposition (“Static”).
That is, the rectangle D is split into N subdomains, and then each process is
responsible for handling its own subdomain in an independent manner (with no

5



communication). This domain decomposition method is often used for regular
data distributions, where all subdomains require the same processing time, and
preferably on domain shapes such as rectangles or hypercubes, that can easily
be mapped on a grid of processes.

Each node i performs the following procedure:

1. split D into N subdomains;2

2. execute BC on the ith subdomain, i.e. iteratively select integer points and
call IM until all integer points in the ith subdomain are covered by tiles.

For example, in Fig. 1b, the domain D (the external dashed rectangle) is split
into four equal subdomains (the four internal dashed rectangles); vi, 1 ≤ i ≤ 4
represents a possible first point on which to call IM in each subdomain. (K2 in
Fig. 1b will be used later on.)

This static decomposition is straightforward but is not satisfactory for BC
for three main reasons.

First, the general “shape” of the cartography is entirely arbitrary and un-
known beforehand, since tiles can themselves have any shape. Fig. 2 gives ex-
amples of cartographies in 2 parameter dimensions: although the geometrical
distribution of the tiles of Fig. 2a within D is rather homogeneous, this is not
true at all for the others. For example, splitting the domain of Fig. 2b (resp.
Fig. 2d) into four equal parts would be very unfair for the node responsible of
the lower-left (resp. upper-right) subdomain, since most tiles are concentrated
there; this would also be inefficient, since the other nodes will rapidly become
idle.

Second, the geometrical distribution of the tiles says nothing on the time nec-
essary to compute each tile. Recall that the computation of IM can be very long
(up to several hours). Even when the tiles are homogeneously located within D,
some tiles may require much more time than others. For example, in Fig. 2a
(where the geometrical distribution of the tiles is rather homogeneous), it could
happen that the bottom-left tiles require much more time than others, resulting
in this node to work much longer, while the other nodes would rapidly finish
their duty. Again, this would result in a loss of efficiency due to load unbalance
since not all of the nodes are working actively.

Third, the absence of communication between nodes may result in redundant
computations. Let us go back to the example of cartography in Fig. 1b. Assume
that node 2 finished first to compute a tile, say K2. This tile not only covers
the entire subdomain of node 2, leading to the termination of process 2, but it
also covers node 4’s subdomain entirely and a large part of node 2’s subdomain.
Without communication, these nodes will keep working without knowing that
their subdomain has already been covered. In contrast, a smarter distribution
scheme should be such that, in this situation, nodes 2, 3 and 4 would go to
help node 1 finish its (not much covered yet) subdomain. We will address this
efficiency issue in the remainder of this paper.

2 Alternatively, a single node could perform the split and then send to each other node
its own subdomain (at the cost of additional communications).

6



Master tag Argument

POINT(v) parameter valuation

STOP -

SUBDOMAIN(sd) new subdomain

TILES(T ) latest tiles

Worker tag Argument

COMPLETED -

NOTIFYPOINT(v) parameter valuation

REQTILES -

RESULT(K) constraint computed

Table 1: Tags for master-worker communications

4 Master-Worker Point Distribution Algorithms

We first recall our master-worker scheme (Section 4.1); then, we formalize the
abstract algorithm for the master (Section 4.2), the Seq (Section 4.3) and the
Random point distribution (Section 4.4) – only informally described in [ACE14].
Additionally, we introduce a new point distribution Shuffle (Section 4.5).

4.1 Principle: Master-Worker

Workers ask the master for a point v, then execute IM(A, v), and finally send the
corresponding result K to the master. The master does not call IM itself, but
instead distributes points to the workers. Whereas this may be a loss of efficiency
for few processes, this shall be compensated for a large number of processes.
Moreover, this parallel computation scheme balances the load between workers
automatically.

The master and workers communicate with each other by sending messages
that are labeled using tags, using two asynchronous functions send(n,msg) and
receive(). Function send(n,msg) sends a tagged message msg to node n. Function
receive() is a blocking function that waits until a message is received, and returns
a pair (n,msg), where msg is the tagged message that has been received from
node n. Based on the tag of the message, receiving processes can decide what
to do with the message itself. Note that workers never communicate with each
other. We assume that messages are made of a tag and zero or one argument: for
example, POINT(v) sends a POINT tag together with the parameter valuation v.
We give the list of tags used throughout this paper in Table 1.

4.2 An Abstract Algorithm for the Master

We first formalize in Algorithm 1 the “abstract” master algorithm sketched
in [ACE14]; this algorithm contains variation points that can be instantiated to
give birth to concrete master algorithms. In this section, we only use the worker
tag RESULT and the master tags POINT and STOP. The workers only call the
inverse method on the point they receive from the master, and send the result
back, until a STOP tag is received (formalized in Algorithm 8 in Appendix B.1).

