
Ann Oper Res
DOI 10.1007/s10479-015-2082-3

Fast machine reassignment

Franck Butelle1 · Laurent Alfandari1,2 · Camille Coti1 ·
Lucian Finta1 · Lucas Létocart1 · Gérard Plateau1 · Frédéric Roupin1 ·
Antoine Rozenknop1 · Roberto Wolfler Calvo1

© Springer Science+Business Media New York 2015

Abstract This paper proposes a newmethod for solving theMachineReassignment Problem
in a very short computational time. The problem has been proposed by Google as subject of
the Challenge ROADEF/EURO 2012. TheMachine Reassignment Problem consists in look-
ing for a reassignment of processes to machines in order to minimize a complex objective
function, subject to a rich set of constraints including multidimensional resource, conflict
and dependency constraints. In this study, a cooperative search approach is presented for
machine reassignment. This approach uses two components: Adaptive Variable Neighbour-
hood Search and Simulated Annealing based Hyper-Heuristic, running in parallel on two
threads and exchanging solutions. Both algorithms employ a rich set of heuristics and a

B Franck Butelle
franck.butelle@lipn.univ-paris13.fr

Laurent Alfandari
laurent.alfandari@lipn.univ-paris13.fr; alfandari@essec.edu

Camille Coti
camille.coti@lipn.univ-paris13.fr

Lucian Finta
lucian.finta@lipn.univ-paris13.fr

Lucas Létocart
lucas.letocart@lipn.univ-paris13.fr

Gérard Plateau
gerard.plateau@lipn.univ-paris13.fr

Frédéric Roupin
frederic.roupin@lipn.univ-paris13.fr

Antoine Rozenknop
antoine.rozenknop@lipn.univ-paris13.fr

Roberto Wolfler Calvo
roberto.wolfler@lipn.univ-paris13.fr

1 LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France

2 ESSEC Business School, Cergy, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-2082-3&domain=pdf

Ann Oper Res

learning mechanism to select the best neighborhood/move type during the search process.
The cooperation mechanism acts as a multiple restart which gets triggered whenever a new
better solution is achieved by a thread and then shared with the other thread. Computational
results on the Challenge instances as well as instances of a Generalized Assignment-like
problem are given to show the relevance of the chosen methods and the high benefits of
cooperation.

Keywords Generalized Assignment ·Adaptive Variable Neighborhood Search · Simulated
Annealing · Hyper-Heuristic · Cooperative Parallel Search

1 Introduction

This paper considers the Machine Reassignment Problem (MRP) which consists in opti-
mizing the usage of available machine resources by reallocating processes to different
machines in a cost-efficient way. The reallocation of the processes must satisfy capacity
constraints associated with the machines, and other types of constraints linking subsets of
processes. This difficult optimization problem was originally proposed by Google for the
2012 ROADEF/EURO Challenge, further denoted by “Challenge”.1

This problem can be seen as amulti-resourceGeneralizedAssignment Problem (MRGAP)
with some additional constraints and amore complex objective function. In theMRGAP, a set
of jobs is assigned to a set ofmachines. Each job has a cost or profit, and should be assigned to a
singlemachine.When assigned to amachine, each job consumes some resource units. Several
resources are associated with a machine in the MRGAP, contrary to the simpler Generalized
Assignment Problem (GAP) where only one resource per machine is considered, and the
capacity or availability of each resource should not be exceeded, for each machine. The aim
of the MRGAP is to find a minimum-cost assignment of jobs to machines, each of which
are subject to multi-resource capacity constraints. The MRGAP is NP-hard and has practical
applications in distributed computer systems. The Challenge problem extends the MRGAP
to a more sophisticated objective function mixing several kinds of costs, and to additional
constraints on subsets of jobs. Since the problem is close to theMRGAP, we decided to adapt
the algorithm proposed in this paper to the MRGAP as well.

TheChallenge problem is also connected to another problem called theVector Bin Packing
(VBP) problem, amultidimensional variant of theBinPackingProblem (BPP). In the simplest
form of the BPP, one considers a set of bins of equal capacity and a list of items, each item
having a weight, or processing cost, that is supposed not to vary over bins. The objective
is to find the minimum number of bins to pack all items. An instance of the VBP problem
consists of a set of items with given sizes that can represent services with known demands,
and a set of bins that can represent servers, with known capacities. The service demands and
the server capacities span across multiple dimensions in the VBP. The objective is to assign
each item to one bin in such a way that for each bin, the total size of the items assigned to
the bin does not exceed its capacity for every dimension. The VBP is NP-hard, even when
restricted to the one-dimensional case (only an asymptotic Polynomial-Time Approximation
Scheme exists see e.g. Vazirani 2001).

The aforementioned two problems, MRGAP and VBP, have different objective functions
and formulations, but have the same structure of assigning items to agents at minimum

1 http://challenge.roadef.org/2012.

123

http://challenge.roadef.org/2012

Ann Oper Res

cost while satisfying multi-dimensional capacity constraints. The MRGAP is closer to the
Challenge problem, because they share the same characteristics that the cost function depends
on the assignment variables and the resource consumption of an item varies over the agents,
which is not the case for the VBP.

Recently there has been renewed interest in the VBP problem and in the MRGAP because
they model particularly well the problem of Virtual Machine (VM) placement. Virtualization
has been a growing trend in data-centers with the promise of using computational powermore
efficiently. Many companies have adopted this technology to cut budgets and maintenance
costs. However, the performance of this technique depends on the quality of the management
layer that schedules or assigns the virtual machines within a pool of machines in the data-
center. While doing this assignment, it is important to make sure that no host gets overloaded
while minimizing the number of hosts being used. The goal is not only to reduce the upfront
investment in hardware, but also to minimize the energy cost of operating the data center,
even when hardware may have been over-provisioned. This problem is made difficult by
the multidimensional nature of the load. For example, each virtual machine has its own
CPU utilization, memory, and disk, network input and output requirements. Likewise, each
host has a capacity for each of these dimensions, and the assignment should ensure that
the number of hosts is minimized while no capacity constraint is violated. Moreover, these
requirements often vary over time, and if one wishes to avoid migration, one can model the
problem by having a dimension for each resource, for each time period. As a consequence,
the dimensionality of the problem is increased farther. If we assume that when different
virtual machines are placed in the same host, their loads across each dimension are summed
up, then the problem of assigning virtual machines to hosts is close to the VBP problem and
to the MRGAP.

Given the instance sizes and the computational time limit fixed by the Challenge, we have
decided to use heuristics, since exact methods are unlikely to finish within the time limit.
The proposed method, called Fast Machine Reassignment (FMR), is a Parallel Cooperation
Search. This area has receive much attention in the last decade (see for example Bouthillier
andCrainic 2005;Crainic andGendreau 2002;Crainic et al. 2004; James et al. 2009;Ouelhadj
and Petrovic 2008; Rattadilok et al. 2005). Our FMR algorithm explores cooperation of an
Adaptive Variable Neighborhood Search (AVNS, see e.g. Ropke and Pisinger 2006) and a
Simulating Annealing based Hyper-Heuristic denoted by SAHH (for an example of Hyper-
Heuristic using Simulated Annealing see Kalender et al. 2013). A Hyper-Heuristic is a
methodology designed for hard optimization problems that “performs a search over the
space of heuristics rather than the space of solutions” (Burke et al. 2013). It selects iteratively
some heuristic in a list of heuristics according to some criteria, that can be in some cases
the performance of the heuristic over the last iterations, and may accept or not the output
solutions during the search as Simulated Annealing does.

AVNS and SAHH are running in parallel on two threads, exchanging solutions from
one thread to another with controlled frequency in order to avoid excessive communication
between threads. The main novelty in the proposed method is the way we combine these
components, which leads to a large number of local search combinations and experimentally
gives better results than threads running fully independently. This confirms the result of Lehre
and Özcan (2013) according to which the cooperation of heuristics or meta-heuristics may
provide much better results than running them independently. However, this paper shows
that the performance of mixing move operators relies critically on having the right mixing
distribution, which is problem dependent.

