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Abstract—We present a new model for distributed shared
memory systems, based on remote data accesses. Such
features are offered by network interface cards that allow
one-sided operations, remote direct memory access and OS
bypass. This model leads to new interpretations of distributed
algorithms allowing us to propose an innovative detection
technique of race conditions only based on logical clocks.
Indeed, the presence of (data) races in a parallel program
makes it hard to reason about and is usually considered as a
bug.

I. INTRODUCTION

The shared-memory model is a convenient model for
programming multiprocessor applications: all the pro-
cesses of a parallel application running on different
processors have access to a common area of memory.
Another possible communication model for distributed
systems is the message-passing model, in which each
process can only access its own local memory and can
send and receive message to other processes.

The message-passing model on distributed memory
requires to move data between processes to make it
available to other processes. Under the shared-memory
model, all the processes can read or write at any address
of the shared memory. The data is shared between all the
processes.

One major drawback of the shared-memory model for
practical situations is its lack of scalability. A direct imple-
mentation of shared memory consists in plugging several
processors / cores on a single motherboard, and letting
a single instance of the operating system orchestrate
the memory accesses. Recent blades for supercomputers
gather up to 32 cores per node, Network on Chip (NoC)
systems embed 80 cores on a single chip: although the
“many-core” trend increased drastically the number of
cores sharing access to a common memory bank, it is sev-
eral orders of magnitude behind current supercomputers:
in the Top 5001 list issued in November 2010, 90% of the
systems have 1K to 16K cores each.

The solution to benefit from the flexibility and con-
venience of shared memory on distributed hardware is
distributed shared memory. All the processes have access
to a global address space, which is distributed over the
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processes. The memory of each process is made of two
parts: its private memory and its public memory. The
private memory area can be accessed from this process
only. The public memory area can be accessed remotely
from any other process without notice to the process that
maps this memory area physically.

The notion of global address space is a key concept
of parallel programming languages, such as UPC [1],
Titanium [2] or Co-Array Fortran [3]. The programmer
sees the global memory space as if it was actually
shared memory. The compiler translates accesses to
shared memory areas into remote memory accesses. The
run-time environment performs the data movements.
As a consequence, programming parallel applications is
much easier using a parallel language than using explicit
communications (such as MPI [4]): data movements are
determined by the compiler and handled automatically
by the run-time environment, not by the programmer
himself.

The memory consistency model followed by these lan-
guages, such as the one defined for UPC [5], does not
define a global order of execution of the operations on
the public memory area. As a consequence, a parallel pro-
gram defines a set of possible executions of the system.
The events in the system may happen in different orders
between two consecutive executions, and the result of the
computation may be different. For example, if a process
writes in an area of shared memory and another process
reads from this location. If the writer and the reader are
two different processes, the memory consistency model
does not specify any kind of control on the order in which
these two operations are performed. Regarding whether
the reader reads before or after the data is written, the
result of the writing may be different.

In this paper, we introduce a model for distributed
shared memory that represents the data movements and
accesses between processes at a low level of abstraction.
In this model, we present a mechanism for detecting race
conditions in distributed shared memory systems.

This model is motivated by Remote Direct Memory Ac-
cess capabilities of high-speed, low-latency networks used
for high-performance computing, such as the InfiniBand



standard2 or Myrinet3.
The remainder of this paper is organized as follows. In

section II, we present an overview of previous models for
distributed shared memory and how consistency and co-
herency has been handled in these models. In section III
we present our model for distributed shared memory and
how it can be related to actual systems. In section IV we
present how race conditions can be represented in this
model, and we propose an algorithm for detecting them.

II. PREVIOUS WORK

Distributed shared memory is often modeled as a large
cached memory [6]. The local memory of each node
is considered as a cache. If a process running on this
node tries to access some data, it gets it directly if the
data is located in its cache. Otherwise, a page fault is
raised and the distributed memory controller is called to
resolve the localisation of the data. Once the data has
been located (i.e., once the local process knows on which
process it is physically located and at which address in its
memory), the communication library performs a point-
to-point communication to actually transfer the data.

In [7], L. Lamport defines the notion of sequential
consistency: on each process, memory requests are issued
in the order specified by the program. However, as stated
by the author, sequential consistency is not sufficient
to guarantee correct execution of multiprocessor shared
memory programs. The requirement to ensure correct
ordering of the memory operations in such a distributed
system is that a single FIFO queue treats and schedules
memory accesses from all the processes of the system.

