Exploiting Redundant Computation
in Communication-Avoiding Algorithms
for Algorithm-Based Fault Tolerance
HPSC 2016

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13

April 9th, 2016

1/25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Roadmap

© Introduction
@ Communication-Avoiding Algorithms
o Fault tolerance

© Fault-tolerant TSQR
@ Redundant TSQR
@ Replace TSQR
@ Self-Healing TSQR

© Performance overhead

@ Conclusion

2 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR Communication-Avoiding Algorithms
Performance overhead Fault tolerance

Communication-Avoiding Algorithms

Introduced in 2008 by Demmel et al
o Idea: minimize the number of communications
@ Additional computations

@ Communications are expensive, flops are not

— Compute more, communicate less

Exist for los 3 amigos: LU, QR, Cholesky

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR Communication-Avoiding Algorithms
Performance overhead Fault tolerance

Communication-Avoiding QR

Works by panels :
A11 A12 Rll R12
A= =
(A21 A22) @ (0 A%z)

Then, recursively, work on A3,...

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Communication-Avoiding Algorithms
Fault tolerance

Communication-Avoiding QR

Works by panels :
A11 A12 Rll R12
A= =
(A21 A22> @ (0 A%z)
Then, recursively, work on Al ...

CAQR algorithm

© Panel factorization:
A1 —Q R
Asr) — '\ 0

@ Compact representation:
Qi =1-YnY'

© Update the trailing matrix:
_ (A2 _ (A2 7T [Al2 _ [Rz
(I -1y <A22 = A,y Yi(Ty (Y1 Aoy) = Al

@ Continue recursively on the trailing matrix A3,

4 /25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction

Fault-tolerant TSQR Communication-Avoiding Algorithms
Performance overhead Fault tolerance
Conclusion

Tall-and-Skinny QR

Panel factorization: key piece of the CAQR algorithm

(i) = ()

. Al]
Th t
e matrix (A21

@ number of lines > number of columns

> is tall and skinny :

Specific algorithm to compute the QR factorization of a tall and skinny matrix:
TSQR

5 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR Communication-Avoiding Algorithms
Performance overhead Fault tolerance

TSQR algorithm

Goal: compute the QR factorization of a matrix A:
e A=QR
o A is tall and skinny

To compute it in parallel on P processes:

@ M = number of lines, N = number of columns
e M >NP

—> at least square matrices on each process

Ay R

1
Ay | 0
As |~ Qi1
Ay 0

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

TSQR algorithm

Py

P,

P,

Py

QR

Perform.

Ao |, \\{f’n
Vo

A LR
Wi

Ay |
Va

Ay | By
V3

Introduction
Fault-tolerant TSQ

onclusion

Camille Coti

Communication-Avoiding Algorithms
Fault tolerance

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

TSQR algorithm

Py

P,

P,

Py

Introduction
Fault-tolerant TSQ
Performance «

Send/Recv

Communication-Avoiding Algorithms
Fault tolerance

QR

V3

Ao |, Jj’n 77777777 R “Ro| o R
4 . vy
A |
Vi
Ay | R B |
Va V'
As |

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

TSQR algorithm

Py

P,

P,

Py

Introduction
Fault-tolerant TSQ
Performance «

Communication-Avoiding Algorithms
Fault tolerance

V3

QR Send/Recv QR Send/Recv QR
Ao |, \!j’n 77777777 R ARSI R SRl R
Vi vy N v
A | /
|14
A | \\{f’z 77777777 B R Ry |
vy v
Ag |

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR Communication-Avoiding Algorithms
Performance overhead Fault tolerance
Conclusion

TSQR algorithm

Complexity of the TSQR algorithm:
@ Matrix A: M lines, N columns ; P processes
y 2
3 M= + 3N3logP flops

@ logP communications

Complexity of a traditional QR factorization (ScaLAPACK):

4 MN?
o ;-5 flops

@ NlogP communications

— Number of communications: save a factor NV

— Flops: extra %N‘%logP flops

Compute more, communicate less!

