
Constructing Resiliant Communication
Infrastructure for Runtime Environments

George BOSILCA a, Camille COTI b, Thomas HERAULT b, Pierre LEMARINIER a

and Jack DONGARRA a

a University of Tennessee Knoxville
b University of Tennessee Knoxville, Universite Paris Sud, INRIA

Abstract. High performance computing platforms are becoming larger, leading to
scalability and fault-tolerance issues for both applications and runtime environ-
ments (RTE) dedicated to run on such machines. After being deployed, usually
following a spanning tree, a RTE needs to build its own communication infras-
tructure to manage and monitor the tasks of parallel applications. Previous works
have demonstrated that the Binomial Graph topology (BMG) is a good candidate
as a communication infrastructure for supporting scalable and fault-tolerant RTE.
In this paper, we present and analyze a self-stabilizing algorithm to transform the
underlying communication infrastructure provided by the launching service into a
BMG, and maintain it in spite of failures. We demonstrate that this algorithm is
scalable, tolerates transient failures, and adapts itself to topology changes.

Keywords. Self-stabilization, binomial graph, scalability

1. Introduction

Next generation HPC platforms are expected to feature millions of cores distributed over
hundreds of thousands of nodes, leading to scalability and fault-tolerance issues for both
applications and runtime environments dedicated to run on such machines. Most parallel
applications are developed using a communication API such as MPI, implemented in a
library that runs on top of a dedicated runtime environment. Notable efforts have been
made in the past decades to improve the performance, scalability and fault-tolerance at
the library level. The most recent techniques propose to deal with failures locally, to avoid
stopping and restarting the whole system. As a consequence, fault-tolerance becomes a
critical property of the runtime environment.

A runtime environment (RTE) is a service of a parallel system to manage and mon-
itor applications. It is deployed on the parallel system by a launching service, usually
following a spanning tree to improve the scalability of the deployment. The first task of
the RTE is then to build its own communication infrastructure to synchronize the tasks of
the parallel application. A fault-tolerant RTE must detects failures, and coordinates with
the application to recover from them. Communication infrastructures used today (e.g.
trees and rings) are usually built in a centralized way and fail at providing the necessary
support for fault-tolerance because a few failures lead with a high probability to dis-
connected components. Previous works [2] have demonstrated that the Binomial Graph

Parallel Computing: From Multicores and GPU’s to Petascale
B. Chapman et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-530-3-441

441

topology (BMG) is a good candidate as a communication infrastructure for supporting
both scalability and fault-tolerance for RTE. Roughly speaking, in a BMG, each process
is the root of a binomial tree gathering all processes.

In this paper, we present and analyze a self-stabilizing algorithm1 to transform the
underlying communication infrastructure provided by the launching service into a BMG,
and maintain it in spite of failures. We demonstrate that this algorithm is scalable, tolerate
transient failures, and adapt itself to topology changes.

2. Related Work

The two main open source MPI library implementations, MPICH [4] and Open MPI [13]
focus on performance, portability and scalability. For this latter purpose, both libraries
manage on-demand connections between MPI processes, via their runtime environments.
MPICH runtime environment, called MPD [9], connects runtime daemons processes
through a ring topology. This topology is scalable in term of number of connection per
daemon, but has two major drawbacks: two node failures are enough to divide the dae-
mons in two separate groups that cannot communicate with one another, and communi-
cation information circulation does not scale well. The Open MPI runtime environment
project, ORTE [10], deploys runtime daemons connected through various topologies,
usually a tree. Recently, some works have proposed the integration of a binomial graph
in ORTE [2]. However, the deployment of this topology inside ORTE is done via a spe-
cific node to centralize the contact information of all the other nodes and decide of the
mapping of the BMG topology over ORTE daemons. This current implementation pre-
vents scalability, and does not reconstruct the BMG upon failures. Our work focuses on
the deployment and maintenance of a BMG topology in a distributed and fault-tolerant
way, exhibiting more scalability.