Maintaining the coherence of cache-based distributed
shared memory can then be considered as a cache-
coherency problem. [8] describes several distributed and
centralized memory managers, as well as how coherence
can be maintained using these memory managers.

However, in a fully distributed system (i.e., with no
central memory manager) with RDMA and OS bypass ca-
pabilities, a process can actually access another process’s
memory without help from any memory manager. In
parallel languages such as UPC [1], Titanium [2] and Co-
Array Fortran [3], data locality (i.e., which process holds
the data in its local memory) is resolved at compile-time.

The MPI-2 standard [9] defines remote memory access
operations. The MARMOT error checking tool [10] checks
correct usage of the synchronization features provided by
MPI, such as fences and windows.

III. MEMORY AND COMMUNICATION MODEL

In this section, we define a model for distributed shared
memory. This model works at a lower level than most

2http://www.infinibandta.org/
3http://www.myri.com

models described previously in the literature. It considers
inter-process communications for remote data accesses.

A. Distributed shared memory model

In many shared-memory models that have been de-
scribed in the literature [11], [12], [13], pairs of processors
communicate using registers where they read and write
data. Distributed shared memory cannot use registers
between processors because they are physically distant
from each other; like message-passing systems, they can
communicate only by using an interconnection network.

Figure 1 depicts our model of organization of the
public and private memory in a multiprocessor system.
In this model, each processor maps two distinct areas
of memory: a private memory and a public memory. The
private memory can be accessed from this processor only.

The public address space is made of the set of all the
public memories of the processors (the Global Address
Space). Processors can copy data from/to their private
memory and the public address space, regardless of data
locality.

Public memory can be accessed by any processor of
the application, in concurrent read and write mode. In
particular, no distinction is made between accesses to
public memory from a remote process and from the
process that actually maps this address space.

P0 P1 P2

Private

Address
Space

Public

Address
Space

Remote
getRemote

put

Remote
put

Figure 1: Memory organization of a three-processor distributed
shared memory system.

The compiler is in charge with data locality, i.e., putting
shared data in the public memory of processors. For in-
stance, if a data x is defined as shared by the programmer,
the compiler will decide to put it into the memory of a
processor P . Instead of accessing it using its address in
the local memory, processors use the processor’s name
and its address in the memory of this processor. This cou-
ple (pr ocessor _name, local _addr ess) is the addressing
system used in the global address space. The compiler
also makes the address resolution when the programmer
asks a processor to access this shared data x.



In addition, since NICs (Network Interface Controllers)
are in charge with memory management in the public
memory space, they can provide locks on memory areas.
These locks guarantee exclusive access on a memory area:
when a lock is taken by a process, other processes must
wait for the release of this lock before they can access the
data.

B. Communications

Processor access areas of public memory mapped by
other processors using point-to-point communications.
They use one-sided communications: the process that ini-
tiates the communication can access remote data without
any notification on the other processor’s side. Hence, a
processor A is not aware of the fact that another processor
B has accessed (i.e., read or written) in its memory.

Accessing data in another processor’s memory is called
Remote Direct Memory Access (RDMA). It can be per-
formed with no implication from the remote processor’s
operating system by specific network interface cards, such
as InfiniBand and Myrinet technologies. It must be noted
that the operating system is not aware of the modifica-
tions in its local shared memory. The SHMEM [14] library,
developed by Cray, also implements one-sided operations
on top of shared memory. As a consequence, the model
and algorithms presented in this paper can easily be
extended to shared memory systems.

RDMA provides two communication primitives: put
and get. These two operations are represented in figure 2.
They are both atomic.

P0 P1 P2

get put

Figure 2: Remote R/W memory accesses.

Put consists in writing some data into the public
memory of another processor. It involves one message,
from the source processor to the destination processor,
containing the data to be written. In figure 2, P2 writes
some data into P1’s memory.

Get consists in reading some data from another pro-
cessor’s public memory. It involves two messages: one to
request the data, from the requesting processor to the
processor that holds the data, and one to actually transfer
the data, from the processor that holds the data to the
requesting processor. In figure 2, P0 reads some data from
P1’s memory.

Communications can also be done within the public
space, when data is copied from a place that has affinity
to a process to a place that has affinity to another process.

The get operation is atomic (and therefore, blocking).
If a thread gets some data and writes it in a given place
of its public memory, no other thread can write at this
place before the get is finished. The second operation is
delayed until the end of the first one (figure 3).

P0 P1 P2

getput

Figure 3: A put operation is delayed until the end of the get
operation on the same data.