In order to end this introduction and before providing the organization of the paper, let
us mention some relevant papers dealing with solving the aforementioned problems. For the

123

Ann Oper Res

GAP and its variants, a survey on the algorithms used to solve them can be found in Cattrysse
and Van Wassenhove (1992), Pentico (2007). Some heuristics have been proposed for the
MRGAP, see Gavish and Pirkul (1991), Yagiura et al. (2004b). For bin packing problems,
there are many books such as Hochbaum (1996), Kellerer et al. (2004) that detail most of
the theoretical literature. Many authors have studied the one-dimensional (Maruyama et al.
1977), the two-dimensional (Chung et al. 1982; Lodi et al. 2002; Puchinger and Raidl 2007)
and the three-dimensional case (Martello et al. 2000; Miyazawa andWakabayashi 2007) and
have developed heuristics (Spieksma 1994) and exact methods (Caprara and Toth 2001; Han
et al. 1994). To the best of our knowledge, for the large dimensional case, the best empirical
results are obtained by variants of the most popular heuristic First-Fit Decreasing (FFD).
General systems that manage resources in a shared hosting environment can benefit from
good heuristics for VBP (see for example Chen et al. 2005), there are far too many of those
to be covered extensively here. Focusing on Virtual Machine placement, there are several
VM consolidation heuristics currently used in research prototypes and real VMmanagement
tools. For example in Wood et al. (2007), a research system that enables live migration of
VMs around overloaded hosts uses a heuristic inspired from FFD, taking the product of
CPU, memory, and network loads. CPU consumption and loads are also considered in the
Challenge problem.

The paper is organized as follows. Section 2 contains the description of the Challenge
problem proposed by Google. The mathematical model and its relations with the MRGAP
and VBP are given in Sect. 3. We describe our algorithm named FMR2 (Fast Machine
Reassignment), its components and implementation details in Sects. 4 and 5 respectively. We
provide then some experimental results in Sect. 6 for both MRP and MRGAP, and finally
conclude the paper.

2 Problem description

The aim of the MRP is to improve the usage of a set of machines. A machine has several
resource types, like for example RAM and CPU, and runs processes that consume these
resources. Initially each process is assigned to a machine. In order to improve machine
usage, processes can be moved from one machine to another. Possible moves are limited
by hard constraints, such as for example resource capacity constraints, and have a cost. A
solution to this problem is a new process-machine assignment which satisfies all the hard
constraints and minimizes a given objective cost.

In the following problem description, we keep the notations of the Challenge as much as
possible in order to ease readability for researchers who already know the Challenge problem.

2.1 Decision variables

Let M be the set of machines, and P the set of processes. A solution is an assignment of
each process p ∈ P to one and only one machine m ∈ M ; this assignment is noted by the
mapping M(p) = m. The original assignment of process p is denoted M0(p). Note that the
original assignment is feasible, i.e. all hard constraints are satisfied.

2 FMR is open source and is distributed under GPL, see http://www.lipn.fr/~butelle/s26.tgz.

123

http://www.lipn.fr/~butelle/s26.tgz

Ann Oper Res

2.2 Hard constraints

2.2.1 Capacity constraints

LetR be the set of resources which is present on each machine,Cmr the capacity of resource
r ∈ R for machine m ∈ M and Rpr the consumption of resource r ∈ R for process p ∈ P .
Then, given an assignment M , the usage U of a machine m for a resource r is defined as:

U (m, r) =
∑

p∈P s.t. M(p)=m

Rpr

A process can run on a machine if and only if the machine has enough capacity available on
every resource. More formally, a feasible assignment must satisfy the capacity constraints:

∀ m ∈ M, r ∈ R, U (m, r) ≤ Cmr

2.2.2 Conflict constraints

Processes are partitioned into services. Let S be a set of services. A service s ∈ S is a set
of processes that must run on distinct machines:

∀ s ∈ S , ∀{pi , p j } ∈ s2, pi �= p j �⇒ M(pi) �= M(p j)

2.2.3 Spread constraints

Let L be the set of locations, a location l ∈ L being a set of machines. Note that L is a
partition of the set of machines M . For each s ∈ S , let spreadMins ∈ N be the minimum
number of distinct locations running at least one process of service s. The constraints are
defined by:

∀ s ∈ S ,
∑

l∈L
min(1, |{p ∈ s | M(p) ∈ l}|) ≥ spreadMins

2.2.4 Dependency constraints

Let N be the set of neighborhoods, a neighborhood n ∈ N being a set of machines. Note
thatN is a partition of the set of machinesM . If service sa depends on service sb, then each
process of sa should run in the neighborhood of a sb process:

∀ pa ∈ sa, ∃ pb ∈ sb and n ∈ N such that M(pa) ∈ n and M(pb) ∈ n

Note that dependency constraints are not symmetric.

2.2.5 Transient usage constraints

When a process p is moved from a machine m to another machine m′, some resources are
consumed twice; for example, disk space is not available on machine m during a copy from
machine m to m′, and m′ should obviously have enough available disk space for the copy.
Let T ⊆ R be the subset of resources which need transient usage, i.e. require capacity

123

Ann Oper Res

on both original assignment M0(p) and current assignment M(p). Then the transient usage
constraints are:

∀ m ∈ M , r ∈ T ,
∑

p∈P s.t.
M0(p)=m ∨ M(p)=m

Rpr ≤ Cmr

Note there is no time dimension in this problem, i.e. all moves are assumed to be done
at the exact same time. Then for resources in T these constraints subsume the capacity
constraints.

2.3 Classification of costs in the objective function

The aim is to improve the usage of the set of machines. To do so a total objective cost is built
by combining a load cost, a balance cost and several move costs.

2.3.1 Load cost

Let SCmr be the safety capacity of a resource r ∈ R on a machine m ∈ M . The load cost
is defined per resource and corresponds to the used capacity above the safety capacity. More
formally, let us denote the “over safety capacity” by δ1mr = max

(
0,U (m, r) − SCmr

)
, then

loadCost(r) =
∑

m∈M
δ1mr

A unit cost c1r is associated with the quantity loadCost(r).

2.3.2 Balance cost

As having available CPU resource without having available RAM resource is useless for
future assignments, one objective of the problem is to balance available resources. The idea
is to achieve a given target tr1,r2 on the available ratio of two different resources r1 and r2.
Let B ⊂ R2 be the set of pairs of resources (r1, r2) which play a role in the expression of
the balance cost.

Let us note by δ2m,r1,r2 = max
(
0, tr1,r2 · (Cmmr1 −U (m, r1)) − (

Cmr2 −U (m, r2)
))
.

The balance cost for (r1, r2) is:

balCost(r1, r2) =
∑

m∈M
δ2m,r1,r2

A unit cost c2r1,r2 is associated with the quantity balCost(r1, r2).

2.3.3 Process move cost

Some processes are painful to move (having a big code and/or using a big amount of data);
to model this soft constraint a process move cost is defined. Let c3p be the cost of moving the
process p from its original machine M0(p).

processMoveCost =
∑

p∈P s.t.
M(p)�=M0(p)

c3p

123

Ann Oper Res

2.3.4 Service move cost

To balance moves among services, a service move cost is defined as the maximum number
of moved processes over services. More formally:

servMoveCost = max
s∈S (|{p ∈ s | M(p) �= M0(p)}|)

2.3.5 Machine move cost

Let c5p,m be the cost of moving p from M0(p) to M(p) = m (if M(p) = M0(p) then this
cost is zero). The machine move cost is then the sum of these costs over all processes:

machMoveCost =
∑

p∈P
c5p,M(p)

2.3.6 Total objective cost

The total objective cost to minimize is a weighted sum of all previous costs.

totalCost = w1

∑

r∈R
c1r · loadCost(r)

+w2

∑

(r1,r2)∈B
c2r1,r2 · balCost(r1, r2)

+w3 · processMoveCost

+w4 · servMoveCost

+w5 · machMoveCost

In the data provided by the Challenge we have w1 = w2 = 1.

3 Mixed integer programming formulations

In this section, we give the formulation of the MRP issued from the Challenge, and a formu-
lation of the MRGAP that uses consistent notations with those of the MRP.

3.1 MRP formulation

We give a MIP formulation of the Google machine reassignment problem, where the only
binary variables are assignment variables, and all other variables are continuous variables
which are used to express some constraints or terms of the objective function. The decision
variables are:

– xpm = 1 if process p ∈ P is assigned to machine m ∈ M , 0 otherwise
– δ1mr = number of units of resource r over Safety Capacity on machine m.
– δ2m,r1,r2 = number of available units of resource r2 on machine m which are under

the target, expressed with respect to the number of available units of resource r1 for
(r1, r2) ∈ B.

– yls = 1 if at least one process in service s ∈ S is assigned to a machine in location
l ∈ L , 0 otherwise (no need actually to set these variables as binary in the model).

