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Abstract—Communication-avoiding algorithms allow redun-
dant computations to minimize the number of inter-process com-
munications. In this paper, we propose to exploit this redundancy
for fault-tolerance purpose. We illustrate this idea with QR
factorization of tall and skinny matrices. We give a theoretical
evaluation of the number of failures our algorithm can tolerate
under different semantics and an experimental evaluation of the
performance overhead.

I. INTRODUCTION

Faut tolerance for high performance distributed applications
can be achieved at system-level or application-level. System-
level fault tolerance is transparent for the application and
requires a specific middleware that can restart the failed
processes and ensure coherent state of the application [5], [4].

Application-level fault tolerance requires the application
itself to handle the failures and adapt to them. Of course,
it implies that the middleware that supports the distributed
execution must be robust enough to survive the failures and
provide the application with primitives to handle them [11].
Moreover, it requires that the application uses fault-tolerant
algorithms that can deal with process failures [3].

Recent efforts in the MPI-3 standardization process [13]
defined an interface for a mechanism called User-Level Failure
Mitigation (ULFM) [2] and Run-Through Stabilization [16].

This paper deals with the QR factorization of tall and skinny
matrices. After a quick overview of techniques for fault tol-
erance (section II), we provide three fault-tolerant algorithms
in the context of ULFM in section III. We give the robustness
of each algorithm, the semantics of the fault tolerance and
we detail the behavior during failure-free execution and upon
failures. Then we present an experimental evaluation of the
overhead of the fault tolerance mechanism in section I'V.

II. ALGORITHM-BASED FAULT TOLERANCE

FT-MPI [11], [12] defined four error-handling semantics
that can be defined on a communicator. SHRINK consists in
reducing the size of the communicator in order to leave no
hole in it after a process of this communicator died. As a
consequence, if one process p which is part of a communi-
cator of size NN dies, after the failure the communicator has

N — 1 processes numbered in [0, N — 2]. On the opposite,
BLANK leaves a hole in the communicator: the rank of the
dead process is considered as invalid (communications return
that the destination rank is invalid), and surviving processes
keep their original ranks in [0, N — 1]. While these two
semantics survive failures with a reduced number of processes,
REBUILD spawns a new process to replace the dead one,
giving it the place of the dead process in the communicators
it was part of, including giving it the rank of the dead process.
Last, the ABORT semantics corresponds to the usual behavior
of non-fault-tolerant applications: the surviving processes are
terminated and the application exits.

Using the first three semantics, programmers can integrate
failure-recovery strategies directly as part of the algorithm that
performs the computation. For instance, diskless checkpointing
[18] uses the memory of other processes to save the state of
each process. Arithmetic on the state of the processes can be
used to store the checksum of a set of processes [7]. When a
process fails, its state can be recovered from the checkpoint
and the states of the surviving processes. This approach is
particularly interesting for iterative processes. Some matrix
operations exhibit some properties on this checkpoint, such as
checkpoint invariant for LU factorization [10].

A proposal for run-through stabilization introduced new
constructs to handle failures at communicator-level [16]. Other
mechanisms, at process-level, have been integrated as a pro-
posal in the MPI 3.1 standard draft [14, ch 15]. It is called
user-level failure mitigation [2]. Failures are detected when an
operation involving a failed process fails and returns an error.
As a consequence, operations that do not involve any failed
process can proceed unknowingly.

III. FAULT-TOLERANT, COMMUNICATION-AVOIDING
ALGORITHMS

Communication-avoiding algorithms were introduced on
[8]. The idea is to minimize the number of inter-process
communications, should it involve additional computations.
These algorithms perform well on current architectures, rang-
ing from multicore architectures [9] to aggregations of clusters
[1], because of the speed difference between computations and
data movements.



As seen in the examples cited in section II, tolerating fail-
ures requires some form of redundancy, such as checkpoints
or checksums stored in additional processes [3].

In this paper, we propose to exploit the redundant com-
putations made by communication-avoiding algorithms for
fault-tolerance purpose. In this section we illustrate this idea
with a communication-avoiding algorithm for tall and skinny
matrices (TSQR). This algorithm can be used to compute
the QR factorization of matrices with a lot of rows and few
columns, or as a panel factorization for QR factorization [15].

