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Abstract—Traditional interprocess communication requires
cooperation and synchronization between sender and receiver.
The One-sided communication model is a new way and very
promising model: processes can directly read or write in the
memory of another process. In such a model, fault tolerance is
a challenging problem. In this paper, we present algorithms to
be able to do rollback-recovery based on global snapshot in a
distributed system with one-sided communications.
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I. INTRODUCTION

In high-performance computing, the number of cores in
each system has been increasing dramatically since the last
decade. In the latest Top 500 ranking released in November
2017, 499 machines feature more than 104 cores [1]. At this
scale, failures are a significant issue and cannot be ignored:
even with very reliable individual components, the Mean
Time Between Failures (MTBF) of the whole system is only
a few hours [2]. A study made on the pre-production phase
of Blue Waters showed that there was a failure every 4.2
hours, and 58.3% of these failures caused (single- or multi-
) node unavailability [3]. Hence, fault tolerance has been
identified as a key challenge for programming exa- and
petascale machines [4], [5], [6].

Besides, while MPI two-sided communications has been
the de facto standard for programming parallel applications
for the last 25 years, other communication models are used
nowadays in order to design more scalable applications
and to face the relatively slow communications compared
to the computation speed of individual nodes [7]. One-
sided communications have gained large attention, with
the development of one-sided MPI communications and
their integration to the MPI2 and MPI3 standards [8],
[9] and other models such as OpenSHMEM [10]. One-
sided communications are attractive for large scale systems
because only one process needs to take an active part in
the communication and because they can be implemented
efficiently on high-performance communication systems.

In this paper, we focus on fault tolerance for applications
that communicate using one-sided communications.

Fault-tolerance in parallel applications can be achieve at
system-level or at application-level. Application-level fault
tolerance can be integrated directly in the algorithm, relying
on algebraic or algorithmic properties of the computations
[11], [12], [13] or storing the data in the memory of other

processes to be able to recover it upon failures [14]. It must
be taken into account by the programmer.

System-level fault tolerance, on the other hand, is trans-
parent to the programmer. Failure detection and the be-
havior upon failures is defined in the distributed execution
environment and parallel applications do not need to be
modified to be able to survive failures. Usually, this ap-
proach relies on checkpoint/restart mechanisms, where the
state of each individual process is stored and recovered
when required [15], [16], [17]. However, storing the state
of the processes is not enough to maintain the consistency
of the parallel application. Inter-process communications
require specific attention in order to avoid creation of
orphan processes after a rollback, i.e. processes that wait
for a communication that will never happen.

The Chandy-Lamport algorithm relies on the notion of
consistent cut in order to take a distributed snapshot of the
whole application and be able to rollback on a consistent
state [18]. We will see with a counter-example that for-
mer approaches to coordinate the processes and take this
snapshot cannot be applied in a one-sided communication
model.

The contributions of this paper are: a) we present a
model for distributed systems using one-sided communica-
tion and discussing which hypothesis are made by current
communication routines provided by the main parallel
programming interfaces; b) in this model, we show why
an implementation of the Chandy-Lamport algorithm can-
not be transposed directly from two-sided communication
models to one-sided communication model; c) we give
three solutions to adapt the Chandy-Lamport algorithm and
we compare them.

After an overview of some previous works on rollback
recovery for fault tolerance in parallel, distributed applica-
tions in section II, we present the communication model
in section III. In section IV, we present algorithms for
coordinated checkpointing in this model, starting with a
counter-example that shows why approaches used with
two-sided communications do not work in this mode, then
we present three possible algorithms and we compare
them. Last, concluding remarks and perspectives come in
section V.
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Figure 1. Checkpoint wave. Markers are represented with
dashed lines

II. RELATED WORKS

The goal of rollback-recovery protocols for fault tolerance
in distributed applications is to maintain the consistency of
the application, notwithstanding process failures and roll-
backs. A survey of these protocols can be found in [19], [20].
Roughly speaking, these protocols fall into two categories:
coordinated and non-coordinated checkpointing.