123

Ann Oper Res

– z = maximum number of moved processes over services.

min w1

∑

r∈R
c1r

∑

m∈M
δ1mr loadCost (1)

+ w2

∑

(r1,r2)∈B
c2r1,r2

∑

m∈M
δ2m,r1,r2 balanceCost (2)

+ w3
∑

p∈P
c3p(1 − xp,M0(p)) processMoveCost (3)

+ w4z serviceMoveCost (4)

+ w5
∑

p∈P

∑

m∈M
c5pmxpm machineMoveCost (5)

s.t.
∑

p∈P
Rpr xpm ≤ Cmr ∀m ∈ M , r ∈ R (6)

∑

p∈P s.t.
M(p)�=M0(p)

Rpr +
∑

p∈P s.t.
M(p)�=M0(p)

Rpr xpm ≤ Cmr ∀m ∈ M , r ∈ T (7)

∑

p∈s
x pm ≤ 1 ∀m ∈ M , s ∈ S (8)

δ1mr ≥
∑

p∈P
Rpr xpm − SCmr ∀m ∈ M , r ∈ R (9)

δ2m,r1,r2 ≥ tr1,r2

⎛

⎝Cm,r1 −
∑

p∈P
Rp,r1xpm

⎞

⎠

−
⎛

⎝Cm,r2 −
∑

p∈P
Rp,r2 xpm

⎞

⎠ ∀m ∈ M , (r1, r2) ∈ B (10)

∑

m∈M
xpm = 1 ∀p ∈ P (11)

∑

l∈L
ysl ≥ spreadMins ∀s ∈ S (12)

ysl ≤ 1 ∀s ∈ S , l ∈ L (13)

ysl ≤
∑

p∈s

∑

m∈l
x pm ∀s ∈ S , l ∈ L (14)

∑

p′∈sb

∑

m∈n
xp′m ≥

∑

m∈n
xpm ∀(sa, sb), p ∈ sa, n ∈ N (15)

z ≥
∑

p∈s

∑

m∈M s.t.
m �=M0(p)

xpm ∀s ∈ S (16)

xpm ∈ {0, 1} (17)

δ1mr , δ
2
m,r1,r2 , yls, z ≥ 0 (18)

There are two types of constraints:

123

Ann Oper Res

(i) Local constraints (6–10) that hold for every machine m ∈ M :
Capacity constraints (6) (see Sect. 2.2.1) express that the total amount of each resource r
on a given machine should not exceed the resource capacity. Transient usage constraints
(7) (see Sect. 2.2.5) state that for a subset of resources T ⊂ R, the total resource
consumption of processes p that are assigned to machine m or were initially assigned
to m, is no more than the capacity. Conflict constraints (8) (see Sect. 2.2.2) state that
any two processes of the same service s should not be assigned to the same machine.
LoadCost constraints (9) (see Sect. 2.3.1) define variables δ1mr as the number of units of
resource r over Safety Capacity on machine m, together with non-negativity constraints
on these variables. Finally,BalanceCost constraints (10) (see Sect. 2.3.2) define variables
δ2m,r1,r2 , as the number of available units of resource r2 on machine m under the target,
expressed with respect to the number of available units of r1. These variables will be
equal to zero if the target is achieved due to non-negativity of variables, and are used in
the objective function to model so-called balance costs.

(ii) Global constraints (11–16) that link machines of M altogether:
Assignment constraints (11) express that each process should be assigned to a single
machine.
Spread constraints (12–14) (see Sect. 2.2.3) are separated into three blocks of constraints.
Technical constraints (13) and (14) define variables ysl as equal to 0 if no process in
service s ∈ S is assigned to a machine in location l ∈ L ; otherwise we have ysl ≤ 1 so
in order to contribute to cover the right-hand-side of constraint (12) ysl can be set to one.
Constraints (12) state that the number of distinct locations where at least one process of
service s should run is at least the threshold spreadMins .
Dependency constraints (15) (see Sect. 2.2.4) express that if a service p in a service sa is
assigned to amachine in a neighborhoodn, then theremust be at least one process p′ in the
service sb that depends on sa , that is assigned to a machine in the same neighborhood n.
Finally, serviceMoveCost constraints (16) (see Sect. 2.3.4) define the service move cost
as the maximum number of moved processes over services.

3.2 MRGAP formulation

The MRGAP mathematical formulation can be obtained by relaxing different sets of con-
straints, since the constraints needed to describe the problem are only: (6), (11) and (17).
The objective function changes completely, since the MRGAP objective function takes into
account only the process move cost, but in a different way with respect to the MRP. In the
MRGAP we have a single cost matrix in the objective function, where cpm is the cost of
assigning process p to machine m. Therefore, the MRGAP problem can be formulated as
follows:

z = min
∑

p∈P

∑

m∈M
cpmxpm (19)

s.t.
∑

p∈P
Rpr xpm ≤ Cmr ∀m ∈ M , r ∈ R (20)

∑

m∈M
xpm = 1 ∀p ∈ P (21)

xpm ∈ {0, 1} (22)

123

Ann Oper Res

4 The FMR method

The method proposed in this paper is a Cooperative Parallel Search which runs in parallel
two different algorithms on two threads asynchronously. Because of the time limitation
and the dual core processor of the Challenge, we have considered a simple cooperative
schemewith two threadswhich communicate their best solution and operatemultiple restarts.
More sophisticated techniques can be found in Bouthillier and Crainic (2005) (where a pool
of solutions is shared between the threads, instead of a single one in FMR, in a solution
warehouse).Moreover, in our approach there is no need to have a controller as inOuelhadj and
Petrovic (2008), Rattadilok et al. (2005) that would coordinate solution exchanges between
threads.

Our FMR algorithm uses a particular combination of an Adaptive Variable Neighborhood
Search (AVNS) and Simulated Annealing based Hyper-Heuristic (SAHH).

The AVNS running on the first thread is based on the idea reported in Ropke and Pisinger
(2006) and Pisinger and Ropke (2007) where the probability of choosing among the different
neighborhoods is updated based on the best results found so far. Nevertheless, our AVNS
algorithm has the particularity to be initialized with a warm start greedy heuristic, which
generally improves the initial assignment.

The method running on the second thread is a SAHH. Hyper-heuristics have been defined
for the first time in Cowling et al. (2001). The proposed algorithm does not belong to the
category of HH which generate heuristics, but to those that only select heuristics. Therefore
it can be mapped completely in the classification scheme proposed in Burke et al. (2010)
and reported in Burke et al. (2013). The scheme is based on two dimensions: selection of the
heuristic search space and move acceptance.

Note that the complete combination of neighborhoods and ways of exploring them gives a
potentially very large set of heuristics. Nevertheless, both threads use a learning mechanism
for choosing the heuristic or neighborhood to execute (some applications of such learning
mechanisms can be found in Pisinger and Ropke 2007; Kalender et al. 2013; Burke et al.
2012).

In this section, for illustration purposes we need to describe some numerical results on
some particular instances of the Challenge. A full description of the Challenge instances and
numerical experiments will be found in Sect. 6.

4.1 Cooperative Parallel Search

An interesting feature of our parallel cooperation scheme is the fact that the threads are
asynchronous and the number of exchanges is controlled to avoid excessive communication
between threads. It can been seen as a restart mechanism since each thread uses a new starting
solution whenever the other one communicates an improving solution. Another choice we
made was to be very modular and use a list of algorithms (AlgoList) to apply for each thread,
with a learning mechanism for part of them.

A simplified version of the overall algorithm is described in Algorithm 1. The main aspect
of parallelization in this algorithm is that when one thread finds a new bestKnown solution,
the other thread can replace its current solution (assign) by bestKnown. In that sense,
there is a real cooperation between the two threads. Note that this replacement may occur
before the end of the execution of the current algorithm algo running on the thread; for
easing readability we did not mention this technicality in Algorithm 1.

The cooperation of the two threads is illustrated by Fig. 1 that represents the improvements
on the best known solution for each thread running on instance a2_4 (with seed 9). Once

123

Ann Oper Res

Algorithm 1: Cooperative Parallel Search algorithm
input : M0: Initial assignment of processes to machines, Problem description,

AlgoList1, AlgoList2, TimeOut (or use default values)
output: bestKnown: An assignment of processes to machines & improvement value

begin
bestKnown ← cost of M0 ;
Create an alarm to stop threads and save bestKnown when TimeOut is reached ;
Run Threads in parallel

/*bestKnown is shared between the two threads */
Thread 1: doWork(AlgoList1, M0) ;
Thread 2: doWork(AlgoList2, M0) ;

end
end
/** */
[h]Each thread is working on its own local copy of the assignment.
procedure

(
end
doWork(AlgoList, assign)) for i←1 to |AlgoList | do

algo ←AlgoList [i];
assign ← algo(M0,bestKnown,assign) ;
mutual exclusion between threads

if cost(assign) < cost(bestKnown) then
bestKnown←assign ;

end

Fig. 1 Comparison of independent threads versus cooperative threads on instance a2_4

in a while, “Thread 1 coop” and “Thread 2 coop” take into account the result of the other
thread and introduce improvements and exploration of other neighborhoods. Thread 1 uses
a first sequence of heuristics (see Sect. 6.1) followed by AVNS and Thread 2 also uses a first
sequence of heuristics followed by SAHH.