A. Computing the R with TSQR

The TSQR relies on successive steps that consist of local
QR factorizations, involving no inter-process communications,
and one inter-process communication. Initially, the matrix is
decomposed in submatrices, each process holding one subma-
trix. On the first step, each process performs a QR factorization
on its local submatrix. Then odd-numbered processes send the
resulting R to the previous even-numbered process: rank 1
sends to rank 0O, rank 3 sends to rank 2.... The algorithm
itself is given by Algorithm 1. _

Even-numbered processes concatenate the two I matrices
by creating a new matrix whose upper half is the R it has
computed and whose bottom half is the R it has received. Then
the odd-numbered process is done with its participation to the
computation of the R. If the () matrix is computed, it will
work again when the moment comes, after the computation of
the R is done.

Even-numbered processes perform a local QR factorization
of the resulting matrix, and produce another R. A similar
communication and concatenation step is performed between
processes of rank r 4 25%°P_ if r denotes the rank of each
process. An illustration of this communication, recombination
and local computation process on four processes is depicted
by Figure 1.

At each step, half of the participating processes send their
R and are done. The other half receive an R, concatenate
it with their own R and perform a local QR factorization.
This communication-computation progression forms a binary
reduction tree [17]. _

We can see on this example that once it has sent its R,
each process becomes idle. Eventually, process 0 is the only
working process that remains. Half of the processes are idle
after the first step, one quarter are idle after the second step,
and so on until only one process is working at the end.

B. Redundant TSQR

We have seen in section III-A that 1) only one process
eventually gets the resulting R and 2) at each step, half of
the working processes get idle. The idea behind Redundant
TSQR is to use these spare processes to produce copies of the
intermediate R factors, in order to tolerate process failures
during the intermediate steps.

1) Semantics: With Redundant TSQR, at the end of the
computation, all the processes get the final R matrix. If some
processes crash during the computation but enough processes
survive (see section III-B3), the surviving processes have the
final R factor.
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F1G. 1: Computing the R of a matrix using a TSQR factoriza-
tion on 4 processes.

Algorithm 1: TSQR
Data: Submatrix A

1 Q,R=0R(A);

2 step =0

3 while / done () do

4 if isSender ( step) then
/* I am a sender */
5 b = myBuddy ( step) ;
6 send ( R, b) ;
7 return;
8 else
/* I am a receiver */
9 b = myBuddy ( step) ;
10 recv (R, b) ;
11 A = concatenate (R, R’);
12 | QR=0R(A);
13| step++;

/+* The root of the tree reaches this
point and owns the final R */

[

4 return R;

2) Algorithm: The basic idea is that when two processes
communicate with each other, instead of having one sender
and one receiver that assembles the two R matrices, the
processes exchange their matrices. Both of them assemble the
two matrices and both of them proceed with the local QR
factorization. This algorithm is given by Algorithm 2.

This algorithm is represented on four processes in Figure
2. Plain lines represent the regular TSQR pattern. During the
first communication stage, the redundancies are represented by
dashed lines: P; and P5; exchange data with Py and P> respec-
tively, and therefore obtain the same intermediate matrices.
Then same data exchange is performed during the following
step, resulting in a first level of redundancy (obtained from the
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FIG. 2: Computing the R of a matrix using a TSOR factoriza-
tion on 4 processes with redundant R factors.

Py < P, exchange), represented by loosely dashed lines, and
a secondary level of redundancy (obtained from the P; <+ Ps
exchange), represented by dashed lines.

Algorithm 2: Redundant TSQR

Data: Submatrix A
1 Q,R=0R(A);
2 step =0
3 while / done () do
4 b = myBuddy ( step) ;
5 f = sendrecv (R, R, b) ;
6 if FAIL == f then
7 | return;
8 A = concatenate( R, R’);
9 Q,R=0R(A);
10 step++ ;

/+ All the surviving processes reach
this point and own the final R */

-
-

return R;

3) Robustness: We can see that at each step, the data
exchange creates one extra copy of each intermediate matrix.
As a consequence, the redundancy rate doubles at each step
of the algorithm. Therefore, if s denotes the step number, the
number of existing copies in the system is 2°. Hence, this
algorithm can tolerate 2° — 1 process failures.

We can see that the number of failures that this algorithm
can tolerate increases as the computation progresses. This
fact is a direct consequence from the fact that the number
of redundant copies of the data is multiplied by 2 at each
step. For instance, the computation can proceed if no more
than 1 process have failed by the end of step 1, no more
than 3 processes have failed by the end of step 2, etc. In the
meantime, the number of failures in the system increase with
time: the longer a computation lasts, the more processes will

FI1G. 3: Redundant TSQR on 4 processes with one process
failure.

fail [19]. Therefore, the robustness of this algorithm increases
with time, which is consistent with the need for robustness.