Non-coordinated checkpointing allows processes to take
checkpoints independently from each other. However, com-
munications need to be taken care of in order to recover a
consistent state without forcing series of rollbacks, called
domino effect. Message-logging protocols rely on an as-
sumption: the execution of the processes of a distributed
application is assumed to be piecewise-deterministic: each
process execution is made of a sequence of determinis-
tic segments interrupted by non-deterministic events (e.g.
communications) [21]. Hence, messages sent between pro-
cesses can be logged and replayed after a rollback [22], [23],
[24], [25], [26], in the same causal order [27]. Which events
are non-deterministic can be refined in order to reduce the
number of events to log [28]. Another possibility to avoid
domino effect consists in forcing checkpoints when inter-
process dependencies are such that a failure would trigger
a domino effect. This is called communication-induced
checkpointing [29], [30], [31], [32].

Coordinated checkpointing was introduced in [18] and
relies on the notion of distributed snapshot: a global snap-
shot, made of the snapshots of all the individual processes,
is taken and stored. This global snapshot must represent a
consistent state, i.e. not to be "crossed" by communications
(e.g. a message sent by a process before it checkpoints its
state and received by another process after it checkpoints
its state, or this message does not introduce state change).
This algorithm relies on the circulation of a marker that
initiates a checkpoint wave at the end of which each process
checkpoints its state (see Fig. 1). During the checkpoint
wave, inter-process communications can be logged [33] or
blocked until the end of the wave [34].

All the aforementioned literature considers a distributed
system as a set of processes that communicate using two-
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Figure 2. One-sided communications

sided communications, involving communication primi-
tives such as send() and recv() that must be called on
the source and destination processes and match with one
another. However, modern high performance hardware im-
plements another type of communication model: Remote
Direct Memory Access (RDMA), involving one-sided com-
munication primitives such as put() and get() [35], [36] (see
Fig. 2). It is the communication model implemented in
the high-performance programming interface OpenSHMEM
[37], [10], [38].

There has been a need for fault-tolerance in OpenSH-
MEM [39], [40]. A user-level approach was presented in [41]
and [42]. Both use a shadow memory area to store check-
points in another process’s memory, the latter taking explicit
checkpoints and the former using redundant computations
in order to maintain an up-to-date redundant copy in the
shadow memory.

III. MODEL FOR DISTRIBUTED SYSTEMS

A. Communication model

In this section, we define a model for one-sided commu-
nications. In this model, each process maps two distinct
areas of memory: a private memory and a public memory.
The private memory can be accessed from this process only.
The public address space is made of the set of all the public
memories of the processes (the Global Address Space).
Processes can copy data from/to their private memory and
the public address space, regardless of data locality.

Public memory can be accessed by any process of the ap-
plication, in concurrent read and write mode. In particular,
no distinction is made between accesses to public memory
from a remote process and from the process that actually
maps this address space.

In addition, since NICs (Network Interface Controllers)
are in charge with memory management in the public
memory space, they may provide locks on memory areas.
These locks guarantee exclusive access on a memory area:
when a lock is taken by a process, other processes must
wait for the release of this lock before they can access the
data.

Processes access areas of public memory mapped by
other processes using point-to-point communications. They
use one-sided communications: the process that initiates
the communication can access remote data without any
notification on the other process’s side. Hence, a process
A is not aware of the fact that another process B has
accessed (i.e., read or written) its memory. Accessing data in



another process’s memory is called Remote Direct Memory
Access (RDMA). It can be performed with no implication
from the remote process’s operating system by specific
NICs, such as InfiniBand and Myrinet technologies. It must
be noted that the operating system is not aware of the
modifications in its local shared memory. The SHMEM
library [10], developed by Cray, also implements one-sided
operations on top of shared memory. As a consequence, the
model and algorithms presented in this paper can easily be
extended to shared memory systems.

RDMA provides two communication primitives: put() and
get(). These two operations are represented in Fig. 2. They
are both generally presented as atomic on the paper but,
in practice, some implementation consider them as non-
blocking and/or asynchronous and non-atomic (see section
III-B).