We have compared the numerical results of independent threads (taking their best solution
only when the time is elapsed) versus our cooperative scheme. Experiments show that the
cooperative schemeoutperforms the independent solving approach.More details are provided
in Sect. 6 with a complete result table.

123

Ann Oper Res

Fig. 2 Ejection Chain example (C capacity, SC safety capacity)

In the following section, we describe the algorithms implemented for AlgoList: Local
Search, Greedy, Adaptive Variable Neighborhood Search and Simulated Annealing based
Hyper-Heuristic. The specific lists of algorithms chosen for each thread are detailed in
Sect. 6.1.

4.2 Local Search and Neighborhoods

Since the problem is quite similar to a GAP (Yagiura et al. 1998), we used the best known
moves for the GAP for neighborhood exploration, namely: Shift, Swap and Ejection Chain.

Shift Consider a process p, assigned to a machine m. A Shift moves p from m to some other
machine m′ if no constraint is violated.

Swap Consider two processes p and p′ assigned to machinesm andm′ respectively. A Swap
exchanges their assignment (if no constraint is violated) i.e. p on m′ and p′ on m.

Ejection Chain (Yagiura et al. 2004a, 2006) Figure 2 shows the Ejection Chainmechanism:
choose a process p1 assigned to a machine m1 and look for the “best” machine mB on
which p1 can be assigned. The “best” machine is the one that minimizes the cost when p1
is moved from m1 to mB . Then process p1 is removed from m1 and its destination machine
will be identified at the end of the Ejection Chain. Now find a second process p2 that can
be moved from its machine m2 to machine m1. Then find a third process and so on, until
a machine mi gives a process pi . We stop this procedure at mi if no more machine has
an interesting candidate or when the maximum length of the ejection chain (which is an
adjustable parameter), is reached. At the end of this chain process p1 may be inserted onmB

or on mi depending on the best move.

123

Ann Oper Res

Table 1 Cost improvement over
computation time ratio for
various local search heuristics
when using the greedy heuristic

Best ratios are in bold

Inst.\algo Swap-FI Swap-BI Shift-FI Shift-BI

B2 0 0 0 0

B4 5.8 × 104 5.8 × 104 9.8 × 105 9.8 × 105

B6 0 0 0 0

B7 7.3 × 107 1.5 × 106 1.8 × 108 3.4 × 106

B9 1.2 × 103 1.2 × 103 1.7 × 104 1.7 × 104

B10 3.2 × 107 4.4 × 105 1.1 × 108 1.4 × 106

Local search heuristics According to the policy of acceptance/selection of a new solution
(to replace the incumbent) we used the following local search algorithms: first improvement
by a shift move denoted by Shift-FI, best improvement by a shift move denoted by Shift-BI,
first improvement by a swap move denoted by Swap-FI and Swap-BI the best improvement
by a swap move.

For Ejection Chain, we use the first improvement acceptance policy only.

4.3 Greedy heuristic

The following greedy heuristic (see Romeijn and Morales 2000 for a similar approach) is
performed in order to build an alternate feasible initial solution quite far from the initial
assignment M0 provided with the data set.

First, we partition the services in two classes: the core services are the services submitted
to precedence constraints, and the out-of-core services are independent services without such
constraints.

Then the processes of the out-of-core services are simply removed fromM0. Thus, we get a
partial solution based only on the core services and obviously with less resource consumption
than the initial solution.

On this partial (core) solution Shift and Swap moves are applied to improve the (partial)
cost function (Ejection chain has not been considered as it typically takes more than 1min
to find an improvement). In practice, we only apply Shift-FI on the core for the following
reasons:

– During our experiments, Shift-FI leads to the best ratio of cost improvement over com-
putation time (see Table 1, instances B1, B3, B5 and B8 are not represented because they
have transient usage constraints). The ratio is 0 for instances B2 and B6 because the
initial solution is already a local minimum (for the core) with respect to those two types
of move. More details on instances are given in Sect. 6.

– Searching some neighborhoods can be time-consuming and must be avoided (Shift is the
only one that has linear time complexity according to |P|).

– Combining several neighborhoods on the core provides a low gain on the core after
applying thefirst neighborhood, andmaynot enable to re-insert all the previously removed
processes (too many changes on the core).

In the end, if all the previously removed processes of the out-of-core services are re-
inserted, then we obtain a new initial solution for the next step with a lower cost. During
the re-insertion step, the algorithm first checks how many machines each process can be
assigned to. If there are processes that can be assigned to one machine only (sometimes the
original machine) the process is assigned first to prevent infeasibility. Once a process has

123

Ann Oper Res

been assigned, the data is updated and the algorithm checks again if there exists a process with
only one possible insertion point. The procedure goes on until all the remaining processes
can be assigned to several machines.

Then for each process p, a function weight[p], summing resource consumptions nor-
malized by the residual capacity of each machine, is computed. Processes are iteratively
assigned, in decreasing order of weight (as low-weight processes are easier to place later),
to a machine that maximizes cost improvement. The algorithm avoids infeasibility checks
whenever it can.

This greedy heuristic is summarized in Algorithm 2. It only runs for instances with no
transient usage constraints since experiments showed it was generally difficult to reconstruct
a feasible solution otherwise.

Algorithm 2: Greedy Heuristic
input : Initial assignment of processes to machines; core ←set of all the processes; out-of-core ← ∅
output: New assignment of processes to machines

if no transient usage constraints then
foreach p ∈ core do

m ← M0(p) ;
if no precedence relation then

out-of-core ← out-of-core ∪ {p} ;
core ← core \ {p} ;

Apply shift moves to the processes of the core ;
foreach p ∈ out-of-core do

weight [p] ← 0 ;
foreach m ∈ M do

foreach r ∈ R do
weight [p] ←weight [p] + Rpr / Cmr ;

Label all the processes in out-of-core according to an ascending sort of the weights ;
foreach p ∈ out-of-core do

BestMachine ← ∅ ;
MaxGain ← 0 ;
foreach m ∈ M do

if p can be assigned to m then
gain ← gain associated to assigning p to m ;
if gain > MaxGain then

MaxGain ←gain ;
BestMachine ← m ;

Assign p to BestMachine ;

4.4 Adaptive Variable Neighborhood Search

The neighborhoods described in Sect. 4.2 are indexed by i below. The AVNS procedure
dynamically changes the current neighborhood (Ropke and Pisinger 2006; Pisinger and
Ropke 2007). A learning mechanism is used for choosing the next neighborhood. It is based
on a scoring function of the neighborhood. More precisely, we use a roulette wheel selec-
tion where the score score[i] of neighborhood i equals one initially, and then is updated as
score[i] ← (1 − r)score[i] + r p[i]

θ [i] , where p[i] is the number of times i has improved the
solution, θ [i] counts the number of times i has been used, and r ∈ [0, 1] is a tuning parameter.

123

Ann Oper Res

According to the size and/or the structure of the instance (e.g. |M | ≥ 10,000 and/or
|P| ≥ 100,000), we may decide before starting the exploration of the neighborhood by
the AVNS algorithm, that some types of moves (typically the Ejection Chain) have to be
excluded from the set of possible moves.

The AVNS procedure is described in Algorithm 3.

Algorithm 3: Adaptive Variable Neighborhood Search

input : Initial assignment of processes to machines; NH: set of neighborhoods (Local Search)
output: New assignment of processes to machines

foreach i ∈ NH do
score[i] ← 1 ; p[i] ← 1 ; θ [i] ← 1 ;

while time remains do
foreach i ∈ NH do

score[i] ← score[i](1 − r) + r p[i]
θ[i] ;

current ← 0 ;
foreach i ∈ NH do

interval [i] ← [
current, current + score[i]] ;

current ← current +w[i] ;
MaxFitness ← current ;
Choose randomly rand ∈ [0,MaxFitness] ;
Select i ∈ NH s.t. rand ∈ interval [i] and i is not the previous neighborhood used
θ [i] + + ;
Apply neighborhood i ;
gain ←gain associated to applying neighborhood i ;
if gain > 0 then

p[i] + + ;

4.5 Simulated Annealing based Hyper-Heuristic (SAHH)

The proposed selection Hyper-Heuristic framework, called Simulated Annealing based
Hyper-Heuristic (SAHH), alternates between two Hyper-Heuristic Selection Strategies
(HHSS). A HHSS is defined as a combination of a heuristic selection method and an accep-
tance method. Indeed, as shown in Bilgin et al. (2006) the computational results might
be improved by combining different heuristic selection methods with different acceptance
methods. The proposed SAHH framework moves from one HHSS to the other based on the
following simple greedy criteria: if a HHSS does not improve the best solution found so
far during t f rozen seconds, it ends and the other one starts. Following the classification of
Burke et al. (2013), the first HHSS (hereafter referred as Temperature Descent) uses a simple
random method to select a heuristic among a set of available heuristics, and accepts new
solutions according to the Simulated Annealing function (Kirkpatrick et al. 1983), that allow
to accept some non-improving solutions with probabilities depending on their scores. Vari-
ants of Simulated Annealing are useful as move acceptance components in hyper-heuristics
as shown in Bai and Kendall (2005), Dowsland et al. (2007), Bai et al. (2012).