Algorithm 1 takes as input a PTA A and a parameter domain D; it is also
parameterized by a point distribution mode M. Each mode is responsible for in-
stantiating the variation points to give birth to a concrete algorithm. The master

7



Algorithm 1: Abstract algorithm for the master

input : PTA A, domain D, number of processes N , mode M
output : Set of tiles T
// Initialization phase

1 T ← ∅ ; M.initialize()
2 foreach process n ∈ {1, . . . , N} do send(n,POINT(M.choosePoint())) ;

// Main phase

3 while there are uncovered integer points in D do
4 n,RESULT(K)← receive() ; T ← T ∪ {K}
5 send(n,POINT(M.choosePoint()))

// Finalization phase

6 foreach process n ∈ {1, . . . , N} do
7 n,RESULT(K)← receive() ; T ← T ∪ {K} ; send(n,STOP)

8 return T

starts by creating an empty set of tiles and then calls the mode initialization
function M.initialize(), that initializes the various variables needed by the con-
crete algorithms (line 1). Then, the master sends a point to each node n; the
way these points are chosen among D (M.choosePoint()) is decided by the mode
(line 2). Then the master enters the main loop (line 3 to line 5): while there are
uncovered points, every time a node n sends a constraint K and asks for work,
the master stores the result in its list of tiles; then, it selects a point according
to M and sends it to n. Finally, once all integer points are covered, the master
receives results from the remaining nodes and sends STOP tags (line 6–line 7).

The way points are picked by the master to be distributed to the workers
is a highly critical question. Choosing points in a wrong manner can lead to
a dramatic loss of efficiency. For example, choosing points very close to each
other would most probably lead to the (redundant) computation of the same
tile. This situation is depicted graphically in Fig. 1c, where points v1, v2, v3 may
yield the same tile K. In the next three subsections, we formalize three master
modes; these modes will define additional global variables and must instantiate
initialize() and choosePoint().

4.3 Sequential Point Distribution

The first point distribution algorithm (Seq) is a direct extension of the monolithic
(i.e., non-distributed) algorithm: as in the non-distributed BC, it enumerates all
the points of D in a sequential manner starting from 0. Seq assumes a func-
tion nextPoint that, given a parameter valuation v and a parameter domain D,
returns the next point in D for some lexicographic order on the points of D.
Seq maintains a single global variable vprev , storing the latest point sent to a
worker. The initialization function Seq.initialize() sets vprev to a special value
⊥ such that nextPoint(⊥) returns the smallest point in D (e.g. 0 if 0 ∈ D).

8



Algorithm 2: Seq.choosePoint()

variables : Point vprev
output : Point v

1 v ← vprev
2 repeat v ← nextPoint(v,D) until v is not covered by any tile in T ;
3 vprev ← v ; return v

Seq.choosePoint() (given in Algorithm 2) returns the next point of D not cov-
ered yet by any tile.

The main advantage of Seq is that it is inexpensive on the master’s side. Its
main drawback is the risk of redundant computations by the workers, due to the
situation depicted graphically in Fig. 1c: for instance, at the beginning, the N
processes will ask for work, and the master will give them the first sequential N
points, all very close to each other, with a high risk of redundant computation.

4.4 Random + Sequential Point Distribution

The second point distribution algorithm (Random) selects points randomly, and
then in a second phase performs a sequential enumeration to check the full
coverage of integers in D. This second phase is necessary to guarantee that all the
integer points have been covered. The second phase starts after a given number
MAX of consecutive failed attempts to find an uncovered point randomly. Indeed,
simply stopping BC after MAX tries could give a probabilistic coverage (e.g.
99 %) of integer points, but cannot guarantee the full coverage. Since finding
the points not covered by a list of tiles has no efficient practical solution, this
sequential check is the only concrete option we have.

Random maintains two global variables. First, seqPhase acts as a flag to
remember whether the algorithm is in the first or second phase. Second, vprev
stores the latest point sent to a worker (just as in Seq). Random.initialize()
initially sets seqPhase to false and vprev to ⊥.

We give Random.choosePoint() in Algorithm 3. In the first phase (line 1
to line 7), Random.choosePoint() randomly computes a point, and then checks
whether it is covered by any tile; if not, it is returned. Otherwise, a second try
is made, and so on, until the maximum number MAX of attempts is reached. In
that latter case, it switches to the second phase (line 8 to line 11), consisting in
a sequential enumeration of all the points just as in Seq.choosePoint().

4.5 Shuffle Point Distribution

The main problem of Random is the fact that the second phase, necessary to
check the full coverage of integers, may be costly and even useless if almost all
the points have already been covered. To alleviate this problem, we propose a
new algorithm Shuffle that first computes statically a list of all integer points
in D, then shuffles this list, and then selects the points of the shuffled list in a

9



Algorithm 3: Random.choosePoint()

variables : Point vprev , flag seqPhase
output : Point v
// First phase

1 if ¬seqPhase then
2 nbTries ← 0
3 while nbTries < MAX do
4 v ← randomPoint(D)
5 if v is not covered by any tile in T then return v;
6 nbTries ← nbTries + 1

7 seqPhase ← true

// Second phase

8 if seqPhase then
9 v ← vprev

10 repeat v ← nextPoint(v) until v is not covered by any tile in T ;
11 vprev ← v ; return v

sequential manner. The sequential phase of Random is then dropped, at the cost
of being able to compute, store statically and shuffle a large quantity of points.