Self-stabilization [15,11] is a well known technique for providing fault tolerance.
The main idea of self-stabilization is the following: given a propertyP on the behavior of
the system, the execution of a self-stabilizing algorithm eventually leads from any start-
ing configuration, to a point in the execution in which P holds forever (assuming no out-
side event, such as a failure). A direct and important consequence of this fault tolerance
technique is that self-stabilizing algorithms are also self-tuning. No particular initializa-
tion is required to eventually obtain the targeted global property. Some self-stabilizing
algorithms already exist to build and maintain topologies. Most of them address ring [5]
and spanning tree topologies [12], on top of a non-complete topology. They are usually
designed in a shared memory model in which each node is assumed to know and be
able to communicate with all its neighbors [1]. To the best of our knowledge, our work
addresses for the first time building and maintaining a complex topology such as BMG.
The classical shared memory model does not fit the actual systems we target in which
connections are opened based on peer’s information, thus we designed our algorithm
using a message passing, knowledge-based, model [14].

1Self-stabilization systems [11] are systems that eventually exhibit a given global property, regardless of the
system state at initialization

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments442

3. Self-Adaptive BMG Overlay Network

We present in this section a self-stabilizing algorithm to build and maintain a binomial
graph topology inside a runtime environment. This BMG construction supposes that ev-
ery process in the system knows the connection information of a few other processes, at
most one to be considered as its parent, such that the resulting complete topology is a tree
of any shape. This assumption comes from the fact that the start-up of processes will usu-
ally follow a deployment tree. The connection information can be exposed to processes
along their deployment, by giving to each process its parent’s connection information
according to the tree deployment. Each process then contact the parent to complete the
tree topology connectivity information.

The algorithm we propose is silent: in the absence of failure during an execution, the
BMG topology does not change. This property is mandatory for being able to use this
topology to route messages. We also focus on obtaining an optimal convergence time,
in terms of number of synchronous steps, for underlying binomial trees, as the runtime
environment [8] we envisioned to implement this algorithm will usually deploy processes
among such topology.

The construction of the BMG is done by the composition of two self-stabilizing
algorithms. The first one builds an oriented ring from the underlying tree topology, while
the second one builds a BMG from the resulting ring. In the next subsections we present
both algorithms, the key ideas of their proof of correctness and an evaluation of the time
to build a BMG from different tree shape by simulation.

3.1. Model

System model Our algorithms are written for an asynchronous system in which each
process has a unique identifier. In the rest of the paper, although process identifiers and
actual processes are two different notions, we will refer to a process by its identifier. We
assume the existence of a unidirectional link between each pair of processes. Each link
has a capacity bounded by an unknown constant, and the set of links results in a complete
connected graph. As in the knowledge network model, a process can send messages to
another process if and only if it knows its identifier. When a process receives a message, it
is provided with the sender’s identifier. The process’s identifiers can be seen as a mapping
of IP addresses in a real-world system, and the complete graph as the virtual logical
network connecting processes in such a system.

Algorithms are described using the guarded rules formalism. Each rule consists in
a guard and a corresponding action. Guards are Boolean expressions on the state of the
system or (exclusively) a reception of the first message available in an incoming link. If
a guard is true, its action can be triggered by the scheduler. If the guard is a reception,
the first message of the channel is consumed by the action. An action can modify the
process’s local state and/or send messages.

The state of a process is the collection of the values of its variables. The state of a link
is the set of messages it contains. A configuration is defined as the state of the system,
i.e. the collection of the states of every process and every link. A transition represents
the activation of a guarded rule by the scheduler. An execution is defined as an alternate
sequence of configurations and transitions, each transition resulting from the activation
of a rule whose guard held on the previous configuration.

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments 443

We assume a centralized scheduler in the proof for the sake of simplicity. As no
memory is shared between processes so that no two processes can directly interact, it is
straightforward to use a distributed scheduler instead. We only consider fair schedulers,
i.e. any rule whose guard remains true in an infinite number of consecutive configurations
is eventually triggered.

Fault model We assume the same fault model as in the classical self-stabilization
model: transient arbitrary failures. Thus, faults can result in node crash, message loss,
message or memory corruption. The model of transient failures leads to consider that
during an execution, there exists time intervals large enough so the execution converges
to a correct state before the next sequence of failure. The consequence on the execution
model is to consider no failure will happen after any initial configuration.

3.2. Algorithms

We denote ID the identifiers of a process ; List(c) a list of elements of type c, on which
the operation First(L) is defined to return the first element in the list L, and next(e, L)
is defined to return the element following e in the list L. Each of these functions return
⊥ when the requested element cannot be found. ⊥ is also used to denote a non-existing
identifier.