4) Behavior upon failures: When a process fails, the other
processes proceed with the execution. Processes that require
data from the failed process end their execution, and those that
require data from ended processes end theirs as well (see line
7 of Algorithm 2).

For instance, Figure 3 represents the execution of Redundant
TSQR on four processes. Process P, crashes at the end of
the first step. The data it contained is also held by process
Ps, therefore the execution can proceed. However, process
Py needs data prom the failed process at the following step.
Therefore, process Py ends its execution. As a consequence,
Py ends its execution. At the end of the computation, the
final result R has been computed by processes P; and P3 and
therefore, the final result is available in spite of the failure.

C. Replace TSOR

1) Semantics: The semantics of Replace TSQR,is similar to
the one with Redundant TSQR: at the end of the computation,
all the processes get the final R matrix. If some processes
crash during the computation but enough processes survive
(see section III-C3), the surviving processes have the final R
factor.

2) Algorithm: The fault-free execution of the Replace
TSOR algorithm is exactly the same as with Redundant TSOR
(see section III-B2). The data held by processes along the
reduction tree of the initial TSQR algorithm is replicated on
spare processes that would normally stop their execution.

The difference comes when a failure occurs. In this case,
the process that needs to communicate with another process
gets an error when it tries to communicate with it. Then, it
finds a replica of the process it is trying to communicate with
(line 6 of Algorithm 3) and exchanges its matrix with it. If no
replica can be found alive, it means that too many processes
have failed and no extra copy of this submatrix exist. Then
the process exits. The algorithm is described by Algorithm 3.



Algorithm 3: Replace TSQR

Data: Submatrix A
1 Q,R=0R(A);

2 step = 0; while !/ done () do

3 b = myBuddy ( step) ;

4 f = sendrecv (R, R, b) ;
5 while FAIL == f do

6 b = findReplica( b) ;
7 if None == b then

8

L return;
9 f = sendrecv (R, R, b) ;
10 A = concatenate (R, R’);
11 Q. R=0Q0R(A);
12| step++;

/+ All the surviving processes reach

this point and own the final R */
13 return R;
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FIG. 4: Replace TSQOR on 4 processes with one process failure.

3) Robustness: We have seen in section III-C2 that this
algorithm can keen progressing as long as there exists at least
one copy of each submatrix. We have seen in section III-B3
that at each step s, the number of existing copies in the system
is 2°. Hence, this algorithm can tolerate 2° —1 process failures,
just like the Redundant TSQOR algorithm (see section III-B3).

The difference between the Redundant TSQR and the Re-
place TSOR is that with the former, the processes that need
to communicate with a failed process exit, whereas with the
latter, they try to find a replica. Therefore, if the root of the
tree does not die, it holds the final result R at the end of the
computation.

4) Behavior upon failures: If a process fails, the processes
that try to communicate with it fail to do so and try to find a
replica to communicate with.

For instance, Figure 4 represents the execution of Redundant
TSQR on four processes. Process P, crashes at the end of

the first step. The data it contained is also held by process
P35, therefore the execution can proceed. However, process
Py needs data prom the failed process at the following step.
Therefore, process P, ends its execution. As a consequence,
P, fails to communicate with P, and finds out that P3; holds
the same data as P». Then F, exchanges data with Ps.

D. Self-Healing TSQOR

The previous algorithms described here, Redundant TSOR
(section III-B) and Replace TSQR (section III-C) proceed
with the execution without the dead processes. Here we are
describing an algorithm that replaces the dead process with a
new one.

1) Semantics: With Self-Healing TSQR, at the end of the
computation, all the processes get the final R matrix. If some
processes crash during the computation but enough processes
survive at each step (see section III-D3), the final number
of processes is the same as the initial number and all the
processes have the final R factor.

2) Algorithm: This algorithm follows the same basic idea
as Redundant TSQOR (see section III-B) in a sense that at each
step of the computation, all the processes send or receive
their R matrices and compute the R of the resulting matrix.
As a consequence, the data required by the computation
(the intermediate submatrices represented in Figure 1) are
replicated. This part is described by Algorithm 6 with the
initialization described by Algorithm 4.