Shuffle maintains a single global variable, i.e. the list allPoints of all the
points in D that has been shuffled. The Shuffle.initialize() function assigns
shuffle(allIntegers(D)) to allPoints. (We assume here that function allIntegers(D)
returns the list of all the integer points of D, and function shuffle(L) shuffles the
elements of a list L.)

Then, the Shuffle.choosePoint() function simply consists in selecting the next
uncovered point in allPoints. That is, it performs pop(allPoints), until the point
output is not covered by any tile, in which case it returns it (we assume here
that function pop(L) pops the first element of the list L and returns it).

5 Dynamic Domain Decomposition

The most intuitive solution for distributing BC is the Static distribution scheme
of Section 3, i.e. to split D into N subdomains, and then ask each process to
handle its own subdomain in an independent manner. As said in Section 3, this
may lead to inefficient computations (which will be confirmed by our experiments
in Section 6). Still, we use this idea to set up a dynamic domain decomposition
algorithm. This algorithm is different from the previous ones, in the sense that
it does not fit in the abstract master algorithm formalized in Section 4.2.

Initially, the master splits in D into N subdomains, and distributes the sub-
domains to the workers. In contrast to the algorithms of Section 4, the workers
are now responsible for checking whether all the points in their subdomain have
been covered yet or not. This mechanism reduces the load on the master without
leading to redundant point coverage checks. Then, when a worker has covered

10



Algorithm 4: Subdomain: Master

input : PTA A, domain D, number of processes N
output : Set of tiles T
// Initialization phase

1 T ← ∅ ; SD , currentPoints ← initialSplit(D,N)
2 foreach process n ∈ {1, . . . , N} do send(n,SUBDOMAIN(SD [n])) ;

// Main phase

3 while a subdomain in SD can be split do
4 switch receive() do
5 case n,NOTIFYPOINT(v): currentPoints[n]← v ;
6 case n,RESULT(K): T ← T ∪ {K} ;
7 case n,REQTILES: send(n,TILES(T )) ;
8 case n,COMPLETED:
9 n′, sd1, sd2 ← split(SD , currentPoints, n)

10 send(n,SUBDOMAIN(sd1)) ; send(n′, SUBDOMAIN(sd2))

// Finalization phase

11 switch receive() do
12 case n,RESULT(K): T ← T ∪ {K} ;
13 case n,COMPLETED: send(n,STOP) ;

14 return T

all the integer points in its subdomain (because the points are covered by tiles
computed either by this worker, or by other workers), it informs the master;
the master dynamically splits a subdomain (typically, one that has only been
covered a little) and sends it back to the idle worker.

The main idea is that the master is responsible for handling the dynamic
distribution of the subdomains (including detecting the slowest workers to split
their subdomain), whereas the workers are responsible for covering all the points
in their subdomain in a sequential manner. There is no need for more complex
algorithms, since each worker is working on its own in its own subdomain.

5.1 Master Algorithm

In the following, we assume several functions. We believe that understanding the
role of these functions is straightforward; in practice, they lead to very tricky
implementation issues (especially for the split function with arbitrary numbers
of processes and parameter dimensions).

We give the master algorithm in Algorithm 4. Besides the list of tiles T ,
the master maintains two arrays of size N : the array SD associating with each
node its current subdomain, and the array currentPoints associating with each
node its latest known point (used to understand how advanced a worker is in
its subdomain). These two arrays are initialized using the function initialSplit
that splits D into N subdomains (line 1). Then the master sends its subdomain
(line 2) to each node.

11



The algorithm then enters its main phase (line 3 to line 10). The master waits
for incoming messages received via the asynchronous, blocking function receive().
If a new point is received (line 5), the master updates the currentPoints array
(this is needed to perform splits using the most up-to-date data). If a result is
received (line 6), the master stores it. If a request for tiles is received (line 7), the
master sends all the tiles back so that n can update its local list.34 If the master
is notified that a worker n has completed its subdomain, i.e. all of its points
have been covered (line 8), the master finds out which subdomain is the least
covered, i.e. which workers are the most in need for assistance; this is performed
by split(SD , currentPoints, n), that returns the node n′ needing help, and two
new subdomains sd1 and sd2 split from n′’s former subdomain, while updating
SD (line 9). The master then informs both nodes of the split (line 10).

Finally, when no subdomain can be split (i.e. all non-completed subdomains
contain only one point), the master stores the last tiles it receives (line 12) and
sends a STOP signal to the workers (line 13).