Algorithm 1: Algorithm to build an ori-
ented ring from any tree
Constants:
Parent : ID
Children : List(ID)

Id : ID
Output:
Pred : ID
Succ : ID
- Children �= ∅ →1

Succ = F irst(Children)

Send (F _Connect, Id) to Succ

- Recv (F _Connect, I) from p →2
if p = Parent then Pred = I

- Children = ∅ →3
Send (Info, Id) to Parent

- Recv (Info, I) from p →4
if p ∈ Children then

let q = next(p, Children)

if q �=⊥ then
Send (Ask_Connect, I) to q

else
if Parent �=⊥ then

Send (Info, I) to Parent
else

Pred = I
Send (B_Connect, Id) to I

- Recv (Ask_Connect, I) from p →5
Pred = I
Send (B_Connect, Id) to I

- Recv (B_Connect, I) from p →6
Succ = I

Algorithm 2: Algorithm to build
a BMG from a ring which size is
known

Input:
Pred : ID
Succ : ID
N : integer size of the ring
Id : ID

Output:
/* Clockwise links */
CW : Array[ID]

/* Counterclockwise links */
CCW : Array[ID]

- ⊥→1
CW [0] = Succ
CCW [0] = Pred
Send (UP, CCW [0],1) to Succ
Send (DN, CW [0],1) to Pred

- Recv (UP, ident, nb_hop) from p →2
CCW [nb_hop] = ident
if (2nb_hop+1 < N) then

Send (UP, ident, nb_hop + 1)
to CW [nb_hop]

Send (DN, CW [nb_hop], nb_hop + 1)

to ident

- Recv (DN, ident, nb_hop) from p →3
CW _links[nb_hop] = ident
if (2nb_hop+1 ≤ N) then

Send (DN, ident, nb_hop + 1)
to CCW [nb_hop]

Send (UP, CCW [nb_hop], nb_hop + 1)
to ident

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments444

3.3. Building a ring from a tree

The first step to build a binomial graph on top of a tree network consists in building
a ring. This section defines a ring topology in our model and describes the proposed
algorithm to build one from any tree. The last part of this section proposes a proof of
correctness of this algorithm.

3.3.1. Topology description

Tree topology Let P be the set of all the process identifiers of the system, |P| = N
be the size of the system. For every process p ∈ P , let Parentp be a process identi-
fier in P ∪ {⊥} that p knows as its parent. Let Childrenp be a list, possibly empty, of
process identifiers from P that p knows as its children. We define ancp(Q), the ancestry
of the process p in the set of processes Q as a subset of Q such that q ∈ ancp(Q) ⇔
q ∈ Q ∧ (q = Parentp ∨ ∃q� ∈ ancp(Q) s.t. Parentq� = q). A process p such that
Childrenp = ∅ is called a leaf. When Childrenp
= ∅, the first element of Childrenp

is called first child of p, the last element of Childrenp is called the last child of p. We
define the rightmost leaf of the set Q, noted ’rlQ’ as the unique leaf that is a last children
process such that all processes in its ancestry in Q are last children processes.

A set of processes Q builds a tree rooted in r if and only if all processes of Q verify
the three following properties: 1) ∀p, q ∈ Q : parentp = q ⇔ p ∈ Childrenq, 2)
Parentr =⊥, and 3) ∀p
= r ∈ Q, r ∈ ancp(Q).

For the rest of the paper, we consider that for all configurations of all executions
of the system, the collection of variables Parentp, Childrenp for all processes builds a
single tree holding all processes in the system. We call root the process that is the root
of this tree.

We define the subtree rooted in r ∈ P , as the subset Tr of P , such that r ∈ Tr∧∀p ∈
P , r ∈ ancp(P) ⇔ p ∈ Tr. Note that Troot = P is the largest subtree. The depth of a
subtree Tr, noted depth(Tr), is defined as the size of the largest ancestry in this subtree:
depth(Tr) = max{|ancp(Tr)|, p ∈ Tr}.

Ring topology For every process p ∈ P , let Predp and Succp represent its knowledge
of two processes it considers as respectively its predecessor and its successor in the ring:

Definition 3.1. Consider the relation s� : P ×P such that p s�p� if and only if Succp =
p�. We define SUp as a subset of Tp such that q ∈ SUp ⇔ q = p ∨ p s�q ∨ ∃q� ∈
SUp s.t. q� s�q.

