
PAR: A PARallel And Distributed Job Crusher
Francois Berenger†∗, Camille Coti‡and Kam Y. J. Zhang†
†Zhang Initiative Research Unit, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
‡Iowa State University, Ames, IA 50011-2251, USA

ABSTRACT
Summary: Bioinformaticians are tackling increasingly computation-
intensive tasks. In the meantime, workstations are shifting towards
multi-core architectures and even massively multi-core may be the
norm soon. Bag-of-Tasks (BoT) applications are commonly encoun-
tered in bioinformatics. They consist of a large number of independent
computation-intensive tasks. This note introduces PAR, a scalable,
dynamic, parallel and distributed execution engine for Bag-of-Tasks.
PAR is aimed at multi-core architectures and small clusters. Acce-
lerations obtained thanks to PAR on two different applications are
shown.
Availability: PAR is released under the GNU General Public License
version three and can be freely downloaded 1.
Contact: berenger [at] riken.jp

1 INTRODUCTION
Bioinformaticians are significant high-performance computing
users, in particular for simulations of biologic phenomena. On the
other hand, the available hardware is getting faster but also much
more parallelized (Intel publicly reported working on 80 cores pro-
totype chips in 2007). In this context, most bioinformaticians could
benefit from an easy-to-use software to harness such computing
power.

The focus of this note is Bag-of-Tasks (BoT) applications execu-
tion. As the name suggests, BoT applications can be seen as a bag,
filled with tasks to do, each being independent from all the others.
A middle-ware for BoT applications is called a job crusher. It has to
consist of at least a server component connected to a set of clients.

This note introduces PAR, a parallel and distributed job crus-
her working in pull mode and inspired by desktop grid platforms.
Workers join the computation and can be added dynamically at
run-time; the server delivers tasks to workers available at a given
moment. PAR is actually a transposition of some concepts and fea-
tures from previous distributed middle-ware to small HPC clusters
and multi-core workstations.

This paper is organized as follows: Section 2 presents an overview
of related projects and technologies used in bioinformatics. Section
3 presents two examples using PAR to illustrate scalability. The last
section lists upcoming enhancements.

∗to whom correspondence should be addressed
1 http://git.savannah.gnu.org/cgit/par.git/plain/par.tgz

2 RELATED PROJECTS
A wide variety of tools and technologies have been used over the last
two decades in bioinformatics. While PAR is a user-level tool with
its own niche, it has some limitations. At the cost of a little more
complexity, some of the tools listed hereafter allow fair share of
resources, stronger reliability and even faster job or data throughput.

At the programming level, the Message-Passing Interface (MPI,
Forum (1994)), CORBA (Object Management Group (1998)) or
even MapReduce (Dean and Ghemawat (2004)) are noteworthy
technology candidates.

MPI has become the de facto standard for programming highly
parallel applications. It has been used in computational genomics
(Swain et al. (2005)) and in molecular dynamics (Johnston et al.
(2005); de Lomana et al. (2008)).

For applications following a client-server model, CORBA can be
used. Handling of genome maps has successful examples (Hu et al.
(1998), Jungfer and Rodriguez-Tomé (1998)).

For data-intensive applications, MapReduce and its open source
implementation Hadoop2 are more appropriate. They unleash opera-
tions over huge amounts of data and were used recently in sequence
alignment (Sadasivam and Baktavatchalam (2010)).

However, at the application level, Desktop Grids (DG) are closer
to the focus of this note. A server distributes tasks to workers located
on machines that do not communicate with each other, potenti-
ally anywhere on the Internet. Condor (Litzkow et al. (1988)),
XtremWeb (Fedak et al. (2001)) and BOINC (Anderson (2004))
are three platforms for highly parallel, multi-user applications.
One of the best-known DG project in bioinformatics is probably
Folding@home (Beberg et al. (2009)).

Like Hadoop and unlike most DG, PAR is designed to be used
exclusively on private resources. PAR’s ideal scale is then smal-
ler than what DG systems usually target, but this permits a lower
latency. For simplicity, PAR uses pull-driven task distribution. This
removes the need for a complex software component (called a sche-
duler) and also allows to scale smoothly even in large, dynamic
and heterogeneous environments. In addition, PAR never requires
administrator privileges and is only run on-demand.

2 http://hadoop.apache.org

1

Associate Editor: Prof. Anna Tramontano

© The Author (2010). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

 Bioinformatics Advance Access published September 23, 2010
 at brm

ip13 on January 6, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://git.savannah.gnu.org/cgit/par.git/plain/par.tgz
http://hadoop.apache.org
http://bioinformatics.oxfordjournals.org/


 1

 10

 100

no
 P

A
R

P
A

R
 1

6 p
P

A
R

 1
6 d

P
A

R
 3

2 d
P

A
R

 6
4 d

W
al

l c
lo

ck
 ti

m
e 

(s
)

RMSD for 1k decoys
6
5
.9
2

5
.3
8

4
.7

2
.5

1
.4
6

 1

 10

 100

 1000

 10000

 100000

no
 P

A
R

P
A

R
 1

6 p
P

A
R

 1
6 d

P
A

R
 3

2 d
P

A
R

 6
4 d

MR on 192 decoys

6
6
6
8
.5

4
7
6

4
2
9

2
2
3

1
2
9

Fig. 1. Experiments accelerated by PAR (Np: N parallel CPUs; Nd: N
distributed CPUs).