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Communication-Avoiding Algorithms
Fault tolerance

Reliability of a distributed system

Mean Time Between Failures
n—1

MTBFotar = () !
=0

MTBF;) 1)

— The more components a system is made of, the more likely it is to have a

failure.
5000 S
- 10000 H ——
< 4000 00 000 H .
5 1000 000 H ——
S 3000 - 10000 000 H ——— |
S 2000 - .
S
$ 1000 - .
N
Q 0 P SR] —
)
5 1 10 100 1000 10000 100000 1e+06
=

a

Number o, components in the system
9 /25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR Communication-Avoiding Algorithms
ead Fault tolerance

Approaches for fault tolerance: automatic

Automatic fault tolerance:
@ Rollback recovery
@ Distributed snapshots with coordinated checkpointing (Chandy-Lamport)

@ Non-coordinated checkpointing with message-logging

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: automatic

Automatic fault tolerance:
@ Rollback recovery
@ Distributed snapshots with coordinated checkpointing (Chandy-Lamport)

@ Non-coordinated checkpointing with message-logging

Benefits:
o Completely automatic, transparent
@ No modification in the code of the parallel program
Drawbacks:
o Performance overhead: when checkpoints are taken, when messages are
logged

o Failure/restart: expensive

o Coordinated checkpointing: all the processes roll back
o Non-coordinated checkpointing: only the failed process rolls back, but
subsequent synchronizations?

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR Communication-Avoiding Algorithms
Performance overhead Fault tolerance

Approaches for fault tolerance: algorithm-based

Behavior upon failures: handled by the application itself
o Failure recovery and sustainability is handled by the parallel program
@ Written by the programmer
o Data redundancy, diskless checkpointing
@ lterative checkpointing
o User-Level Failure Mitigation (MPI-3 standard)

11 /25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Communication-Avoiding Algorithms
Fault tolerance

Approaches for fault tolerance: algorithm-based

Behavior upon failures: handled by the application itself
o Failure recovery and sustainability is handled by the parallel program
@ Written by the programmer
@ Data redundancy, diskless checkpointing
o lterative checkpointing
o User-Level Failure Mitigation (MPI-3 standard)

Benefits:
@ FT mechanism adapted to the application
o Smaller checkpoints
@ Adapted synchronizations
Drawbacks:
@ Requires some work from the programmer

@ Need for a parallel library and run-time environment that support the
ABFT (FT-MPI, MPI-3)

1 /25 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Redundant TSQR
Replace TSQR
Self-Healing TSQR

Fault-tolerant TSQR

Q Fault-tolerant TSQR
@ Redundant TSQR
@ Replace TSQR
@ Self-Healing TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
nance overnea Self-Healing TSQR

Fault tolerant TSQR

Let's look at TSQR again

QR

Py Ao | R

Vo
P, A | N

Wi
P, Ay | N

Va
Py As | >

v

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
nance overnea Self-Healing TSQR

Fault tolerant TSQR

Let's look at TSQR again

QR Send/Recv QR

Py Ao | S N P R

Vo
P, A | N

Vi
P, Ay | NS N

Va
P3 Az | N

Vs

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
nance overnea Self-Healing TSQR

Fault tolerant TSQR

Let's look at TSQR again

QR Send/Recv QR Send/Recv QR
R

Po Ao | B B e Fo| N

Vo Vv
P, A | N "’

|14
P, Ay | NS N !

Va
P3 Az | N

v

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction

t TSQR

Redundant TSQR
ead Replace TSQR
ernea Self-Healing TSQR

Fault tolerant TSQR

Let's look at TSQR again
@ Py works beginning — end
@ P> works during the first two steps, then stops

@ P and Ps; work during the first step, then stops

Let's put these lazy dudes to work!

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction

Fault-tolerant TSQR Rezlmeiz THER

Replace TSQR
Self-Healing TSQR

Performance overhead
Conclusion

What do we expect from fault tolerance?

Have one result and the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction

Fault-tolerant TSQR (ReztminEn: SQR

Replace TSQR
Self-Healing TSQR

Performance overhead
Conclusion

What do we expect from fault tolerance?

Have one result and the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Have the result on a given process at the end

@ No matter how many processes survive, the one we want has the final
answer

@ Here: Replace TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Redundant TSQR
Fault-tolerant TSQR Replace TSQR
Self-Healing TSQR

What do we expect from fault tolerance?