C. Race conditions

One major issue created by one-sided communications
is that several processors can access a given area of mem-
ory without any synchronization nor mutual knowledge.
For example, two processors A and B can write at the
same address in the shared memory of a third processor
C . Neither B nor C knows that A has written or is about
to write there.

Concurrent memory accesses can lead to race con-
ditions if they are performed in a totally anarchic way
(although some authors precise data race conditions, we
will use only "race conditions" throughout this paper). A
race condition is observed when the result of a computa-
tion differs between executions of this computation. Race
condition makes, at least, hard to reason about a program
and therefore is usually considered as a bug.

In the kind of systems we are considering here, a
race condition can occur when several operations are
performed by different processors on a given area of
shared memory, and at least one of these operations is a
write.

For instance, if a piece of data located in the shared
memory is initialized at a given value v0 and is accessed
concurrently by a process A that reads this data and a
process B that writes the value v1. If A reads it before
B writes, it will read the value v0. If B writes before A
reads, A will read v1.

More formally, we can consider read and write opera-
tions as events in the distributed system formed by the
set of processors and the communication channels that
interconnects them.

Two events e1 and e2 are ordered iff there exists an
happens before (as defined by [15] and denoted →)



relationship between them such that e1→e2 or e2→e1.
Race conditions are defined in [16] by the fact that there
exists no causal order between e1 and e2 (further denoted
by e1 ×e2).

IV. DETECTING RACE CONDITIONS

In this section, we present an algorithm for detecting
race conditions in parallel applications that follow the dis-
tributed shared memory model presented in section III.

A. Causal ordering of events

In section III-C, we stated that there exists a race
condition between a set of inter-process events when
there exists no causal order between these events. In prac-
tice, this definition must be refined: concurrent accesses
that do not modify the data are not problematic. Hence,
when an event occurs between two processes, we need
to determine whether it is causally ordered with the latest
write on this data.

Lamport clocks [15] keep track of the logical time on a
process; vector clocks (introduced by [17]) allow for the
partial causal ordering of events. A vector clock on a given
process contains the logical time of each other process at
the moment when the other process had an influence on
the process (i.e., last time it had a causal influence on
this process).

When the causality relationship between a set of events
that contains at least a write event cannot be estab-
lished, we can conclude that there exists a race condition
between them. More specifically, when we compare the
vector clocks that are associated with these events and
the latest write.

Lemma 1 (Mattern, Theorem 10): ∀e,e ′ ∈ E : e < e ′ iff
H(e) < H(e ′) and e ∥ e ′ iff C (e) ∥C (e ′)

Corollary 1: Consider two events denoted e1 and e2

and their respective clocks H1 and H2. If no ordering can
be determined between H1 and H2, there exists a race
condition between e1 and e2 (e1 ×e2).

In the following algorithms, we detail the put and get
commands. Algorithm 1 describes a put performed from
P0 by the library to write the content of sr c address
into process P1’s memory at address d st . Algorithm 2
describes a get performed by the library to retreive con-
tent of sr c address from process P1’s memory to process
P0’s memory at address d st . Each process associates
two clocks to areas of shared memory: a general-purpose
clock V and a write clock W that keeps track of the latest
write operation.

Figure 4 shows an example of two concurrent remote
read operations (i.e., get operations) on a variable a.
This variable is initialized at a given value A before the
remote accesses. Since none of the concurrent operations
modifies its value, this is not a race condition. As stated
in section III-C, there exists a race condition between

concurrent data accesses iff at least one access modifies
the value of the data. As a consequence, concurrent read-
only accesses must not be considered as race conditions.

P0 P1 P2

a = ? a = A a = ?

get

a = A

get

a = A

Figure 4: Two concurrent get operations

Algorithm 1: Put operation from P0 to P1

begin
lock(P0, sr c);
lock(P1,d st );
V = update_local_clock(P0, sr c);
W ′ = get_clock_W(P1, sr c);
if ¬ compare_clocks(V ,V ′)
∧¬ compare_clocks(V ′,V ) then

signal_race_condition() ;

put(P0, sr c,P1,d st );
update_clock_W(P1,d st );
update_clock(P1,d st );
unlock(P1,d st );
unlock(P0, sr c);

end

Algorithm 2: Get operation from P0 to P1

begin
lock(P0,d st );
lock(P1, sr c);
V = update_local_clock(P0,d st );
W =V V ′ = get_clock(P1, sr c);
if ¬ compare_clocks(W,V ′)
∧¬ compare_clocks(V ′,V ) then

signal_race_condition() ;

get(P1, sr c,P0,d st );
update_clock(P1, sr c);
update_clock(P0,d st );
unlock(P1,d st );
unlock(P0,d st );

end

The lock primitive takes care of mutual exclusion if the
addressed value is in public space or not. If the address is
in private space, there is no need of a real lock (except in



multithreading). The compar e_clocks(P0, a,P1,b) prim-
itive first read the vector clock V1(b) from P1’s memory
and then compare it with V0(a). The comparison is done
as described in algorithm 3.