3 EXAMPLE USE
The first example experiment consists of computing Alpha Carb-
ons Root Mean-Square Deviation after optimal superposition, noted
CαRMSDopt hereafter, on one thousand ab initio generated struc-
tures for the protein target 256B. Distances between proteins are
computed using the software from (Zhang and Skolnick (2004)).
The second experiment performs Molecular Replacement (MR), a
method of solving the phase problem in X-ray crystallography using
homologous structures, on a set of 192 decoys for the protein target
1m6t. We present the time elapsed with and without using PAR.
PAR in parallel mode uses several cores of a given computer while
the distributed mode uses distinct computers. The current imple-
mentation of PAR is known to work well with up to 16 and 64 CPUs
in parallel and distributed mode respectively.

Prior to timing experiments, needed programs and data were
copied to each machine by the user. During experiments, PAR was
started in server mode with a list of commands to execute. Workers
were started soon after the server, but could have joined the compu-
tation later if we were not interested in the shortest completion time.
The Unix ’time’ command was used and averaged over two trials
to measure the real time spent by PAR to complete all tasks. Unlike
previous job crushers, PAR server’s life cycle is only tied to the app-
lication’s execution time (no Unix daemon involved) and PAR runs
only in user-space.

Results are shown in Figure 1. The first bar is the real time elap-
sed when not using PAR. The second bar is the time spent when
using PAR in parallel mode, following bars are durations in distri-
buted mode. On a CPU-intensive task and when using 16 CPUs,
the speedup obtained by PAR can be as high as 14.01 in the paral-
lel case and 15.54 in the distributed one. Lower performance of the
parallel version is attributed to Python’s problem with multi-thread
applications (the Python interpreter uses a global lock mechanism
shared by all threads). We can see that the application scales remar-
kably well. The overhead due to communications between workers
and the master is very small, this allows for an effective use of the
parallel hardware with minimum effort required on the user’s side.

4 FURTHER DEVELOPMENTS
PAR can be used on network of Unix-like workstations. It can
take advantage of a Network shared File System (NFS). However,

because of poor NFS performances, data-intensive tasks should be
computed on top of a Distributed File System (DFS). As DFS are
still rare even within clusters, we envisage to plug in such a func-
tionality into PAR. A prototype has been implemented but is still in
experimental stage.

PAR should integrate fault-tolerance policies, in order to be
used safely even with more workers over longer periods, and with
minimal overhead.

Furthermore, compression could be added to speedup communi-
cations. Encryption would be similarly easy to add and would allow
PAR to be used over untrusted networks.

Finally, features can be added for large-scale experiments. For
example, requesting groups of jobs instead of one at a time would
lower the load on the server part. Allowing PAR to run both as
a server and as a client would allow it to be deployed in layers,
which could be used to connect several clusters together and incre-
ase scalability. Requests and contributions from users are also
considered.

ACKNOWLEDGMENTS
Funding: Our research is funded by the “Initiative Research Unit” program from
RIKEN, Japan. We thank all the PAR users, especially early ones like Rojan Shrestha
for providing feedback and useful feature requests. We wish to thank RIKEN, Japan,
for an allocation of computing resources on the RIKEN Integrated Cluster of Clusters
(RICC) system.

REFERENCES
Anderson, D. P. (2004). BOINC: A system for public-resource computing and storage.

pages 4–10, Pittsburgh, PA, USA. IEEE Computer Society.
Beberg, A. L., Ensign, D. L., Jayachandran, G., Khaliq, S., and Pande, V. S. (2009).

Folding@home: Lessons from eight years of volunteer distributed computing.
de Lomana, A. L. G., Gómez-Garrido, A., Sportouch, D., and Villà-Freixa, J. (2008).

Optimal experimental design in the modelling of pattern formation. ICCS’08, 5101,
610–619.

Dean, J. and Ghemawat, S. (2004). Mapreduce: simplified data processing on large
clusters. In OSDI’04, Berkeley, CA, USA. USENIX Association.

Fedak, G., Germain, C., Néri, V., and Cappello, F. (2001). Xtremweb: A generic global
computing system. In CCGRID’01, pages 582–587. IEEE Computer Society.

Forum, M. P. I. (1994). MPI: A message-passing interface standard. Technical Report
UT-CS-94-230, Department of Computer Science, University of Tennessee. Tue, 22
May 101 17:44:55 GMT.

Hu, J., Mungall, C., Nicholson, D., and Archibald, A. L. (1998). Design and implemen-
tation of a corba-based genome mapping system prototype. Bioinformatics, 14(2),
112–120.

Johnston, M. A., Galván, I. F., and Villà-Freixa, J. (2005). Framework-based design of
a new all-purpose molecular simulation application: The adun simulator. Journal of
Computational Chemistry, 26(15), 1647–1659.

Jungfer, K. and Rodriguez-Tomé, P. (1998). Mapplet: a corba-based genome map
viewer. Bioinformatics, 14(8), 734–738.

Litzkow, M., Livny, M., and Mutka, M. (1988). Condor - a hunter of idle workstations.
In ICDCS’88.

Object Management Group (1998). The Common Object Request Broker: Architec-
ture and Specification. Version 2.3. Object Management Group, Framingham, MA,
USA.

Sadasivam, G. S. and Baktavatchalam, G. (2010). A novel approach to multiple
sequence alignment using hadoop data grids. In MDAC ’10, pages 1–7, New York,
NY, USA. ACM.

Swain, M., Hunniford, T., Mandel, J. J., Palfreyman, N. M., and Dubitzky, W. (2005).
Modeling gene-regulatory networks using evolutionary algorithms and distributed
computing. CCGRID’05, 1, 512–519.

Zhang, Y. and Skolnick, J. (2004). Scoring function for automated assessment of protein
structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4),
702–710.

2

 at brm
ip13 on January 6, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/