Have one result and the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Have the result on a given process at the end

@ No matter how many processes survive, the one we want has the final
answer

@ Here: Replace TSQR

Have the result on the expected process and all the processes are alive
@ Finish with a system that looks as if nothing bad happened
o Here: Self-Healing TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Replace TSQR

Performance overhead Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

QR

Py Ao o
Vo

P, A | Ry
Vi

P, Ay &
Vi

P3 Ay | Ry
v

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
anee N Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

QR Send/Recv

P | 4 Ry Ry

P, A,
P, Ay
Py Ay

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
anee N Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

QR Send/Recv QR

Po Ao Ry Ry Ry

P, A,
P, Ay
Py Ay

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
anee N Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

QR Send/Recv QR Send/Recv
Pq " Ry Ry R, \ R)
Py Ay
P, Ay
Py Az

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
anee N Self-Healing TSQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

QR Send/Recv QR Send/Recv QR

Po Ao Ry Ry Ry Ry R

P, A,
P, Ay
Py Ay

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Performance overhead

Redundant TSQR: failure

Redundant TSQR
Replace TSQR
Self-Healing TSQR

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.

Py

Py

QR

Send/Recv

QR Send/Recv QR

Ry

Ry

STOP

Ag

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
e ’ Self-Healing TSQR

Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P; acts as Ps.

QR Send/Recv QR Send/Recv QR

Po Ao Ry Ry Ry Ry R

P, A,
P, Ay
Py Ay

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Redundant TSQR
Performance overhead Replace TSQR
anes ’ Self-Healing TSQR

Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process

QR S/R QR S/R QR

Py Ay Ry Ry Ry Ry R

P, A

P, Ay

Py A

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

© Performance overhead

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance evaluation

Performance evaluation: what do we measure?

@ Overhead during fault-free execution
o Very important!
o Cost of the mechanisms put in place to make the FT possible
o Here: additional communications
e Same for the three algorithms

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance evaluation

Performance evaluation: what do we measure?

@ Overhead during fault-free execution

o Very important!

o Cost of the mechanisms put in place to make the FT possible
o Here: additional communications

e Same for the three algorithms

@ Recovery time

o Depends on a lot of factors!

o Failure detection (impossible with asynchronous communications)

o Recovery made by the RTE (spawn and reconnect a new process)

o Recovery protocol of the algorithm <— only interesting thing here, but hard
to measure independently

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance overhead

64 processes, 64 columns (P = 64, N = 64)

14000 T
TSQR ——
TSQR FT "

12000 ~ B

10000 ~ B
£ 8000 - 1
(]
T
= 6000 - B

4000 B

2000 B

0 lLwaey —'!/\ I I I I
0 50000 100000 150000 200000 250000 30000C

Number of lines

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
Fault-tolerant TSQR

Performance overhead
Conclusion

Performance overhead

256 processes, 64 columns (P = 256, N = 64)

14000 T
TSQR ——
TSQR FT

12000 ~ B

10000 ~ B
£ 8000 - 1
(]
T
= 6000 - B

4000 B

2000 B

0 ,./!/\ L L I I
0 50000 100000 150000 200000 250000 30000C

Number of lines

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Fault

Perfor

Performance overhead

Introduction
tolerant TSQR
‘mance overhead
Conclusion

16 processes, 128 columns (P = 16, N = 128)

MFLOP/s

900

800

700

600

500

400

300

200

100

TSQR ——
| TSOR FT 1
L - 1
e = x/T 1 1 1 | |
0 10000 20000 30000 40000 50000 60000 70000

Number of lines

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Intrc
Fault-tolerant
overhead
Conclusion

Performanc

© Conclusion

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Conclusion

Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices
o Cornerstone for general QR factorization
@ Three recovery algorithms, one for each semantics

Scalable FT protocol based on scalable algorithms
Makes use of new features provided by the MPI-3 standard
o FT API now provided by MPI-3

o User-Level Failure Mitigation

Next step:
o Apply this to LU, Cholesky (the other amigos)
o FT CAQR for general matrices

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

	Introduction
	Communication-Avoiding Algorithms
	Fault tolerance

	Fault-tolerant TSQR
	Redundant TSQR
	Replace TSQR
	Self-Healing TSQR

	Performance overhead
	Conclusion