B. Implementation in parallel programming libraries

MPI 2.0 and MPI 3.0 introduced one-sided communica-
tions based on these put() and get() primitives in remote
windows. Communication routines are asynchronous and
non-blocking, therefore, when they return, the data transfer
may not be completed. Hence, explicit synchronization
must be used to make sure the data has been transferred.
The data remote processes can access is located in a
window, which is an area of public memory; what remote
processes see in this window can be identical (unified
mode) or may be different (separated mode) from what the
local process sees.

OpenSHMEM and many PGAS languages such as Unified
Parallel C define one-sided communications on explicitly
shared data and also based on the aforementioned put()
and get() primitives. They support both blocking and non-
blocking communication routines (introduced in OpenSH-
MEM 1.3 and UPC 1.3).

In [8], MPI one-sided communication routines are im-
plemented directly on top of InfiniBand read and write op-
erations. Non-blocking routines use the offloading features
of some NICs (such as InfiniBand) so the communication
is handled by the NIC itself in the background.

The number of communications that are actually per-
formed by the put() and get() operations depends on the
available hardware. InfiniBand provides read and write
operations, but their implementation depends on the queue
pair used.

Using a Reliable Connected (RC) queue pair, the re-
quester considers a message operation complete once there
is an ack from the responder (i.e. target) side that the
message was read/written to its memory. The requester
considers a message operation complete once the message
was read/written to its (local) memory. Using an Unreliable
Connected (UC) queue pair, the operation is considered as
complete once all the data has been send (write) or once
a complete message in correct sequence has been received
by the received and written to its (local) memory (read).
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Figure 3. Counter-example: the data response crosses the cut.

The Unreliable Datagram (UD) queue pair supports Send
operations only [43], [44].

With either RC and UC queue pairs, read operations
are performed as follows: after a connection has been
established, the requesting process (i.e. source process)
sends a read request to the responder (i.e. target process)
that reads its local memory and returns it.

Moreover, when the data to be transferred is larger than
a local limit (the Path MTU, or PMTU), it is segmented in
several response packets.

Therefore, in practice, one-sided communications
cannot be assumed to be atomic, unless specified
explicitly (e.g. for MPI, MPI_Fetch_and_op,
MPI_Compare_and_swap...). Moreover, communication
links are full-duplex, i.e. they support simultaneous data
transfers in both directions.

IV. ALGORITHMS

The original Chandy-Lamport algorithm [18] and its
blocking [34], [45] and non-blocking [33] implementations
take advantage of the FIFO property of the communication
channels. In [18], a marker circulates between the processes
to initiate the checkpoint wave, and the processes flush
their communication channels during the checkpoint wave.
The FIFO property guarantees that no message passes the
marker and crosses the checkpoint wave. A short descrip-
tion of how this algorithm works and some options left to
the implementation are given in section II.

However, although this is true with two-sided communi-
cations, the round-trip nature of the get() primitive on one-
sided communications makes it less trivial with one-sided
communications. For instance in Fig. 3, the read request of
the get() is issued before P2 receives the checkpoint marker
and therefore, before P2 enters the checkpoint wave, but the
result of the get() is received by P2 after it has entered the
checkpoint wave. The FIFO property of the communication
channel is still valid, but the round-trip pattern of the get()
on duplex communication channels make it possible for a
communication to cross the checkpoint line and therefore,
breaks the consistency of the cut.

Now let us introduce some solutions to this problem.



A. Solution 1: Message delay during the communication
wave

In this algorithm, when a process receive a marker, it
switches to the state checkpointing, and once he has
taken its checkpoint, it exits the checkpoint wave and
switches to state normal. When a process issues a get()
to a target process which is in checkpointing state, the
target process delays the operation on its memory.

Property 1: No data movement crosses the cut made by
this algorithm. However, some communications can overlap
the checkpoint wave (the read request of a get()).

Proof: Proving this property is trivial for two-sided
communications (see [18]) and put() communications (by
FIFO property of the communication channels). Regarding
the get() operations, the delay on delivery of the read
request ensures that no message arrives on process t while
it is in checkpointing state. Therefore, by FIFO property
of the communication channel between s and t , the second
step of the get() (data response) happens either before or
after the checkpoint.