In what follows, we use SR for Simple Random, and SA for Simulated Annealing with
reheating, based on the definition in Burke et al. (2012).

The second HHSS (FastMinimum) performs the selection according to a history-based
choice function and always rejects non-improving solutions. The proposed framework is
related to the one described in Kalender et al. (2013), which can be seen as a mix of

123

Ann Oper Res

those two strategies, where a history-based choice function selects the heuristic and where
non-improving solutions can be accepted with time-decreasing probabilities. In the next
paragraphs we detail the HHSS used by SAHH.

InitialTemperature() The HHSS called Temperature Descent makes use of a temperature to
compute the probability of accepting a non-improving move. This temperature decreases
with time, following a predefined function, but its initial value comes as a parameter to the
algorithm and should be fitted to the instance: if it is two low, the algorithm will reject all non
improving solutions; two high and it will spend most of its time wandering regardless of the
solution costs. We used the following heuristic to compute the initial temperature: during the
first time interval tini t , we randomly try at mostN f eas feasible moves (Shift or Swap) starting
from the initial solution and we store the absolute value of the gain for each move. We then
choose the initial temperature T0 as the median of these stored values, which approximately
leads to an initial acceptance rate of 50% of non-improving moves in TemperatureDescent().

TemperatureDescent (T0) ThisHHSS iteratively calculates a new temperature T as a function
fT (T0, tr , tdescent), of the initial temperature T0, the remaining computational time for this
descent tr and the time allocated to the descent tdescent . Experimentally the following function

(
tr

tdescent

)2

T0

has been used.
Then a move is chosen randomly among the implemented ones (i.e. Shift and Swap),

leading to a candidate configuration Rnew. If no feasible move has been identified during a
time period tlookup , then this function stops. Otherwise, it decides whether it accepts the new
configuration Rnew or stays on the previous one Rold: Rnew is accepted if its cost is lower, or

else with a probability p = exp
(
cost(Rold)−cost(Rnew)

T

)
(where T is the temperature computed

before). If no move has been accepted during t f rozen seconds, then this HHSS stops and the
second one executes. Otherwise, it lasts at most tdescent seconds.

Figures 3 and 4 show two runs of TemperatureDescent() repeated 10 times, respectively
on data sets B4 and B10 of the Challenge (see parameter settings in Sect. 6.1). ‘+’ points
represent the temperature (left Y-axis), ‘x’ points represent the cost of the current config-
uration (right Y-axis). Note that on data set B4, the value of the current solution quickly
falls in local minimum and that whenever the temperature starts over from T0, it gives the
function a chance to look at other regions of the search space. Nevertheless, when applied on
instances such as data setB10, the SAmove acceptance criteria slows down the decrease of the
cost.

Therefore the following second HHSS is designed to cope with such instances.

FastMinimum() The learning mechanism for selecting a move is designed as follows. The
HHSS keeps an average ratio of cost gain over time spent for past ten moves, according to
the category of moves (Shift or Swap). The category with the best ratio is first chosen for the
next move. Then, the candidate move is selected randomly in this category. If it improves
the current solution, it gets accepted; otherwise, it is rejected and in any case the ratio is
updated. If the current solution has not been improved during a time interval t f rozen , the
HHSS stops and the TemperatureDescent HHSS starts. Otherwise it goes on until the global
computational time is elapsed.

The SAHH overall framework is described by the pseudo-code given in Algorithm 4.

123

Ann Oper Res

Fig. 3 TemperatureDescent() iterated on B4

Fig. 4 TemperatureDescent() iterated on B10

5 Implementation details

5.1 Communication restriction

Two threads are used to run on the two cores of the reference computer. In order to achieve
maximum benefit of these two threads, the code was designed with the aim of limiting
communication and synchronizations between the threads.

123

Ann Oper Res

Algorithm 4: SAHH algorithm
T0 ← InitialTemperature() ;
while time remains do

(BestCost,Sol) ←current best solution over both threads;
FastMinimum(Sol)1 ; // during tdescent Sect. or if no improvement during t f rozen ,
if BestCost has not been improved then

TemperatureDescent(T0 , Sol)1 ; // during tdescent or if no improvement during t f rozen ,

1 FastMinimum and TemperatureDescent start from Sol

Only one shared variable must be accessed in mutual exclusion: the one which is used to
store the current best solution found by the threads. This variable is updated most often by
the SAHH executed on the second thread. To avoid excessive communication (that is time
consuming), in SAHH the frequency of updates is controlled by excluding exchanges during
at least t f rozen seconds.

The first thread updates this variable onmajor improvements only, andwhen the remaining
delay is becoming too short.

All the rest of the data is private to each thread and bound to it, or accessed in read-only
mode during the parallel execution.

5.2 Compact implementation of a partition of an integer set

For the purpose of the Challenge, the specification of the underlying hardware system states
that available memory is limited to 4GB. To this end, all data structures are designed to be
compact and to allow fast access during execution of the optimization algorithm.

Intermediate solutions are stored during the search. A solution is specified by a partition
of the set of processes into subsets of processes on each machine. A naive implementation
of this partition of processes may be highly memory consuming. For example, using an
assignment matrix of size |M | × |P| would use a lot of memory and induce a high running
time to extract the subset of processes assigned to some machine for large values of |P|.

A second naive implementation could use a linked list for each subset of processes that are
assigned to a givenmachine. Linked list implementation ismore compact than the assignment
matrix since it uses only |P| nodes in total. However, such an implementation would slow
down the processor because of a very high cache miss rate (since nodes are not allocated
contiguously in the memory).

Moreover, creating a new solution starting from some current solution involves allocating
and then copying the current solution. This duplication will be highly time-consuming for
both aforementioned naive implementations.

Our implementation of the partition of processes is also based on a linked list to store the
subset of processes assigned to a given machine. But in FMR, all these lists are stored in one
vector of size |P|. On top of that, we use a second vector of size |M | to keep track of the
entry point of each linked list.

In Fig. 5 we show a small example with 4 machines and 6 processes. In this exam-
ple, processes {5, 0, 2} are assigned to machine 0, no processes are assigned to machine 1,
processes {1, 3} are assigned to machine 2 and process 4 is assigned to machine 3. Notation
−1 represents the end of the list.

Our linked list is more compact than classical linked list implementations: we use vectors
of short int (size 2 Bytes) instead of pointers (size 8 bytes on a 64 bits system).When our data
structure that partitions processes needs to be duplicated, less time is needed for memory

123

Ann Oper Res

Fig. 5 Example of a compact
implementation of a partition of a
set

allocation and copy. As memory allocation is contiguous (there are 2 vectors), the cache hit
rate is highly improved: when the data structure is used at run-time, we achieve better spatial
locality in the cache.

6 Numerical results

6.1 Parameter settings

The different values of the parameters used in our FMR algorithm are the following ones:

– Parameter for the roulette wheel selection of the AVNS (Sect. 4.4): r = 0.2
– Parameters for the simulated annealing (Sect. 4.5):

– Time for finding the initial temperature: tini t = 30 s
– Maximal number of moves to find the initial temperature: N f eas = 10,000
– Time for each temperature descent: tdescent = 60 s
– Time for finding a feasible move: tlookup = 5 s
– Time for accepting a move: t f rozen = 10 s

All the experiments were run on a computer with an Intel Core i7-2600 CPU at 3.40GHz.
We have arbitrarily chosen the default random seed to be 16. The list of algorithms on Thread
1 AlgoList1 is (Greedy, Shift, EjectionChain, AVNS) and AlgoList2 is (ExtendedBestShift,
EjectionChain, SAHH) for Thread 2.