Definition 3.2. Each process of the system is connected through a ring topology in a con-
figuration C iff the following properties are verified: 1) P = SUroot, 2) ∀p ∈ P , ∃q ∈
P s.t. Succp = q ∧ Predq = p, and 3) PredSuccroot = SuccPredroot = root.

3.3.2. Algorithm description

We describe in this section the silent self-stabilizing algorithm 1 that builds an oriented
ring from any kind of tree topology. Each process except the root of the tree knows a
Parent process identifier. Every process also has an ordered list of Children process
identifiers, possibly empty. The basic idea of this algorithm is to perform two indepen-
dent and parallel tasks: the first one consists in coupling parents with their first child in
order to build a set of chains of processes. The second one consists in coupling endpoints
of every resulting chain.

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments 445

Figure 1.: Message exchanged for
building a ring on top of a tree

The first task is performed by guarded rules
1 and 2. Rule 1 can be triggered by every pro-
cess that have at least a child. When triggered, the
process considers its first child as the next pro-
cess in the ring by setting its Succ variable to its
first child identifier. It then sends a message to this
first child to make it set up its Pred variable ac-
cordingly. Rule 2 is triggered by reception of this
information message and sets up the Pred vari-
able using the identifier contained in the message.
Note that each resulting chain eventually built by
the first two rules has a tree leaf as one endpoint,
and that every leaf of the tree is an endpoint of
such a chain.

The second task consists in finding for each
leaf a process among the tree, the first free sibling, to pick up as its successor in the ring.
Rule 3 can only be triggered by leaf processes and sends a message Info to their parent
to find a process. Rule 4 describes what happens upon reception of such Info message.
When receiving Info from a child c and c is not the last element of its Children list,
it looks for the process identifier c� that is the next element of c� in its Children list.
Then it sends an Ask_Connect message to c� containing the identifier c so that these
two processes address each other (Rules 5 and 6). If c is the last element of the Children
list, then the process forwards Info to its own parent if it has one, or acts as the process
looked for if it is the root of the tree.

3.3.3. Idea of the proof

Due to lack of space, we present here the main idea of the proof. The complete formal
proof can be found in the appendices of this paper, and in the Technical Report [7]. As
for any self-stabilizing algorithm, we first define a set of legitimate configurations, then
demonstrate that any execution starting from a legitimate configuration remains in legit-
imate configurations (closure), and builds and maintain a ring (correctness), and that any
execution starting from any configuration eventually reaches a legitimate configuration
(convergence).

Legitimate configurations are defined by exhibiting a property on the state of pro-
cesses (the succession of the Succ variables starting at the root builds a chain holding all
processes, and the Pred variables are symmetrical to the Succ variables), and a prop-
erty on the messages in the communication channels. We prove first that every message
initially present in any initial configuration has a finite impact on the other messages in
the rest of the execution and on the state of the processes, because all messages have an
effect on neighbors only, except Info messages, which flow upstream in the tree, thus
have a finite time to live in the system.

Then, we prove correction by induction on the subtrees of the system, and closure
by analyzing all possible actions of the algorithm, assuming that all channels verify the
properties of legitimate configurations. Finally, we prove that starting from any configu-
ration, each channel holds a single message repeatedly, depending only on the shape of
the tree, and that as a consequence the channels property of legitimate configurations is
eventually verified. Using the fairness of the scheduler and following the action associ-

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments446

ated with each message identified for each channel, we demonstrate that the state-related
property of legitimate configurations is also eventually verified.

3.4. building a binomial graph from a ring

The next and final step to build a binomial graph on top of a tree overlay network consists
in, starting from the ring topology constructed by algorithm 1, expanding the knowledge
of every process with the process identifiers of its neighbors in the BMG to be obtained.

3.4.1. Topology description

As described in [3], a binomial graph is a particular circulant graph [6], i.e. a di-
rected graph G = (V, E), such that |V | = |P|, ∀p ∈ V , p ∈ {0, 1, . . . , |P| − 1}.
∀p ∈ V, ∀k ∈ N s.t. 2k < |P|, ∃(p, (p ± 2k)mod |P|) ∈ E. It means that every node
p ∈ V has a clockwise (CW) array of links to nodes CWp = [(p + 1) mod |P|, (p +
2) mod |P|, . . . , (p + 2k) mod |P|] and a counterclockwise (CCW) array of links to
nodes CCWp = [(p− 1) mod |P|, (p− 2) mod |P|, . . . , (p− 2k) mod |P|]. It is impor-
tant to note that by definition, ∀k > 0 s.t. 2k < |P| : q = (p + 2k) mod |P| ∈ CWp ⇔
q = (p + 2k−1 + 2k−1) mod |P| ∈ CWp+2k−1 .

