
Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Exploiting Redundant Computation
in Communication-Avoiding Algorithms
for Algorithm-Based Fault Tolerance

HPSC 2016

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13

April 9th, 2016

1 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Roadmap

1 Introduction
Communication-Avoiding Algorithms
Fault tolerance

2 Fault-tolerant TSQR
Redundant TSQR
Replace TSQR
Self-Healing TSQR

3 Performance overhead

4 Conclusion

2 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Communication-Avoiding Algorithms

Introduced in 2008 by Demmel et al

Idea: minimize the number of communications

Additional computations

Communications are expensive, flops are not

→ Compute more, communicate less

Exist for los 3 amigos: LU, QR, Cholesky

3 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Communication-Avoiding QR

Works by panels :

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

0 A1
22

)
Then, recursively, work on A1

22...

CAQR algorithm

1 Panel factorization:(
A11

A21

)
= Q1

(
R11

0

)
2 Compact representation:

Q1 = I − Y1T1Y
T
1

3 Update the trailing matrix:(
I − Y1T1Y

T
1

)(A12

A22

)
=

(
A12

A22

)
− Y1(T

T
1 (Y T

1

(
A12

A22

)
)) =

(
R12

A1
22

)
4 Continue recursively on the trailing matrix A1

22

4 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Communication-Avoiding QR

Works by panels :

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

0 A1
22

)
Then, recursively, work on A1

22...

CAQR algorithm

1 Panel factorization:(
A11

A21

)
= Q1

(
R11

0

)
2 Compact representation:

Q1 = I − Y1T1Y
T
1

3 Update the trailing matrix:(
I − Y1T1Y

T
1

)(A12

A22

)
=

(
A12

A22

)
− Y1(T

T
1 (Y T

1

(
A12

A22

)
)) =

(
R12

A1
22

)
4 Continue recursively on the trailing matrix A1

22

4 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Tall-and-Skinny QR

Panel factorization: key piece of the CAQR algorithm(
A11

A21

)
= Q1

(
R11

0

)

The matrix

(
A11

A21

)
is tall and skinny :

number of lines � number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix:
TSQR

5 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

TSQR algorithm

Goal: compute the QR factorization of a matrix A:

A = QR

A is tall and skinny

To compute it in parallel on P processes:

M = number of lines, N = number of columns

M ≥ NP
→ at least square matrices on each process


A1

A2

A3

A4

 = Q1


R1

0
0
0



6 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

TSQR algorithm

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

7 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

TSQR algorithm

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

7 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

TSQR algorithm

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

7 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

TSQR algorithm

Complexity of the TSQR algorithm:

Matrix A: M lines, N columns ; P processes

4
3

MN2

P
+ 3

4
N3logP flops

logP communications

Complexity of a traditional QR factorization (ScaLAPACK):

4
3

MN2

P
flops

NlogP communications

→ Number of communications: save a factor N

→ Flops: extra 3
4
N3logP flops

Compute more, communicate less!

8 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Reliability of a distributed system

Mean Time Between Failures

MTBFtotal = (

n−1∑
i=0

1

MTBFi
)−1 (1)

→ The more components a system is made of, the more likely it is to have a
failure.

 0

 1000

 2000

 3000

 4000

 5000

 1 10 100 1000 10000 100000 1e+06

M
ea

n
Ti

m
e

B
et

w
ee

n
F

ai
lu

re
s

of
 th

e
sy

st
em

 (h
ou

rs
)

Number of components in the system

10 000 H
100 000 H

1 000 000 H
10 000 000 H

9 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: automatic

Automatic fault tolerance:

Rollback recovery

Distributed snapshots with coordinated checkpointing (Chandy-Lamport)

Non-coordinated checkpointing with message-logging

Benefits:

Completely automatic, transparent

No modification in the code of the parallel program

Drawbacks:

Performance overhead: when checkpoints are taken, when messages are
logged

Failure/restart: expensive
Coordinated checkpointing: all the processes roll back
Non-coordinated checkpointing: only the failed process rolls back, but
subsequent synchronizations?

10 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: automatic

Automatic fault tolerance:

Rollback recovery

Distributed snapshots with coordinated checkpointing (Chandy-Lamport)

Non-coordinated checkpointing with message-logging

Benefits:

Completely automatic, transparent

No modification in the code of the parallel program

Drawbacks:

Performance overhead: when checkpoints are taken, when messages are
logged

Failure/restart: expensive
Coordinated checkpointing: all the processes roll back
Non-coordinated checkpointing: only the failed process rolls back, but
subsequent synchronizations?