6.2 Problem sizes for MRP

In the Challenge, set sizes are limited to the following maximum values:

– Number of machines |M | = 5000
– Number of resources |R| = 20
– Number of processes |P| = 50,000
– Number of services (of cardinality >1) |S ′| = 5000 (S ′ ⊂ S).
– Number of neighborhoods |N | = 1000
– Number of dependencies |D | = 5000
– Number of locations |L | = 1000
– Number of balance costs |B| = 10

All other integers are indices or 32-bits unsigned integers. As usual in the ROADEF/EURO
Challenge, three data sets have been provided:

– Data set A: |P| is limited to 1000. This small data set is public and is used during the
qualification phase;

– Data set B: |P| varies from 5000 to 50,000. This medium/large data set is public and is
used to evaluate proposed solvers;

123

Ann Oper Res

Ta
bl

e
2

In
st
an
ce
s
B

In
st
an
ce

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

|P
|

50
00

50
00

20
,0
00

20
,0
00

40
,0
00

40
,0
00

40
,0
00

50
,0
00

50
,0
00

50
,0
00

|M
|

10
0

10
0

10
0

50
0

10
0

20
0

40
00

10
0

10
00

50
00

|R
|

12
12

6
6

6
6

6
3

3
3

|T
|

4
0

2
0

2
0

0
1

0
0

|L
|

10
10

10
50

10
50

50
10

10
0

10
0

|S
|

25
12

24
62

15
,0
25

17
32

35
,0
82

14
,6
80

15
,0
50

45
,0
30

46
09

48
96

#D
S

44
12

36
17

16
,5
60

40
,4
85

14
,5
15

42
,0
81

43
,8
73

15
,1
45

43
,4
37

47
,2
60

Sc
or
es

%
To

ta
l

Fi
rs
t

0.
41

0.
00

0.
01

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
43

O
ur

7.
32

0.
04

0.
08

0.
00

0.
00

0.
00

0.
12

0.
21

0.
06

0.
01

7.
85

L
as
t

2.
27

8.
57

6.
92

14
.0
4

7.
85

5.
33

41
.0
4

6.
60

23
.2
4

43
.0
6

15
8.
92

123

Ann Oper Res

Ta
bl

e
3

In
st
an
ce
s
X

In
st
an
ce

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

|P
|

50
00

50
00

20
,0
00

20
,0
00

40
,0
00

40
,0
00

40
,0
00

50
,0
00

50
,0
00

50
,0
00

|M
|

10
0

10
0

10
0

50
0

10
0

20
0

40
00

10
0

10
00

50
00

|R
|

12
12

6
6

6
6

6
3

3
3

|T
|

4
0

2
0

2
0

0
1

0
0

|L
|

10
10

10
50

10
50

50
10

10
0

10
0

|S
|

25
29

24
84

14
,9
28

11
90

34
,8
72

14
,5
04

15
,2
73

44
,9
50

48
71

46
15

#D
S

41
64

37
42

15
,2
01

38
,1
21

20
,5
60

39
,8
90

43
,7
26

12
,1
50

45
,4
57

47
,7
68

Sc
or
es

%
To

ta
l

Fi
rs
t

0.
00

0.
02

0.
00

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
03

O
ur

4.
65

0.
25

0.
08

0.
00

0.
00

0.
00

0.
29

0.
00

0.
02

0.
01

5.
31

L
as
t

1.
84

10
.5
3

4.
86

15
.7
8

10
.5
8

5.
44

43
.7
1

21
.7
7

21
.1
7

41
.6
1

17
7.
28

123

Ann Oper Res

Table 4 Comparison between
independent versus cooperative
threads

Inst. Indep
#best (/20)

Coop
#best (/20)

Mean indep
%gap to best

Mean coop
%gap to best

B1 4 2 14.735 14.721

B2 10 10 0.116 0.113

B3 13 6 4.040 4.366

B4 2 17 0.001 0.001

B5 3 16 0.462 0.027

B6 11 9 0.000 0.000

B7 0 2 0.092 0.092

B8 0 16 2.367 2.365

B9 6 9 0.075 0.074

B10 7 13 0.001 0.001

X1 2 0 11.056 11.056

X2 4 16 1.386 1.308

X3 11 8 1526.252 1492.612

X4 2 16 0.001 0.001

X5 6 14 334.953 211.005

X6 6 12 0.000 0.000

X7 0 20 0.255 0.254

X8 8 12 186.258 178.847

X9 9 9 0.008 0.008

X10 10 9 0.000 0.000

Sum 114 216

– Data set X: |P| varies from 5000 to 50,000. This medium/large data set is private and is
used to evaluate proposed solvers.

The score of a team for an instance is computed as the sum of normalized differences
between the final objective function obtained and the best among all participants.3

6.3 Numerical results on instances B et X for MRP

Tables 2 and 3 show details on instances used for the Challenge. For instances B and X, the
number of neighborhoods is always equal to 5 and the number of services containing at least
two processes (|S ′|) is 1000, except for B1, B2 and X1 and X2 (which are at 500). #DS
stands for the total number of dependencies among services. “First” stands for the results of
the best team. “Last” stands for the results of the last team among all those that were able to
complete the Challenge.

Note that our score is very close to the results of the best team except for two instances:
B1 and X1.

We also tried to increase the computing time to 30min (with amaximum length of ejection
chain extended to fifty), and we then improved four of the best known results.

3 For more detailed results and information see http://challenge.roadef.org/2012/en/results.php.

123

http://challenge.roadef.org/2012/en/results.php

Ann Oper Res

Table 5 MRGAP instances C

|P| |M | |R| lb TS-CS FMR TS-WCSP CPLEX

100 5 1 1931 1931 1970 1933 1931

100 5 2 1933 1933 1995 1933 1933

100 5 4 1943 1943 1953 1944 1943

100 5 8 1950 1950 1989 1956 1950

100 10 1 1402 1402 1478 1402 1402

100 10 2 1409 1409 1425 1411 1409

100 10 4 1419 1419 1464 1419 1419

100 10 8 1435 1436 1503 1435 1435

100 20 1 1243 1245 1243 1245 1243

100 20 2 1250 1251 1252 1253 1250

100 20 4 1254 1257 1255 1258 1254

100 20 8 1267 1269 1268 1267 1272

200 5 1 3456 3456 3492 3460 3456

200 5 2 3461 3461 3500 3462 3461

200 5 4 3466 3466 3504 3469 3466

200 5 8 3473 3473 3532 3478 3474

200 10 1 2806 2807 2923 2811 2806

200 10 2 2811 2812 2866 2812 2812

200 10 4 2819 2821 2935 2823 2819

200 10 8 2833 2837 2929 2842 2842

200 20 1 2391 2393 2412 2394 2391

200 20 2 2397 2398 2412 2403 2398

200 20 4 2408 2409 2422 2415 2415

200 20 8 2415 2422 2428 2423 2419

For the Challenge, 82 teams registered and the organizers decided to set the qualification
threshold to the best 30 teams selected on A instances. Our team was ranked 14 among 30 in
the qualifying stage. The final ranking was computed on a score based on instances B and X
and our team was ranked among the top 20 teams. Note that the gap between our results and
the best team is mainly due to some under-performance for one of the 10 instances, both for
B and X instances (B1, X1).

For 18 out of the 20 instances, the difference is very small: the total gap of 5.31 for X is
mainly due to one gap of 4.65 for instance X1 (average gap=0.07 for the 9 other X instances
vs. 0.003 for the Best average over 10), and the total gap of 7.85 for B is mainly due to one
gap of 7.32 for instance B1 (average gap=0.06 for the 9 other X instances vs. 0.04 for the
best average over 10).

When instances become bigger and more complex to solve, our results become more
competitive. Our approach seems to be robust on the variability of the input instances since
we did not tune our code on the Challenge instances. This allows our approach to be effective
also onMRGAP as shown in Sect. 6.5. Before reporting results on the MRGAP, we conclude
on the Challenge problem by comparing our cooperative approach to running AVNS and
SAHH independently on the two threads without sharing solutions.