In this algorithm, the failed processes are replaced by newly
spawned ones. We have seen that the data contained by the
failed process has been replicated by the redundant compu-
tations. As a consequence, a failed process can be recovered
completely and a newly spawned process can replace it: see
Algorithm 5.

The fault-free execution of this algorithm is similar with the
execution represented by Figure 2.

Algorithm 4: Self-Healing TSQR: initialization
Data: Submatrix A

1 Q_R=0QR(A);

2 step=0;

3 R=0QR (R, step) ;

4 return R;

3) Robustness: We have seen in III-D2 and III-B3 that at
each step s, the data necessary for each process from the
original algorithm is replicated 2° times on other processes.
As a consequence, this algorithm can tolerate 2° — 1 process
failures at each step s.

Similarly with Redundant TSQR, the robustness of the
algorithm increases as the need for robustness increases (see
section III-B3). The big difference with Redundant TSQR
in terms of robustness is that Self-Healing TSQR replaces
the failed processes. Therefore, this redundancy rate gives
the number of failed processes that can be accepted at each
step. For instance, 1 process can fail at step 1 ; it will be
respawned and 3 additional processes can fail at step 2. As a



Algorithm 5: Self-Healing TSQR: process restart

/+ Gets my data from a process that
holds the same as me. */

1 t=mytwin () ;
2 R, step = recv (1) ;

/+ Proceed with the computation */
3 R=0QR (R, step) ;

/+ At the end of the computation, this
process holds the final R. */
4 return R;
Algorithm 6: Self-Healing TSQR: computation
1 Function shtsqr( A, step ):
2 Q,R=0QR(A);
3 while !/ done () do
4 b = myBuddy ( step) ;
5 f = sendrecv (R, R, b) ;
6 if FAIL == f then
7 L spawnNew ( b) ;
8 A = concatenate (R, R’);
9 Q, R=0R(A);
10 | stept+ ;
/+ All the processes reach this
point and own the final R */
n | return R;

consequence, the total number of failures this algorithm can
tolerate is > 7_; 2% Besides, at each step s it can tolerate
2% — 1 process failures.

4) Behavior upon failures: When a process fails, the pro-
cess that was supposed to communicate with it detects the
failure and spawns a new process. The new process obtains the
redundant data from one of the processes that hold the same
data as the failed process. Then the computation continues
normally.

IV. PERFORMANCE EVALUATION

We evaluated the overhead of the replication during fault-
free execution. The overhead of the recovery process of the
self-healing algorithm (see section III-D) depends on many
factors such as failure detection and the time to spawn a new
process; it is beyond the scope of this paper.

We used the Griffon cluster of Grid’5000 [6], which is made
of 92 nodes, each of which features two quad-core Intel Xeon
L5420 running at 2.5 GHz, 16 GiB of RAM and both GigaEth-
ernet and 20G InfiniBand network interconnection networks.
The nodes were running a 64-bit Linux 3.2 kernel. All the code
was compiled using the GNU gforfran and gcc 4.7.2 compilers
with -03 optimization flag. The computation kernels we used
were provided by LAPACK 3.5.0 and OpenBLAS downloaded
from its GitHub repository. The MPI library we used was the
fault tolerant implementation OpenMPI 1.7ft_b3.
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FI1G. 5: Self-Healing TSQR on 4 processes with one process
failure.

Every experiment was run 10 times and the plots present the
average of these measurements. The plots present the number
of megaflops per second, which is the number of floating point
operations (computed using the mn? formula used for the QR
factorization) divided by the computation time (obtained using
MPI_Wtime ()).

The performance obtained by the fault-tolerant and the non
fault-tolerant for various matrix sizes and number of processes
is given in Figure 6. The difference between the two curves
give the overhead of the extra copy.

As expected, we can see that the fault-tolerance version
has a relatively small overhead, possibly due to the extra
memory movements (to create the intermediate matrices) and
network communications: at each step, processes performs
two communications (send+recv) instead of only one (send
or recv).

Moreover, since, if N denotes the number of columns of the
matrix, each communication and each copy of an R matrix has
a size of N2. Therefore, this overhead is more important if the
matrix is wider.

V. CONCLUSION AND PERSPECTIVE

In this paper we have presented three fault-tolerant al-
gorithms for the QR factorization of tall-and-skinny ma-
trices. These algorithms take advantage of properties from
communication-avoiding algorithms. We have evaluated their
resilience properties from a theoretical point of view, and we
have evaluated their performance and seen that in practice,
they have little overhead on the performance of the computa-
tion.
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