3.4.2. Algorithm description

The proposed algorithm uses the property of the BMG topology. Every node regularly
introduces its direct neighbors to each other with rule 1. When a process is newly in-
formed of its neighbor at distance 2i along the ring, it stores this new identifier to the tar-
geted list of neighbors, depending on the virtual direction, using either rule 2 or 3. Then
it sends the identity of the processes at distance 2i in both directions to introduce the two
processes that are at distance 2i+1 along the ring to each other, unless 2i+1 ≥ |P|.

3.4.3. Idea of the proof

Complete proof of the self-stabilizing property can be found in the technical report [7].
Due to lack of space, we give here a simple sketch of the proof: correctness and closure
are deduced straightforwardly from the algorithm. For convergence, we reason by in-
duction: assuming that the finger table (CW and CCW variables) is correct on the first
i elements, we demonstrate that any execution eventually builds the level i + 1. Then,
stating that level 0 is the ring that has been demonstrated self-stabilizing previously, we
conclude that any execution eventually builds a full BMG.

4. Evaluation of the protocols

In this section, we present some simulations of the tree to ring and ring to BMG al-
gorithms to evaluate the convergence time and communication costs of these protocols.
The simulator is an ad-hoc, event-based simulator written in Java for the purpose of this
evaluation. The simulator features two kinds of scheduling: a) a synchronous scheduler,
where in each simulation phase, each process executes fully its spontaneous rule if ap-
plicable, then consumes every messages in incoming channels, and executes the corre-
sponding guarded rule (potentially deposing new messages to be consumed by the re-

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments 447

ceivers in the next simulation phase), and b) an asynchronous scheduler, where for each
simulation phase, each process either executes the spontaneous rule if applicable, or con-
sumes one (and only one) message in one incoming channel, and executes the corre-
sponding guarded rule (again, potentially deposing new messages to be consumed by
receivers in another simulation phase). The asynchronous scheduler is meant to evalu-
ate upper bound on convergence time, working under the assumption that although ev-
ery process will work in parallel, the algorithms are communication-bound, and the to-
tal convergence time should be dominated by the longest dependency of message trans-
mission. The simulator also features three kinds of trees: 1) binary trees, fully balanced
and having depth as a parameter; 2) binomial trees, fully balanced and having depth
as a parameter; and 3) random trees having both depth and maximal degree (each pro-
cess of depth less than the requested depth having at least one child, and at most degree
children) as parameter. For all simulations, every node starts with an underlying tree al-
ready defined (following the algorithms assumptions), and no other connection estab-
lished (Succp = Predp = CWp[i] = CCWp[i] =⊥, ∀p ∈ P , ∀0 ≤ i ≤ log2(N)).
Self-stabilizing algorithms cannot stop communicating, because a process could be ini-
tialized in a state where it believes that its role in the distributed system is completed.
However, real implementations would rely on timers to circumvent this problem and use
less resources when convergence is reached and no fault has been detected. To simulate
this behavior, each process in our simulation becomes quiet (it deactivates its local spon-
taneous rule, but continues to react to message receptions) as soon as its local state is
correct (Succ, Pred, CW [0] and CCW [0] are correctly set).

Figure 2(b) presents the convergence time of the tree-to-ring and ring to BMG algo-
rithms under a synchronous scheduler, for the case of binary and binomial trees, as func-
tion of the size of the trees. The x-axis is represented on a logarithmic scale, and one can
see that in the case of an underlying binomial tree, the convergence time of the tree-to-
ring algorithm is 4 synchronous phases (each Info message originated at one leaf needs
only to go up once to reach the parent of the tree this leaf is the rightmost leaf, then is
forwarded to the parent that will step down to the next children which exist and create a
Ask_Connect then a B_Connect message, hence 4 phases). For the case of a balanced
binary tree, the longest path of Info message has to go from one leaf in the “left” side of
the tree up to the root, then two more messages to create the ring, hence O(log2(N)+2)
phases. Until the ring has completely converge, exists at least one process in the system
which can not start building one of its list of neighbors for the binomial graph. Thus it
adds a O(log2(N)) more synchronous phases just after the ring is converged.