123

Ann Oper Res

Table 6 MRGAP instances D

|P| |M | |R| lb TS-CS FMR TS-WCSP CPLEX

100 5 1 6353 6357 6620 6370 6358

100 5 2 6352 6359 6471 6380 6360

100 5 4 6362 6379 6524 6404 6386

100 5 8 6388 6425 6613 6500 6428

100 10 1 6342 6361 6415 6418 6381

100 10 2 6340 6378 6453 6411 6419

100 10 4 6361 6430 6476 6516 6468

100 10 8 6388 6478 6533 6679 6528

100 20 1 6177 6231 6289 6305 6280

100 20 2 6165 6261 6302 6389 6316

100 20 4 6182 6321 6339 6529 6406

100 20 8 6206 6482 6440 6736 6588

200 5 1 12,741 12,751 12,951 12,760 12,750

200 5 2 12,751 12,766 13,061 12,778 12,766

200 5 4 12,745 12,775 13,027 12,799 12,762

200 5 8 12,755 12,805 12,862 12,844 12,787

200 10 1 12,426 12,463 12,592 12,478 12,457

200 10 2 12,431 12,477 12,614 12,533 12,482

200 10 4 12,432 12,496 12,640 12,586 12,532

200 10 8 12,448 12,571 12,667 12,812 12,577

200 20 1 12,230 12,312 12,466 12,409 12,393

200 20 2 12,227 12,332 12,491 12,442 12,425

200 20 4 12,237 12,396 12,539 12,605 12,472

200 20 8 12,254 12,485 12,578 12,918 12,548

6.4 Comparison of independent versus cooperative scheme

We compared experimentally the results of independent threads, taking the best solution
of AVNS and SAHH only when the time is elapsed, versus our cooperative scheme. Each
instance B and X have been run 20 times with different seeds.

The result is given in Table 4. In some cases the two approaches give the same result,
which explains why the sum of the number of times the independent scheme is better (“Indep
#best”) and the number of times the cooperative scheme is better (“Coop #best”) is not equal
to 20. The “Mean indep (or coop) %gap to best” is computed as follows: for each of the 20
runs, calculate the difference between the independent (resp. cooperative) solution value and
the Challenge best known value, divided by this best known value, and compute the mean of
these 20 ratios.

We can see that the cooperative scheme globally outperforms the independent one. More
precisely, the cooperative scheme finds a strictly better solution for 54% of the cases (216
over 400 runs of the B and X instances) versus 28.5% for the independent scheme. Also, the
mean gap to the best known value is strictly better for the cooperative scheme for 10 of the 20
instances B and X, and equal for 9 of them. It is significantly better for 4 instances, whereas

123

Ann Oper Res

Table 7 MRGAP instances E

|P| |M | |R| lb TS-CS FMR TS-WCSP CPLEX

100 5 1 12,681 12,681 12,716 12,753 12,681

100 5 2 12,692 12,692 12,756 12,727 12,692

100 5 4 12,810 12,812 12,934 12,893 12,810

100 5 8 12,738 12,738 12,765 12,876 12,749

100 10 1 11,577 11,577 11,656 11,712 11,584

100 10 2 11,582 11,587 11,675 11,665 11,612

100 10 4 11,636 11,676 11,759 11,864 11,753

100 10 8 11,619 11,701 11,765 11,836 11,739

100 20 1 8436 8447 8543 8655 8565

100 20 2 10,123 10,150 10,298 10,471 10,251

100 20 4 10,794 11,029 11,135 11,271 11,443

100 20 8 11,224 11,610 11,847 11,957 12,458

200 5 1 24,930 24,933 24,966 25,002 24,930

200 5 2 24,933 24,936 25,048 25,024 24,933

200 5 4 24,990 24,999 25,110 25,091 25,003

200 5 8 24,943 24,950 25,061 25,090 24,943

200 10 1 23,307 23,312 23,351 23,414 23,321

200 10 2 23,310 23,317 23,391 23,538 23,325

200 10 4 23,344 23,363 23,412 23,628 23,543

200 10 8 23,339 23,412 23,554 23,714 23,744

200 20 1 22,379 22,386 22,510 22,815 22,457

200 20 2 22,387 22408 22,477 22,834 22,558

200 20 4 22,395 22,439 22,574 22,990 22,782

200 20 8 22,476 22,614 22,931 23,057 23,482

the independent scheme is strictly better for only one instance (B3). As mentionned in the
introduction, these results confirm the benefits of cooperation on this particular problem.

6.5 Numerical results on the MRGAP

We have chosen to compare our code to the one of Yagiura et al. (2004b), one of the best
known algorithms for the MRGAP problem, even if FMR was not specifically designed for
this problem. So we adapted our code at a minimum for the MRGAP problem and tried it
over C, D and E instances.4 We would like to thank Prof Yagiura who kindly supplied us
with initial solutions as well priv. comm.. These initial solutions were output by their simpler
and modified version of their algorithm “TS-CS”, named “TS-noCS” (that can be found
in Yagiura et al. 2004b).

In the results presented in Tables 5, 6 and 7, TS-CS stands for Tabu Search with Chained
Shift neighborhood. TS-WCSP stands for a general solver for the Weighted Constraint Sat-
isfaction Problem (see Nonobe and Ibaraki 2001). The results show that globally our code
seems to be competitive with TS-WCSP and CPLEX as soon as instances become harder.

4 See http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/mrgap.

123

http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/mrgap

Ann Oper Res

Since our code is really not specific for MRGAP, we think it is able to be a good start for
other Generalized Assignment-like problems.

7 Conclusion

We have presented in this paper our contribution to the Challenge Roadef 2012 on Machine
Reassignment. Our FMR method provides solution values that are very close to those of
the Challenge winner on almost all instances. Moreover, the same code with just a few
modifications performs well on a high proportion of instances of the MRGAP problem,
although it was not designed for this problem. Experimental results show that FMR is quite
robust and behaves better when instances become harder. Let us point out that, in spite of
strong operational Challenge constraints (time limitation, specific computer) having a real
impact on our algorithm, several ideas developed here can actually be used in a more general
context. In particular, the heuristics cooperation and communications issues are core to our
approach.

As noticed before, the time limitation given by the Challenge prevents us from using
directly mathematical programming here. Nevertheless, the latter approach could be used to
give some guidance on which regions are the most promising in the (huge) space of solutions.
This may be done by considering a simplified model or a relaxation that would provide some
structural information about good solutions.

Acknowledgments The authors wish to thank the two anonymous reviewers for fruitful suggestions which
help improve a previous version of this paper.

References

Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., & McCollum, B. (2012). A simulated annealing hyper-
heuristic methodology for flexible decision support. 4OR: A Quarterly Journal of Operations Research,
10(1), 43–66.

Bai, R., & Kendall, G. (2005). An investigation of automated planograms using a simulated annealing based
hyper-heuristic. In T. Ibaraki, K. Nonobe &M. Yagiura (Eds.),Metaheuristics: Progress as real problem
solvers (pp. 87–108). New York: Springer.

Bilgin, B., Özcan, E., & Korkmaz, E. E. (2006). An experimental study on hyper-heuristics and exam
timetabling. In Practice and theory of automated timetabling VI, 6th international conference, PATAT,
Brno, Czech Republic, Revised selected papers (pp. 394–412). doi:10.1007/978-3-540-77345-0_25.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., et al. (2013). Hyper-heuristics: A
survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695–1724.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R. (2010). A classification of
hyper-heuristic approaches. In M. Gendreau & J. -Y. Potvin (Eds.), Handbook of metaheuristics (pp.
449–468). New York: Springer.

Burke, E. K., Kendall, G., Misir, M., & Özcan, E. (2012). Monte carlo hyper-heuristics for examination
timetabling. Annals of Operations Research, 196(1), 73–90.

Caprara, A., & Toth, P. (2001). Lower bounds and algorithms for the 2-dimensional vector packing problem.
Discrete Applied Mathematics, 111(3), 231–262.

Cattrysse, D. G., & Van Wassenhove, L. N. (1992). A survey of algorithms for the generalized assignment
problem. European Journal of Operational Research, 60(3), 260–272.

Chen,Y., Das, A., Qin,W., Sivasubramaniam,A.,Wang,Q.,&Gautam,N. (2005).Managing server energy and
operational costs in hosting centers. InProceedings of the ACM international conference onmeasurement
and modeling of computer systems (SIGMETRICS) (pp. 303–314). doi:10.1145/1064212.1064253.

Chung, F. R., Garey, M. R., & Johnson, D. S. (1982). On packing two-dimensional bins. SIAM Journal on
Algebraic Discrete Methods, 3(1), 66–76. doi:10.1137/0603007.

123

http://dx.doi.org/10.1007/978-3-540-77345-0_25
http://dx.doi.org/10.1145/1064212.1064253
http://dx.doi.org/10.1137/0603007

Ann Oper Res

Cowling, P., Kendall, G., & Soubeiga, E. (2001). A hyperheuristic approach to scheduling a sales summit. In
E. K. Burke & W. Erben (Eds.), Practice and theory of automated timetabling III (pp. 176–190). New
York: Springer.

Crainic, T. G., & Gendreau, M. (2002). Cooperative parallel tabu search for capacitated network design.
Journal of Heuristics, 8(6), 601–627.