5.2 Worker Algorithm

We give the Subdomain worker algorithm in Algorithm 5. Each worker waits for
messages from the master: whenever a STOP signal is received from m (m stands
for the master node id), the worker terminates (line 3). Otherwise, a subdomain
sd is received (line 4): the worker then covers sd with tiles (line 5 to line 11) by
calling IM sequentially on consecutive integers as in the Seq (master) algorithm.
The worker selects a point, sends it to the master for update purpose, calls IM
on that point, sends the result to the master, asks for an update of the list of
tiles, and so on. When sd is covered, the worker notifies the master (line 12),
and then waits again for a new message from the master until termination.5

5.3 An Additional Heuristic

It may happen that, while a node is calling IM on a point v, another node has
covered v with its own tile. For example, in Fig. 1b, node 2 calls IM on point v2,
while node 4 calls IM on point v4. Assume calling IM on point v2 yields K2, that
incidentally covers v4. It is more efficient to stop the computation of IM on v4, so
that node 4 moves to another point instead of computing a redundant tile. We
hence improve Subdomain by adding a heuristic that prevents this situation as

3 For efficiency purpose, in our implementation, the master only sends the new tiles
since n’s latest request (which is ensured using additional queue data structures).

4 The local list is necessary to detect whether a point in the worker’s subdomain is
covered by a tile computed by another worker.

5 Additionally, the worker checks whether the master has split its subdomain, because
some other worker completed its own subdomain. In our implementation, this re-
quires on the worker’s side frequent (but inexpensive) checks whether the master has
split the worker’s current subdomain and, if so, a simple update of the subdomain.

12



Algorithm 5: Subdomain: Worker n

input : PTA A
variables : Set of tiles T , point vprev

1 while true do
2 switch receive() do
3 case m, STOP: return ;
4 case m, SUBDOMAIN(sd):
5 while there are uncovered points in sd do
6 v ← Seq.choosePoint()
7 send(m,NOTIFYPOINT(v))
8 K ← IM(A, v)
9 send(m,RESULT(K))

10 m,TILES(receivedTiles)← receive()
11 T ← T ∪ receivedTiles

12 send(m,COMPLETED)

follows: the master keeps track of all the points currently processed by each node;
whenever a constraint computed by a node i covers the current node processed
by another node j, the master informs immediately node j, and this node stops
its computation to move to the next point. We refer to Subdomain augmented
with this heuristics as Subdomain + H. This heuristic might be expensive, both
on the master side and on the worker side (frequent checks to perform, and more
communication), hence we will study both Subdomain and Subdomain + H.

6 Experiments

We implemented our algorithms in the working version (2.7) of Imitator [AFKS12].6

We are presenting here results using seven case studies: Flip-flop4 is a 4-
parameter dimension asynchronous flip-flop circuit. RCP is a parametric model
of the root contention protocol (inspired by the TReX [ABS01] model). Sched3-
2, Sched3B-2, Sched3B-3 and Sched5 are parametric schedulability problems,
where the goal is to find tiles where the system is robustly schedulable. SiMoP is
a parametric networked automation system [AS13]. More details on the configu-
ration of the case studies are given in Appendix C.2. We give in the “model” part
of Table 2 the number of clocks, of parameters, and of integer points in D for
each case study. In the “cartography” part, we give the number of tiles and the
time (in seconds) to compute the non-distributed cartography (“monolithic”).
Note that the number of tiles gives an upper bound on the number of nodes
above which a perfect distribution algorithm cannot become more efficient: if
each node computes a different tile, then using more than n nodes cannot be
faster than n nodes. Hence, we bound the analysis to the smallest power of 2
greater or equal to # Tiles (“Nmax”).

6 Sources, models and results are available at www.imitator.fr/static/ICFEM15/.

13

www.imitator.fr/static/ICFEM15/


Methodology We compute BC for each algorithm, for a number of nodes from 4
to 128 (see Appendix C.3 for all details and plots). For sake of brevity, we study
here the performances at n = Nmax . The execution time (in seconds) is given
in the third part (“Execution time”) of Table 2. (The algorithm Hybrid will be
explained later on.)

We use two metrics to evaluate our algorithms. The first metric is the fol-
lowing ratio, that compares algorithms with each other, independently of their
absolute performances: for each algorithm and each case study, we compute the
time for this case study and this algorithm for Nmax nodes divided by the max-
imum over all algorithms for this case study for Nmax nodes, and multiplied
by 100. A ratio equal to 100 means that this algorithm is the slowest for this
case study, and a small ratio indicates a more efficient algorithm.

The second metrics is the speedup, that evaluates the scalability of each
algorithm: for each algorithm and each case study, we compute the time for this
case study and this algorithm for Nmax nodes divided by the time needed for
a perfect algorithm (i.e. the monolithic time divided by Nmax ), and multiplied
by 100. Here, a number close to 100 means a very scalable algorithm, whereas a
number close to 0 indicates an algorithm that does not scale well.

In the following, we describe the performance of each algorithm according to
Table 2, before concluding which is the most efficient strategy.