However, some nodes have to handle multiple communications during each phases,
and communication-unbalance can happen. The consequence of this communication-
unbalance is expressed in figure 2(a), that represents the same experiment under an asyn-
chronous scheduler. With this scheduler, each simulation step consists of at most one
message reception per process. Thus, if more messages have to be handled by some pro-
cesses, the algorithms take significantly more time to reach convergence. To express con-
vergence in time, we assume that each message takes 50 microseconds to be sent from
one node to another (this time has been taken after measuring the communication latency
of messages of 32 bytes between two computers through TCP over gigabit ethernet).
As one can see on the figure, even if the projected convergence time remains very low
for reasonably large trees (less than 1/50 of seconds for 64k nodes), the binomial tree
presents a non-logarithmic convergence time, while in the case of binary tree, conver-

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments448

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

C
on

ve
rg

en
ce

 ti
m

e(
s)

Tree size (number of processes)

Ring - Binary tree
BMG - Binary tree

Ring - Binomial tree
BMG - Binomial tree

(a) Asynchronous scheduler.

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

C
on

ve
rg

en
ce

 ti
m

e
(n

um
be

r
of

 s
yn

ch
ro

no
us

 p
ha

se
s)

Tree size (number of processes)

Ring - Binary tree
BMG - Binary tree

Ring - Binomial tree
BMG - Binomial tree

(b) Synchronous scheduler.

Figure 2. Convergence Time for Binary and Binomial Trees.

gence time remains logarithmic. This is explained by figure 3, which presents the maxi-
mal number of messages received by a single process during the convergence period for
the Binary and the Binomial tree of same size. One can see that the number of messages
received by a single process on a Binomial tree is much larger than for a Binary tree.
Because a process removes one and only one message at a time from its message queue
in the asynchronous scheduler, the size of the queue grows linearly with the number of
direct neighbors and with time (as long as processes deposit new messages in the waiting

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

M
ax

im
al

 n
um

be
r

of
 m

es
sa

ge
s

re
ce

iv
ed

 b
y

a
si

ng
le

 p
ro

ce
ss

(a
ll

ex
ec

ut
io

n)

Tree size (number of processes)

Ring - Binary tree
BMG - Binary tree

Ring - Binomial tree
BMG - Binomial tree

Figure 3.: Maximal number of messages received by a
single process for Binary and Binomial Trees under an
asynchronous scheduler

queue). Thus, the waiting queue of
the root in the binomial tree grows of
log2(N) − 1 messages at each phase
(until all leafs have ended generating
Info Messages), whereas it grows of
2 messages at each phase for a bi-
nary tree. Thus, convergence time of
the binomial tree in this model is im-
pacted by a factor log2(N), and we
can see in figure 2(a) that the conver-
gence time for the binomial tree is in-
deed log2

2(N), while it is log2(N) for
the binary tree.

The last two figures 4(a)
and 4(b) present the convergence
times (in number of phases, or in
seconds for the asynchronous sched-
uler) as functions of the tree size and
depth, for random trees. The synchronous version presents a logarithmic progression of
the convergence time for the ring construction and for the binomial graph construction.
The convergence time of the ring construction algorithm is not modified by the number
of nodes in the tree, only by the depth of the tree itself. It presents an increase logarithmic
in the depth of the tree, which is consistent with the theoretical analysis of the algorithm.
Similarly, the BMG construction algorithm highly depends on the number of nodes in
the tree: each process has to exchange 2 log2(N) messages when the tree is built to build
the finger table of the BMG, and this is represented in the figure. However, this pro-
gression remains logarithmic with the number of nodes. The asynchronous case is more

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments 449

 3
 4

 5
 6

 7
 8

 9
 10

16
64

256
1K

4K
16K

64K

 0
 5

 10
 15
 20
 25
 30

C
on

ve
rg

en
ce

 ti
m

e
(n

um
be

r
of

 s
yn

ch
ro

no
us

 p
ha

se
s) Ring

BMG

Depth of the tree
Tree size

(number of processes)

(a) Synchronous scheduler.

 3
 4

 5
 6

 7
 8

 9
 10 4

16
64

256
1K

4K
16K

64K

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

C
on

ve
rg

en
ce

 ti
m

e
(s

)

Ring
BMG

Depth of the tree
Tree size

(number of processes)

(b) Asynchronous scheduler.