Crainic, T.G., Gendreau,M.,Hansen, P.,&Mladenović, N. (2004). Cooperative parallel variable neighborhood
search for the p-median. Journal of Heuristics, 10(3), 293–314.

Dowsland, K. A., Soubeiga, E., & Burke, E. K. (2007). A simulated annealing based hyperheuristic for
determining shipper sizes for storage and transportation. European Journal of Operational Research,
179(3), 759–774. doi:10.1016/j.ejor.2005.03.058.

Gavish, B., & Pirkul, H. (1991). Algorithms for the multi-resource generalized assignment problem.Manage-
ment Science, 37(6), 695–713. doi:10.1287/mnsc.37.6.695.

Han,B. T.,Diehr,G.,&Cook, J. S. (1994).Multiple-type, two-dimensional bin packing problems:Applications
and algorithms. Annals of Operations Research, 50(1), 239–261. doi:10.1007/BF02085642.

Hochbaum, D. S. (1996). Approximation algorithms for NP-hard problems. Boston, MA: PWS Publishing.
James, T., Rego, C., & Glover, F. (2009). A cooperative parallel tabu search algorithm for the quadratic

assignment problem. European Journal of Operational Research, 195(3), 810–826.
Kalender, M., Kheiri, A., Özcan, E., & Burke, E. K. (2013). A greedy gradient-simulated annealing hyper-

heuristic. Soft Computing, 17(12), 2279–2292.
Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. New York: Springer.
Kirkpatrick, S.,Gelatt,C.D.,&Vecchi,M.P. (1983).Optimizationby simulated annealing.Science,220(4598),

671–680.
Le Bouthillier, A., & Crainic, T. G. (2005). A cooperative parallel meta-heuristic for the vehicle routing

problem with time windows. Computers & Operations Research, 32(7), 1685–1708. doi:10.1016/j.cor.
2003.11.023.

Lehre, P., & Özcan, E. (2013). A runtime analysis of simple hyper-heuristics: To mix or not to mix operators.
In Proceedings of the 12th ACM workshop on foundations of genetic algorithms (pp. 97–104).

Lodi, A.,Martello, S., &Monaci,M. (2002). Two-dimensional packing problems: A survey.European Journal
of Operational Research, 141(2), 241–252. doi:10.1016/S0377-2217(02)00123-6.

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing problem. Operations
Research, 48(2), 256–267. doi:10.1287/opre.48.2.256.12386.

Maruyama, K., Chang, S., & Tang, D. (1977). A general packing algorithm for multidimensional resource
requirements. International Journal of Computer & Information Sciences, 6(2), 131–149. doi:10.1007/
BF00999302.

Miyazawa, F. K., &Wakabayashi, Y. (2007). Two- and three-dimensional parametric packing. Computers and
Operations Research, 34, 2589–2603. doi:10.1016/j.cor.2005.10.001.

Nonobe, K., & Ibaraki, T. (2001). An improved tabu search method for the weighted constraint satisfaction
problem. INFOR: Information Systems and Operational Research, 39, 131–151.

Ouelhadj, D., & Petrovic, S. (2008). A cooperative distributed hyper-heuristic framework for scheduling. In
IEEE international conference on systems, man and cybernetics (SMC) (pp. 2560–2565). IEEE.

Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational
Research, 176(2), 774–793. doi:10.1016/j.ejor.2005.09.014.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & Operations
Research, 34(8), 2403–2435.

Puchinger, J., & Raidl, G. R. (2007). Models and algorithms for three-stage two-dimensional bin packing.
European Journal of Operational Research, 183(3), 1304–1327. doi:10.1016/j.ejor.2005.11.064.

Rattadilok, P., Gaw, A., & Kwan, R. (2005). Distributed choice function hyper-heuristics for timetabling and
scheduling. In E. Burke &M. Trick (Eds.), Practice and theory of automated timetabling V, Lecture notes
in computer science (Vol. 3616, pp. 51–67). Berlin, Heidelberg: Springer. doi:10.1007/11593577_4.

Romeijn, H. E., &Morales, D. R. (2000). A class of greedy algorithms for the generalized assignment problem.
Discrete Applied Mathematics, 103(13), 209–235. doi:10.1016/S0166-218X(99)00224-3.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transportation Science, 40(4), 455–472. doi:10.1287/trsc.1050.0135.

Spieksma, F. C. R. (1994). A branch-and-bound algorithm for the two-dimensional vector packing problem.
Computers & Operations Research, 21(1), 19–25. doi:10.1016/0305-0548(94)90059-0.

Vazirani, V. V. (2001). Approximation algorithms. New York: Springer.
Wood, T., Shenoy, P. J., Venkataramani, A., & Yousif, M. S. (2007). Black-box and gray-box strategies for

virtual machine migration. In Proceedings of the 4th USENIX conference on Networked systems design
and implementation (NSDI’07) (Vol. 7, pp. 229–242).

123

http://dx.doi.org/10.1016/j.ejor.2005.03.058
http://dx.doi.org/10.1287/mnsc.37.6.695
http://dx.doi.org/10.1007/BF02085642
http://dx.doi.org/10.1016/j.cor.2003.11.023
http://dx.doi.org/10.1016/j.cor.2003.11.023
http://dx.doi.org/10.1016/S0377-2217(02)00123-6
http://dx.doi.org/10.1287/opre.48.2.256.12386
http://dx.doi.org/10.1007/BF00999302
http://dx.doi.org/10.1007/BF00999302
http://dx.doi.org/10.1016/j.cor.2005.10.001
http://dx.doi.org/10.1016/j.ejor.2005.09.014
http://dx.doi.org/10.1016/j.ejor.2005.11.064
http://dx.doi.org/10.1007/11593577_4
http://dx.doi.org/10.1016/S0166-218X(99)00224-3
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/0305-0548(94)90059-0

Ann Oper Res

Yagiura, M., Ibaraki, T., & Glover, F. (2004a). An ejection chain approach for the generalized assignment
problem. INFORMS Journal on Computing, 16(2), 133–151. doi:10.1287/ijoc.1030.0036.

Yagiura,M., Ibaraki, T., &Glover, F. (2006). A path relinking approachwith ejection chains for the generalized
assignment problem. European Journal of Operational Research, 169(2), 548–569. doi:10.1016/j.ejor.
2004.08.015.

Yagiura, M., Iwasaki, S., Ibaraki, T., & Glover, F. (2004). A very large-scale neighborhood search algorithm
for the multi-resource generalized assignment problem. Discrete Optimization, 1, 87–98. doi:10.1016/j.
disopt.2004.03.005.

Yagiura, M., Yamaguchi, T., & Ibaraki, T. (1998). A variable depth search algorithm with branching search
for the generalized assignment problem.Optimization Methods and Software, 10, 419–441. doi:10.1080/
10556789808805722.

123

http://dx.doi.org/10.1287/ijoc.1030.0036
http://dx.doi.org/10.1016/j.ejor.2004.08.015
http://dx.doi.org/10.1016/j.ejor.2004.08.015
http://dx.doi.org/10.1016/j.disopt.2004.03.005
http://dx.doi.org/10.1016/j.disopt.2004.03.005
http://dx.doi.org/10.1080/10556789808805722
http://dx.doi.org/10.1080/10556789808805722

	Fast machine reassignment
	Abstract
	1 Introduction
	2 Problem description
	2.1 Decision variables
	2.2 Hard constraints
	2.2.1 Capacity constraints
	2.2.2 Conflict constraints
	2.2.3 Spread constraints
	2.2.4 Dependency constraints
	2.2.5 Transient usage constraints

	2.3 Classification of costs in the objective function
	2.3.1 Load cost
	2.3.2 Balance cost
	2.3.3 Process move cost
	2.3.4 Service move cost
	2.3.5 Machine move cost
	2.3.6 Total objective cost

	3 Mixed integer programming formulations
	3.1 MRP formulation
	3.2 MRGAP formulation

	4 The FMR method
	4.1 Cooperative Parallel Search
	4.2 Local Search and Neighborhoods
	4.3 Greedy heuristic
	4.4 Adaptive Variable Neighborhood Search
	4.5 Simulated Annealing based Hyper-Heuristic (SAHH)

	5 Implementation details
	5.1 Communication restriction
	5.2 Compact implementation of a partition of an integer set

	6 Numerical results
	6.1 Parameter settings
	6.2 Problem sizes for MRP
	6.3 Numerical results on instances B et X for MRP
	6.4 Comparison of independent versus cooperative scheme
	6.5 Numerical results on the MRGAP

	7 Conclusion
	Acknowledgments
	References