Static This static domain decomposition algorithm is clearly not efficient, which
shows that BC cannot be efficiently distributed using classical techniques for reg-
ular data distribution. Static is the worst algorithm twice (for RCP and Sched3B-
2), and never the most efficient; a surprise is the very good performance for Flip-
flop4, which probably comes from the fact that the tiles are very homogeneous
geometrically for this case study, making a static distribution efficient.

Seq Although it is easy to implement, this algorithm is terribly inefficient: with
3 case studies for which it is the worst algorithm, it is also the worst in average.
This comes from the fact that Seq is very likely to distribute to different nodes
points that are close to each other, leading to redundant computations.

Random This algorithm behaves well for case studies with relatively few points
in D, but it is always behind Shuffle in that case. It does not perform as well on
case studies with large D, most likely because of the sequential enumeration of
all points in the second phase of Random.

Shuffle With four case studies for which it is the best one, Shuffle is very efficient
when D does not contain too many points; shuffling the points guarantees a good
random repartition of the points, without entailing complex operations at the
master side. . . at the cost of being able to shuffle a large quantities of points.
This latter aspect certainly explains the low performances for Flip-flop4 and
Sched3B-3.

Subdomain This algorithm is always outperformed by its variant Subdomain + H;
it seems that the cost of checking which node is computing which point and the
additional necessary communications are largely compensated by the benefit of
preventing redundant computations brought by stopping ongoing executions.

14



Subdomain + H This algorithm has the best average speedup (17 %). Although it
clearly outperforms Shuffle for only two experiments (Flip-flop4 and Sched3B-3),
Subdomain + H is for no case study very far from the best algorithm. This could
make a good candidate for the best distribution algorithm – but we advocate in
the following for a better proposition.

Conclusion: Hybrid From the experiments, we notice that Subdomain + H is
always among the most efficient, but is outperformed by Shuffle for case studies
with relatively few points inD. Hence, we propose the following “algorithm”: ifD
contains relatively few points (say, less than 100,000), use Shuffle, otherwise use
Subdomain + H. Note that the condition (number of points in D) only depends
on the input of the analysis, and can be checked very easily. This new algorithm
“Hybrid” is always the best one – except for RCP, for which it is very slightly
slower than Subdomain + H despite a small number of points (3,050). In addition,
Hybrid gets the smallest average ratio (31 %) and the highest speedup (20 %).

Discussion An average speedup of 20 % at Nmax for Hybrid can seem rela-
tively low; this means that a perfect distribution algorithm (that would always
divide the monolithic computation time by N) would be 5 times faster. Still,
we find it promising. First, all distributed algorithms suffer from the time spent
in communication, which always lowers the speedup. Second, this confirms that
distributing BC is far from trivial, due to the unknown shape of the cartography,
the unknown computation time for each tile, and the risk for redundant com-
putations. Third, and most importantly, a speedup of 20 % means that, when
using 128 nodes, the computation time is still divided by more than 25 – which
leads to an impressive decrease of the verification time.

7 Final Remarks

We proposed here distribution algorithms to compute the cartography relying
on the inverse method. In fact, one can use other algorithms than IM to obtain
different “cartographies”; this is the case of [ALNS15] where we use a reach-
ability preservation algorithm (“PRP”) instead of IM so as to obtain, not a
behavioral cartography, but a simple “good/bad” partition with respect to a
reachability property. Distributing PRP using Subdomain often outperforms the
monolithic bad-state reachability synthesis (e.g. [AHV93,JLR15]). Hence, we be-
lieve that our point distribution algorithms can be reused for different purposes
than just BC.

In addition to using distributed computing resources, our aim is to design
multicore algorithms for parameter synthesis, in the line of [ELPP12,LOD+13]
– and then combine both approaches.

Finally, we would like to formally verify the master-worker communication
scheme of Sections 4 and 5, so as to avoid potential deadlocks caused by a node
waiting for a message that cannot arrive at that point.

15



Case study Flip-flop4 RCP Sched3-2 Sched3B-2 Sched3B-3 Sched5 SiMoP Average
Model

Clocks 5 6 13 13 13 21 8
Parameters 4 2 2 2 3 2 2
|D| 386400 3050 286 14746 530856 1681 10201

Cartography
# Tiles 190 19 59 71 378 177 48
Nmax 128 32 64 128 128 128 64

Monolithic 1341.0 1992.0 46.0 61.2 865.0 3593.0 111.6
Execution time at Nmax (s)

Static 33.0 2108.0 4.0 26.6 181.0 213.0 21.4
Seq 2059.0 653.0 4.6 11.0 810.0 219.0 36.1

Random 652.0 635.0 3.6 8.4 524.0 148.0 23.6
Shuffle 670.0 624.0 3.1 7.6 243.0 140.0 18.7

Subdomain 48.0 1286.0 7.2 15.8 217.0 273.0 32.4
Subdomain + H 24.0 622.0 4.0 11.0 81.0 199.0 23.2

Hybrid 24.0 624.0 3.1 7.6 81.0 140.0 18.7
Ratio at Nmax w.r.t. slowest at Nmax (%)