Algorithm 3: compare_clocks algorithm

begin
return ∀n ∈ {0, . . . , N −1} : VPi <VP j ⇔

VPi [n] <VP j [n] ) ;
end

In figure 5, we present three use-cases of our algorithm:
two situations of race conditions and one when the
messages are causally ordered.

B. Clock update

The clock matrix VPi is maintained by each process Pi .
This matrix is a local view of the global time. It is initially
set to zero. Before Pi performs an event, it increments its
local logical clock VPi [i , i ] (upd ate_local _clock). Clocks
are updated by any event as follows (algorithm 4, see [18]).

Algorithm 4: max_clock algorithm

begin
∀l ,V ′[l ] = max(VPi [l ],VP j [l ]);
return V’ ;

end

The remote clock update is performed as follows:

Algorithm 5: update_clock algorithm

begin
VP j = get_clock(P j ,d st );
V ′ = max_clock(VPi ,VP j );
put_clock(P j ,d st ,V ′);

end

The update_clock_W algorithm is similar to the up-
date_clock algorithm, except that it updates the value of
the “write clock” W .

Since the shared memory area is locked, there cannot
exist a race condition between the remote memory ac-
cesses induced by the race condition detection mecha-
nism.

C. Discussion on the size of clocks

If n denotes the number of processes in the system, it
has been shown that the size of the vector clocks must be
at least n [19]. As a consequence, the size of the clocks
cannot be reduced.

D. Discussion on error signalisation

A race condition may not be fatal: some algorithms
contain race conditions on purpose. For example, par-
allel master-worker computation patterns induce a race
condition between workers when the results are sent to
the master. Therefore, race conditions must be signaled

to the user (e.g., by a message on the standard output of
the program), but they must not abort the execution of
the program.

In the algorithm presented here, we refine the error
detection by using two distinct clocks, a general-purpose
one and a “write clock”. The drawback of this approach
is that it doubles the necessary amount of memory. On
the other end, it offers more precision and eliminates
numerous cases of false positives (e.g., concurrent read-
only accesses).

V. CONCLUSION AND PERSPECTIVE

In this paper, we presented a model for distributed
shared memory. This model considers interactions be-
tween processes and causal dependencies, while taking
into account specific features from hardware used to
implement such systems.

In this model, we propose an algorithm for detecting
race conditions caused by the absence of ordering be-
tween events in the distributed system. This algorithm
can be implemented in the communication library of the
run-time support system that executes the program on a
distributed system.

A. Discussion

As stated in section IV-C, the size of the matrices cannot
be smaller than n, if n denotes the number of processes
in the system. Moreover, a clock must be used for each
shared piece of data. As a consequence, our algorithm
has an overhead on data storage space (clocks associated
with shared data) and with communication performance.
However, race condition detection is typically a debugging
technique. It does not need to be enabled on a parallel
application that is actually running at full performance
and large-scale systems. Parallel programmes are typically
debugged on small data sets and a few processes (typi-
cally, about 10 processes).

B. Future works

The model presented in this paper leads to new inter-
pretations of distributed algorithms. New operations can
also be imagined, such as non-collective, global opera-
tions: for example, a process can perform a reduction
(i.e., a global operation on some data held by all the
other processes) without any participation for the other
processes, by fetching the data remotely.

Our race condition detection algorithm can be imple-
mented at two levels: in the communication library of a
parallel language, for automatic detection of conflictual
accesses, or in the pre-compiler, as wrappers around
remote data accesses.
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tion of m1 (put) and m2 (put)

P0 P1 P2

000 000 000

get1(010)
010

010
110

m1(110)
120

130 m2(130)
131

m3(132) 132

132

(b) No race condition between m1
(get) and m3 (put)

P0 P1 P2 P3

m11000
1100

m22000

2010

m32020
2021

m4 2022

X

(c) Race condition detected between m1 (put) and
m3 (put)

Figure 5: Detecting race conditions with vector clocks
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