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Communication-Avoiding Algorithms
Fault tolerance

Communication-Avoiding Algorithms

Introduced in 2008 by Demmel et al

Idea: minimize the number of communications

Additional computations

Communications are expensive, flops are not

→ Compute more, communicate less

Exist for los 3 amigos: LU, QR, Cholesky
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Communication-Avoiding QR

Works by panels :

A =

(
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)
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Then, recursively, work on A1

22...

CAQR algorithm

1 Panel factorization:(
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4 Continue recursively on the trailing matrix A1
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Tall-and-Skinny QR

Panel factorization: key piece of the CAQR algorithm(
A11

A21

)
= Q1

(
R11

0

)

The matrix

(
A11

A21

)
is tall and skinny :

number of lines � number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix:
TSQR
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TSQR algorithm

Goal: compute the QR factorization of a matrix A:

A = QR

A is tall and skinny

To compute it in parallel on P processes:

M = number of lines, N = number of columns

M ≥ NP
→ at least square matrices on each process


A1

A2

A3

A4

 = Q1


R1

0
0
0


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TSQR algorithm
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TSQR algorithm

Complexity of the TSQR algorithm:

Matrix A: M lines, N columns ; P processes

4
3

MN2

P
+ 3

4
N3logP flops

logP communications

Complexity of a traditional QR factorization (ScaLAPACK):

4
3

MN2

P
flops

NlogP communications

→ Number of communications: save a factor N

→ Flops: extra 3
4
N3logP flops

Compute more, communicate less!
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Reliability of a distributed system

Mean Time Between Failures

MTBFtotal = (

n−1∑
i=0

1

MTBFi
)−1 (1)

→ The more components a system is made of, the more likely it is to have a
failure.
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Approaches for fault tolerance: automatic

Automatic fault tolerance:

Rollback recovery

Distributed snapshots with coordinated checkpointing (Chandy-Lamport)

Non-coordinated checkpointing with message-logging

Benefits:

Completely automatic, transparent

No modification in the code of the parallel program

Drawbacks:

Performance overhead: when checkpoints are taken, when messages are
logged

Failure/restart: expensive
Coordinated checkpointing: all the processes roll back
Non-coordinated checkpointing: only the failed process rolls back, but
subsequent synchronizations?
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Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: algorithm-based

Behavior upon failures: handled by the application itself

Failure recovery and sustainability is handled by the parallel program

Written by the programmer

Data redundancy, diskless checkpointing

Iterative checkpointing

User-Level Failure Mitigation (MPI-3 standard)

Benefits:

FT mechanism adapted to the application

Smaller checkpoints

Adapted synchronizations

Drawbacks:

Requires some work from the programmer

Need for a parallel library and run-time environment that support the
ABFT (FT-MPI, MPI-3)
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Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault tolerant TSQR

Let’s look at TSQR again
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Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault tolerant TSQR

Let’s look at TSQR again

P0 works beginning → end

P2 works during the first two steps, then stops

P1 and P3 work during the first step, then stops

Let’s put these lazy dudes to work!
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Redundant TSQR
Replace TSQR
Self-Healing TSQR

What do we expect from fault tolerance?

Have one result and the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR
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Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

15 / 25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Redundant TSQR: failure

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.
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Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P1 acts as P2.
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Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process
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Performance evaluation

Performance evaluation: what do we measure?

Overhead during fault-free execution
Very important!
Cost of the mechanisms put in place to make the FT possible
Here: additional communications
Same for the three algorithms

Recovery time
Depends on a lot of factors!
Failure detection (impossible with asynchronous communications)
Recovery made by the RTE (spawn and reconnect a new process)
Recovery protocol of the algorithm ← only interesting thing here, but hard
to measure independently
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Performance overhead

64 processes, 64 columns (P = 64, N = 64)
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Performance overhead

256 processes, 64 columns (P = 256, N = 64)
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Performance overhead

16 processes, 128 columns (P = 16, N = 128)
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Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices

Cornerstone for general QR factorization

Three recovery algorithms, one for each semantics

Scalable FT protocol based on scalable algorithms

Makes use of new features provided by the MPI-3 standard

FT API now provided by MPI-3

User-Level Failure Mitigation

Next step:

Apply this to LU, Cholesky (the other amigos)

FT CAQR for general matrices
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