Static 2 100 56 100 22 78 59 60
Seq 100 31 64 41 100 80 100 74

Random 32 30 50 32 65 54 65 47
Shuffle 33 30 43 29 30 51 52 38

Subdomain 2 61 100 59 27 100 90 63
Subdomain + H 1 30 56 41 10 73 64 39

Hybrid 1 30 43 29 10 51 52 31
Speedup at Nmax (%)

Static 32 5 19 3 4 13 11 12
Seq 1 16 17 8 1 13 6 9

Random 2 17 22 10 1 19 10 11
Shuffle 2 17 25 11 3 20 12 13

Subdomain 22 8 11 5 3 10 7 10
Subdomain + H 44 17 19 8 8 14 10 17

Hybrid 44 17 25 11 8 20 12 20

Table 2: Summary of experiments

References

ABS01. Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A
tool for reachability analysis of complex systems. In CAV, Lecture Notes
in Computer Science, pages 368–372. Springer, 2001.

ACE14. Étienne André, Camille Coti, and Sami Evangelista. Distributed behavioral
cartography of timed automata. In EuroMPI/ASIA, pages 109–114. ACM,
2014.

AF10. Étienne André and Laurent Fribourg. Behavioral cartography of timed
automata. In RP, volume 6227 of Lecture Notes in Computer Science,
pages 76–90. Springer, 2010.

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IM-
ITATOR 2.5: A tool for analyzing robustness in scheduling problems. In
FM, volume 7436 of Lecture Notes in Computer Science, 2012.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993.

ALNS15. Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng Sun.
Reachability preservation based parameter synthesis for timed automata.
In NFM, volume 9058 of Lecture Notes in Computer Science, pages 50–65.
Springer, 2015.

16



AM15. Étienne André and Nicolas Markey. Language preservation problems in
parametric timed automata. In FORMATS, Lecture Notes in Computer
Science. Springer, 2015. To appear.

AS13. Étienne André and Romain Soulat. The Inverse Method. ISTE Ltd and
Wiley & Sons, 2013.

CGMT13. Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta.
Parameter synthesis with IC3. In FMCAD, pages 165–168. IEEE, 2013.

DWDR05. Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP
semantics: From timed models to timed implementations. Formal Aspects
of Computing, 17(3):319–341, 2005.

ELPP12. Sami Evangelista, Alfons Laarman, Laure Petrucci, and Jaco Van De Pol.
Improved multi-core nested depth-first search. In ATVA, volume 7561 of
LNCS, pages 269–283, 2012.

HBE+10. Khaled Hamidouche, Alexandre Borghi, Pierre Esterie, Joel Falcou, and
Sylvain Peyronnet. Three high performance architectures in the parallel
APMC boat. In PMDC. IEEE, 2010.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for timed automata. IEEE Transactions on Software Engineering,
41(5):445–461, 2015.

KT11. Temesghen Kahsai and Cesare Tinelli. PKind: A parallel k-induction based
model checker. In PDMC, volume 72 of EPTCS, pages 55–62, 2011.

LOD+13. Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard,
Kim Guldstrand Larsen, and Jaco Van De Pol. Multi-core emptiness check-
ing of timed Büchi automata using inclusion abstraction. In CAV, volume
8044 of Lecture Notes in Computer Science. Springer, 2013.

LPY97. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technology Transfer,
1(1-2):134–152, 1997.

Mar11. Nicolas Markey. Robustness in real-time systems. In SIES, pages 28–34.
IEEE Computer Society Press, 2011.

SLDP09. Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexi-
ble verification under fairness. In CAV, volume 5643 of Lecture Notes in
Computer Science, pages 709–714. Springer, 2009.

17



Appendix

A Existing Algorithms

A.1 The Inverse Method Algorithm

We recall here IM from [AS13].
Given a parameter valuation v, a state (l, C) is said to be v-compatible if

v |= C. We extend Succ to sets of states as follows: given a set S of states,
Succ(S) = {s′ | ∃s ∈ S s.t. s′ ∈ Succ(s)}. Given a set S of symbolic states, we
denote by Succj(S) the set of states reachable from S in exactly j steps, i.e. the
composition of j times Succ.

Here, we consider PTA extended with an initial parameter domain (as consid-
ered in, e.g. [AS13]). That is, these PTA have their possible parameter valuations
restricted to belong to the set defined by a parameter constraint K. When clear
from the context, given a PTA A and a constraint K, we denote by A(K) the
PTA initially constrained by A. (This can be simulated using an initial gad-
get that will ensure this constraint over the parameters before the actual initial
location of the PTA.)

We use notation SuccA(K) to denote that the Succ operation is applied to
PTA A(K).