Note that a get() started before the source process gets
into checkpointing state can return after the checkpoint
is taken: a get() can overlap the checkpoint wave.

a) Practical concerns: Since, in RDMA communica-
tions, the target process does not take an explicit active part
of the communication, this delay must be implemented
at the NIC-level. When the NIC receives a read request,
it checks the local state of the process and if the process
is in checkpointing state, the NIC delivers the response
only once the process returns to normal state.

B. Solution 2: Peek-and-get

It is possible to delay the beginning of a get() operation
if the remote process is in a checkpoint wave. In this
algorithm, when a get() is issued, the source process sends
an atomic read request to read the state of the target,
called here a peek (see Fig. 4). While the target is in
checkpointing state, it keeps polling on this state. If
the target is in normal state, the get() can be issued; a
regular read request is issued and the response is sent by
the target process.

Property 2: Using the peek-and-get algorithm, no com-
munication crosses the cut made by this algorithm and no
communication overlaps the cut made by this algorithm.

Proof: Proving this property is trivial for two-sided com-
munications (see [18]) and put() communications (by FIFO
property of the communication channels). Regarding the
get() operations, let us examine the three possible scenarios
between the checkpoint wave and the communications.

If a read request arrives on process t while it is in normal
state, the data is received before the marker and therefore,
before the source process enters the checkpoint wave.

If a read request arrives on process t while it is in
checkpointing state, the get() operation will be delayed
until the checkpoint wave is over. In other words, this
operation will happen completely after the cut and, if
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Figure 5. Double barrier

the system rolls back on this global snapshot, the whole
operation will be performed again.

If the atomic peek is performed while the target process
is in normal state, then a marker is received from another
process before the get() is received by the target process,
the target process switches state between the peek and the
actual get(). In this case, the target process sends a marker
to the source process before it sends the result of the get(),
since the communication channels have the FIFO property,
reception of the marker will occur before the reception of
the return of the get() by the target. Therefore, the source
process switches to checkpointing state just after the
end of the get() operation Therefore, all the get() operation
is performed before the cut and, if the system rolls back
on this global snapshot, the whole operation will already
be done and will not have to be performed again.

C. Solution 3: Double barrier

To cope with the two-way message pattern of the get()
operation, we may introduce a second all-to-all communi-
cation over the network to be sure that all communication
channels are flushed (see Fig. 5).

Property 3: If a checkpoint wave is made of two suc-
cessive all-to-all marker circulations and no application
communication is initiated after the beginning of the cir-
culation of the first marker, no communication crosses the
cut made at the end of the second marker circulation and
no communication overlaps this cut.



Proof: Trivial, since the communication channels are
FIFO, communications with a back-and-forth pattern (such
as get()) starting before a process enters the checkpoint
wave finish before the double circulation of the marker,
since it involves two causally ordered communications in
each direction between each pair of processes.

One can argue that only pending get() operations are of
concern in this second wave. If we keep a list of all these
pending get() operations, we can flush only the channels
those concerned by these get() operations, i.e. the channels
between pairs of processes concerned by each get(). In
the worst case, it is not better than a full flooding of the
communication network (actually, it is equivalent), but in
practice, it may introduce an interesting reduction of the
added cost to the first wave by flushing only some channels.

Practically speaking, if a marker is received by a source
process during a get() operation with a target process (i.e.,
if the read request and the marker cross each other on
the communication channel), the source process sends a
specific marker to the target process and waits until it
receives a second marker from the target process. This
marker is identified as particular by the target process
that determines it is a type of marker that expects an
acknowledgement. We call this algorithm a partial double
barrier.

a) Remark: During this force-flushing procedure of the
partial double barrier, only three markers are exchanged
between the two processes source and target.

Proof: The source process cannot initiate any commu-
nication during the checkpoint wave. Therefore, when it
started the get() operation, the source process was in normal
mode: it had sent no marker since the previous checkpoint
wave.

Property 4: Using the partial double barrier algorithm, no
communication crosses the cut made by this algorithm and
no communication overlaps the cut made by this algorithm.