Figure 4. Convergence Time for Random Trees.

complex to evaluate: because leafs become quiet only when their successor has received
the Ask_Connect message causally dependent of their Info Message, they introduce
a lot of unnecessary Info messages in the system. The asynchronous scheduler of the
simulator takes one message after the other, following a FIFO ordering, and this intro-
duces a significant slowdown of the Info message, put in waiting queues. The projected
time still remains very low, with less than 1/33 second for a 100k nodes tree. However,
these results must be validated on a real implementation, to evaluate if the observed trend
is due to simulation effects, or will be confirmed in a real-world system.

5. Conclusion

In this work, we present algorithms to build efficient communication infrastructures on
top of existing spawning trees for parallel runtime environments. The algorithms are scal-
able, in the sense that all process memory, number of established communication links,
and size of messages are logarithmic with the number of elements in the system. The
number of synchronous rounds to build the system is also logarithmic, and the number of
asynchronous rounds in the worst case is square logarithmic with the number of elements
in the system. Moreover, the algorithms presented are fault-tolerant and self-adaptive us-
ing self-stabilization techniques. Performance evaluation based on simulations predicts a
fast convergence time (1/33s for 64K nodes), exhibiting the promising properties of such
self-stabilizing approach. The algorithm will be implemented in the STCI [8] runtime
environment to validate the theoretical results.

References

[1] Y Afek and A Bremler. Self-stabilizing unidirectional network algorithms by power supply. Chicago
Journal of Theoretical Computer Science, 4(3):1–48, 1998.

[2] T. Angskun, G. Bosilca, and J. Dongarra. Binomial graph: A scalable and fault-tolerant logical network
topology. In Parallel and Distributed Processing and Applications, ISPA 2007, volume 4742/2007 of
Lecture Notes in Computer Science, pages 471–482. Springer Berlin / Heidelberg, 2007.

[3] T. Angskun, G. Bosilca, B. Vander Zanden, and J. Dongarra. Optimal routing in binomial graph net-
works. pages 363–370, December 2007.

[4] Argonne National Laboratory. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments450

[5] A Arora and A Singhai. Fault-tolerant reconfiguration of trees and rings in networks. High Integrity
Systems, 1:375–384, 1995.

[6] J.-C. Bermond, F. Comellas, and D. F. Hsu. Distributed loop computer networks: a survey. Journal of
Parallel and Distributed Computing, 24(1):2–10, January 1995.

[7] George Bosilca, Camille Coti, Thomas Herault, Pierre Lemarinier, and Jack Dongarra. Constructing
resiliant communication infrastructure for runtime environments. Technical Report ICL-UT-09-02, In-
novative Computing laboratory, University of Tennessee, http://icl.eecs.utk.edu/publications/, 2009.

[8] Darius Buntinas, George Bosilca, Richard L. Graham, Geoffroy Vallée, and Gregory R. Watson. A
scalable tools communication infrastructure. In Proceedings of the 6th Annual Symposium on OSCAR
and HPC Cluster Systems, June 2008.

[9] R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment for parallel programs.
In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors, Recent Advances in Parallel Virutal
Machine and Message Passing Interface, number 1908 in Springer Lecture Notes in Computer Science,
pages 168–175, September 2000.

[10] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G .E. Fagg. The open run-time
environment (OpenRTE): A transparent multi-cluster environment for high-performance computing. In
Proceedings, 12th European PVM/MPI Users’ Group Meeting, Sorrento, Italy, September 2005.

[11] S Dolev. Self-Stabilization. MIT Press, 2000.
[12] Felix C. Gärtner. A survey of self-stabilizing spanning-tree construction algorithms. Technical Report

IC/2003/38, EPFL, Technical Reports in Computer and Communication Sciences, 2003.
[13] Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H. Castain, George Bosilca, and An-

drew Lumsdaine. Open MPI: A high-performance, heterogeneous MPI. In Proceedings, Fifth Interna-
tional Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks,
Barcelona, Spain, September 2006.

[14] Thomas Herault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, and Joffroy Beauquier. A model
for large scale self-stabilization. In IEEE International, editor, Parallel and Distributed Processing
Symposium. IPDPS 2007, pages 1–10, march 2007.

[15] M Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, march 1993.

G. Bosilca et al. / Constructing Resiliant Communication Infrastructure for Runtime Environments 451