Algorithm 6: Inverse method IM(A, v)

input : PTA A, parameter valuation v
output : Constraint K over the parameters

1 i← 0 ; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are v-incompatible states in Snew do
4 Select a v-incompatible state (l, C) of Snew ;
5 Select a v-incompatible J in C↓P ;

6 Kc ← Kc ∧ ¬J ; S ←
⋃i−1

j=0 SuccjA(Kc)
({s0}) ; Snew ← SuccA(Kc)(S)

7 if Snew ⊆ S then
8 return K ←

⋂
(l,C)∈S C↓P

9 i← i + 1 ; S ← S ∪ Snew ; Snew ← SuccA(Kc)(S)

IM [AS13] is a breadth-first algorithm (given in Algorithm 6), that maintains
an integer i (which corresponds to the exploration depth), the current constraint
Kc (initially set to true, i.e. the parameter constraint corresponding to all pa-
rameter valuations), the set Snew of states computed at the latest iteration,
and the set S of states computed at all previous iterations. IM iteratively ex-
plore states and refines the constraint Kc: when a v-incompatible state (l, C) is
met (line 4), then a v-incompatible inequality is selected within C↓P (line 5),

18



and added to Kc (line 6). When a fixpoint is reached, i.e. when no more new
states are generated (line 7), then the intersection of the projection onto P of
all reachable states is returned (line 8).

The inverse method can be characterized as follows.

Theorem 1 ([AS13]). Let A be a PTA and v be a parameter valuation. Assume
IM(A, v) terminates with result K. Then

1. v |= K, and
2. for all v′ |= K, the trace sets of A[v] and A[v′] are the same.

A.2 The Behavioral Cartography Algorithm

We recall the original non-distributed behavioral cartography algorithm
from [AF10] in Algorithm 7. We extend the |= notation as follows: given a set T
of tiles, we write v |= T if there exists some K in T such that v |= K.

Algorithm 7: Behavioral Cartography BC(A, D)

input : PTA A, point v
output : Set of tiles T

1 T ← ∅
2 foreach integer point v ∈ D do
3 if v 6|= T then T ← T ∪ {IM(A, v)};
4 return T

B Master-worker Point Distribution Algorithms

B.1 Worker Algorithm

Algorithm 8: Worker algorithm

input : PTA A
1 while true do
2 switch receive() do
3 case m, STOP: Terminate ;
4 case m,POINT(v):
5 K ← IM(A, v)
6 send(m,RESULT(K))

19



B.2 Sequential Point Distribution: Initialization Algorithm

We give the Seq.initialize() function in Algorithm 9.

Algorithm 9: Seq.initialize()

variables : Point vprev
1 vprev ← ⊥

B.3 Random Point Distribution: Initialization Algorithm

We give the Random.initialize() function in Algorithm 10.

Algorithm 10: Random.initialize()

variables : Point vprev , flag seqPhase
1 seqPhase ← false

2 vprev ← ⊥

B.4 Shuffle Point Distribution: Algorithms

Algorithm 11: Shuffle.initialize()

variables : List of points allPoints
1 allPoints ← shuffle(allIntegers(D))

Algorithm 12: Shuffle.choosePoint()

variables : List of points allPoints
output : Point v

1 v ← pop(allPoints)
2 while v is covered by a tile do
3 v ← pop(allPoints)

4 return v

20



C Experiments

C.1 Description of the Experimental Testbed

We ran our experiments on two clusters of Grid’5000: Pastel (located in Toulouse,
France), and Griffon (located in Nancy, France). Pastel is made of 140 nodes,
each of which features two dual-core AMD Opteron 2218 running at 2.6 GHz,
8 GiB of RAM and a GigaEthernet interconnection network. Griffon is made of
92 nodes, each of which features two quad-core Intel Xeon L5420 running at
2.5 GHz, 16 GiB of RAM and both GigaEthernet and 20G InfiniBand network
interconnection networks. On these two clusters, the nodes were running a 64-
bit Linux 3.2 kernel. The code was compiled using OCaml 4.01 and we used
OpenMPI 1.8 with the OCamlMPI bindings.

C.2 Detailed Description of the Case Studies

Flip-flop4 is a 4-parameter dimension asynchronous flip-flop circuit, made of four
complex logical gates, and constrained by a predefined environment. Parameters
are timing delays in the gate traversal delays, as well as setup and hold values for
the input signals in the environment. Depending on the values of the parameters,
the system can have a very different behavior.

RCP is a parametric model of the IEEE 1394 root contention protocol, where
nodes must elect a leader. The model is inspired by the TReX [ABS01] model
from the literature.

Sched3-2, Sched3B-2, Sched3B-3 and Sched5 are parametric schedulability
problems, where the goal is to find tiles where the system is robustly schedulable.
Sched3-2, Sched3B-2 and Sched3B-3 are the same model, with a different number
of parameters (2, 2 and 3 respectively), and a much larger D for Sched3B-2 and
Sched3B-3, so as to test the scalability of our algorithms.

Finally, SiMoP is a parametric networked automation system, where several
components communicate via a network bus [AS13].

C.3 Raw Experiments

First, recall that Random is parameterized by the maximum number of attempts
MAX before switching to a sequential enumeration. In all experiments, we used
MAX = 10 (larger values did not significantly change the performances).