Proof: If a marker is received by a source process
between the two steps of a get() with the same process, a
specific marker is sent to the target process that will answer
it by another marker. Therefore, since the communication
channels have the FIFO property and since the source
process waits until completion of the get() communication
before it switches to checkpointing state and sends its
markers, all the get() operation is performed before the cut,
so it neither cross not overlaps the cut.

D. Comparison

a) Performance: First let us remark that flushing all
communication channels costs at least to send a message
accross all the channels between Pi and P j with i 6= j . Let
us denote n the number of processors. The number of such
channels is n(n −1) since we have to distinguish channel
Pi —P j from P j —Pi . So obtaining a consistant snapshot is
at least in O(n2).

The algorithm of [18] use such a flooding and is optimal
in two-sided communication models since it costs n(n−1)

TABLE I. CONSISTENCY PROPERTIES OF THE CUT MADE BY THE

ALGORITHMS REGARDING ONE-SIDED COMMUNICATIONS.

Overlap Cross
Vanilla no no
Delay no yes
Peek-and-get yes yes
Double barrier yes yes

messages.
Solution 1 introduces no additionnal message and is

therefore of great interest when available. If the get()
operation is non-blocking, it may be rather complex to
implement this: either by specific hardware or by flashing
new procedures in a programmable hardware.

Solution 2 is clearly heavy in terms of additional mes-
sages exchanged. Moreover, the checkpointing may takes a
long time (at least proportionnal to n) and the atomicity
of the peek-and-get is mandatory, again this may be rather
complex to implement.

Solution 3 with a full second flooding phase adds n(n−1)
messages. So it is still in O(n2), and then is still optimal.
However, as we already stated it, it can be practically im-
proved. If g denotes the number of pending get() operations
that the first wave encounters, the improved procedure adds
only 2g messages. The worst case is obtained when each
processor has started a non-blocking get() toward all other
processors. Note that even if Pi starts more than one get()
toward P j , it is enough to empty the channel Pi —P j and
the way back, that is to say a message for all channels. This
gives a total of n(n−1) additional messages. So even in this
worst case, this improved procedure is not worse than the
normal flooding.

b) Consistency: The properties of the algorithms pre-
sented here and the vanilla Chandy & Lamport algorithm
are summarized in table I. We have seen that with the
delay algorithm, get() communications can overlap the
checkpoint wave but they cannot cross the cut (section
IV-A). Practically speaking, it means that after a global
rollback, the first step of a get() communication (the read
request) can be considered as already sent by the source
process, which is waiting for the data to be transferred
after the checkpoint wave. This is not a problem if the
state of the NICs is included in the local snapshots. In
this case, the source process rolls back in a state that
waits for the data, while the target process rolls back in
a state in which the NIC engine is about to deliver the read
request (stored in the checkpoint and therefore, delivered
after the rollback). However, if the state of the NICs is not
stored in the checkpoints, cuts that are overlapped by get()
communications cannot restore a consistent state.

V. CONCLUSION

In this paper, we have identified a counter-example that
exhibits the fact that the Chandy-Lamport algorithm for



coordinated checkpointing of a distributed system by deter-
mination of a consistent cut cannot be applied directly on
a system that communicates using Remote Direct Memory
Access or one-sided communications.

We have presented a model for one-sided communica-
tions in such distributed systems, and discussed its rel-
evance with respect to the implementation of one-sided
primitives in current de facto parallel programming stan-
dards.

The whole challenge of taking a snapshot of a dis-
tributed system is related to the inter-process communi-
cation channels. The Chandy-Lamport algorithm relies on
a coordination between the processes that flushes these
communication channels. In this model for one-sided com-
munications, we have presented three solutions to flush the
communication channels during the coordination of the
process in the Chandy-Lamport algorithm.

Last, we have discussed the properties of these algo-
rithms with respect to the hypothesis provided by the
possible implementations of the model, and the complexity
of these algorithms, in particular their overhead compared
to the original Chandy-Lamport algorithm for two-sided
communications.

This model suits well the current parallel programming
systems: it can be used to examine other algorithms, and to
reason on distributed algorithms that target current high-
performance systems. Besides, another perspective open by
this work is the implementation and practical evaluation of
fault-tolerant execution systems.
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