10 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: algorithm-based

Behavior upon failures: handled by the application itself

Failure recovery and sustainability is handled by the parallel program

Written by the programmer

Data redundancy, diskless checkpointing

Iterative checkpointing

User-Level Failure Mitigation (MPI-3 standard)

Benefits:

FT mechanism adapted to the application

Smaller checkpoints

Adapted synchronizations

Drawbacks:

Requires some work from the programmer

Need for a parallel library and run-time environment that support the
ABFT (FT-MPI, MPI-3)

11 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: algorithm-based

Behavior upon failures: handled by the application itself

Failure recovery and sustainability is handled by the parallel program

Written by the programmer

Data redundancy, diskless checkpointing

Iterative checkpointing

User-Level Failure Mitigation (MPI-3 standard)

Benefits:

FT mechanism adapted to the application

Smaller checkpoints

Adapted synchronizations

Drawbacks:

Requires some work from the programmer

Need for a parallel library and run-time environment that support the
ABFT (FT-MPI, MPI-3)

11 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

1 Introduction
Communication-Avoiding Algorithms
Fault tolerance

2 Fault-tolerant TSQR
Redundant TSQR
Replace TSQR
Self-Healing TSQR

3 Performance overhead

4 Conclusion

12 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault tolerant TSQR

Let’s look at TSQR again

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

13 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault tolerant TSQR

Let’s look at TSQR again

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

13 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault tolerant TSQR

Let’s look at TSQR again

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

13 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault tolerant TSQR

Let’s look at TSQR again

P0 works beginning → end

P2 works during the first two steps, then stops

P1 and P3 work during the first step, then stops

Let’s put these lazy dudes to work!

13 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

What do we expect from fault tolerance?

Have one result and the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR

14 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

What do we expect from fault tolerance?

Have one result and the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR

14 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

What do we expect from fault tolerance?

Have one result and the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR

14 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Redundant TSQR: failure

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

CRASH

QR

STOP

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

QR

16 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P1 acts as P2.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

QR

CRASH

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

QR

17 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

S/R

CRASH

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

QR

re
sp
aw

n

co
py

R′
2

V2
′

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

S/R

R

V

R

V

R

V

R

V

QR

18 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

1 Introduction
Communication-Avoiding Algorithms
Fault tolerance

2 Fault-tolerant TSQR
Redundant TSQR
Replace TSQR
Self-Healing TSQR

3 Performance overhead

4 Conclusion

19 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance evaluation

Performance evaluation: what do we measure?

Overhead during fault-free execution
Very important!
Cost of the mechanisms put in place to make the FT possible
Here: additional communications
Same for the three algorithms

Recovery time
Depends on a lot of factors!
Failure detection (impossible with asynchronous communications)
Recovery made by the RTE (spawn and reconnect a new process)
Recovery protocol of the algorithm ← only interesting thing here, but hard
to measure independently

20 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance evaluation

Performance evaluation: what do we measure?

Overhead during fault-free execution
Very important!
Cost of the mechanisms put in place to make the FT possible
Here: additional communications
Same for the three algorithms

Recovery time
Depends on a lot of factors!
Failure detection (impossible with asynchronous communications)
Recovery made by the RTE (spawn and reconnect a new process)
Recovery protocol of the algorithm ← only interesting thing here, but hard
to measure independently

20 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance overhead

64 processes, 64 columns (P = 64, N = 64)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50000 100000 150000 200000 250000 300000

M
FL

O
P
/s

Number of lines

TSQR
TSQR FT

21 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance overhead

256 processes, 64 columns (P = 256, N = 64)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50000 100000 150000 200000 250000 300000

M
FL

O
P
/s

Number of lines

TSQR
TSQR FT

22 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance overhead

16 processes, 128 columns (P = 16, N = 128)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10000 20000 30000 40000 50000 60000 70000

M
FL

O
P
/s

Number of lines

TSQR
TSQR FT

23 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

1 Introduction
Communication-Avoiding Algorithms
Fault tolerance

2 Fault-tolerant TSQR
Redundant TSQR
Replace TSQR
Self-Healing TSQR

3 Performance overhead

4 Conclusion

24 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices

Cornerstone for general QR factorization

Three recovery algorithms, one for each semantics

Scalable FT protocol based on scalable algorithms

Makes use of new features provided by the MPI-3 standard

FT API now provided by MPI-3

User-Level Failure Mitigation

Next step:

Apply this to LU, Cholesky (the other amigos)

FT CAQR for general matrices

25 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

	Introduction
	Communication-Avoiding Algorithms
	Fault tolerance

	Fault-tolerant TSQR
	Redundant TSQR
	Replace TSQR
	Self-Healing TSQR

	Performance overhead
	Conclusion