We give in Figs. 3 and 4 our experiments data under graphical forms. The
full data (including all timings and the result of the cartography) are available at
www.imitator.fr/static/ICFEM15/. In the graphics of Figs. 3 and 4, we give
for each case study the execution time and the speedup for 4, 8, 16, 32, 64 and
128 nodes. Obviously, a low execution time is considered as good. The speedup
is the execution time for an algorithm and a number of nodes N divided by the
time needed for a perfect algorithm (i.e. the monolithic time divided by N). The
speed-up is used to measure how the code scales, i.e. how much faster it runs as
the number of nodes used for the computation increases. It is usually between 0

21

www.imitator.fr/static/ICFEM15/


and 1; A high speedup (i.e. close to 1) is considered as good, while a value close
to 0 denotes an inefficient algorithm (i.e. that does not scale).

Finally, we give in Table 3 an extended version of the data in Table 2. In
addition to the information of Table 2, we add the following:

– the ratio at Nmax w.r.t. the monolithic time, i.e. the execution time for
an algorithm and a number of nodes N divided by the monolithic time
and multiplied by 100 (of course, the smaller the better); note that a ratio
greater than 100 means that the distributed algorithm is even slower than
the monolithic one (which is the worst possible situation);

– the ratio at Nmax w.r.t. the slowest distributed algorithm for any N , i.e. the
execution time for an algorithm and a number of nodes N divided by the
slowest distributed algorithm for any number of nodes and multiplied by 100
(again, of course, the smaller the better).

22



(a) Flip-flop4: execution time (b) Flip-flop4: speedup

(c) RCP: execution time (d) RCP: speedup

(e) SiMoP: execution time (f) SiMoP: speedup

Fig. 3: Experiments: execution time and speedup (1/2)



(a) Sched3-2: execution time (b) Sched3-2: speedup

(c) Sched3B-2: execution time (d) Sched3B-2: speedup

(e) Sched3B-3: execution time (f) Sched3B-3: speedup

(g) Sched5: execution time (h) Sched5: speedup

Fig. 4: Experiments: execution time and speedup (2/2)



Case study Flip-flop4 RCP Sched3-2 Sched3B-2 Sched3B-3 Sched5 SiMoP Average

Model

Clocks 5 6 13 13 13 21 8

Parameters 4 2 2 2 3 2 2

|D| 386400 3050 286 14746 530856 1681 10201

Cartography

# Tiles 190 19 59 71 378 177 48

Nmax 128 32 64 128 128 128 64

N for speedup 128 19 59 71 128 128 48

Monolithic 1341.0 1992.0 46.0 61.2 865.0 3593.0 111.6

Execution time at Nmax

Static 33.0 2108.0 4.0 26.6 181.0 213.0 21.4

Seq 2059.0 653.0 4.6 11.0 810.0 219.0 36.1

Random 652.0 635.0 3.6 8.4 524.0 148.0 23.6

Shuffle 670.0 624.0 3.1 7.6 243.0 140.0 18.7

Subdomain 48.0 1286.0 7.2 15.8 217.0 273.0 32.4

Subdomain + H 24.0 622.0 4.0 11.0 81.0 199.0 23.2

Hybrid 24.0 624.0 3.1 7.6 81.0 140.0 18.7

Ratio at Nmax w.r.t. monolithic
Static 2 106 9 43 21 6 19 29

Seq 154 33 10 18 94 6 32 49

Random 49 32 8 14 61 4 21 27

Shuffle 50 31 7 12 28 4 17 21

Subdomain 4 65 16 26 25 8 29 24

Subdomain + H 2 31 9 18 9 6 21 14

Hybrid 2 31 7 12 9 4 17 12

Ratio at Nmax w.r.t. slowest distr
Static 2 100 15 40 22 6 21 29

Seq 100 31 17 16 100 6 36 44

Random 32 30 14 13 65 4 23 26

Shuffle 33 30 12 11 30 4 18 20

Subdomain 2 61 27 24 27 8 32 26

Subdomain + H 1 30 15 16 10 6 23 14

Hybrid 1 30 12 11 10 4 18 12

Ratio at Nmax w.r.t. slowest at Nmax

Static 2 100 56 100 22 78 59 60

Seq 100 31 64 41 100 80 100 74

Random 32 30 50 32 65 54 65 47

Shuffle 33 30 43 29 30 51 52 38

Subdomain 2 61 100 59 27 100 90 63

Subdomain + H 1 30 56 41 10 73 64 39

Hybrid 1 30 43 29 10 51 52 31

Speedup at Nmax

Static 32 5 19 3 4 13 11 12

Seq 1 16 17 8 1 13 6 9

Random 2 17 22 10 1 19 10 11

Shuffle 2 17 25 11 3 20 12 13

Subdomain 22 8 11 5 3 10 7 10

Subdomain + H 44 17 19 8 8 14 10 17

Hybrid 44 17 25 11 8 20 12 20

Table 3: Complete summary of experiments


	Enhanced Distributed Behavioral Cartography of Parametric Timed Automata 

