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This paper presents a fully distributed resource discovery and reservation system. Verification of
such a system is important to ensure the execution of distributed applications on a set of resources
in appropriate conditions. A semi-formal model for his system is presented using probabilistic timed
automata. This model is timed, parametric and probabilistic, making it a challenge to the parameter
synthesis community.

1 Introduction

The behavior of distributed systems in general can be challenging to prove. On the other hand, model
checking techniques are particularly well adapted to verify that they follow a certain specification, be-
cause such techniques explore every possible execution of the system. Moreover, the execution of a
distributed algorithm can depend on a large number of parameters, because of the complex combination
of elements involved. It is therefore difficult to have a quantitative evaluation of what happens in the
system for each and every value of each parameter.

This paper focuses on a resource management system. For some applications, resources can be
shared between clients. These clients may need to access the resources in exclusive mode. As a conse-
quence, a reservation system is necessary to arbitrate between clients and orchestrate the utilization of
the resources.

For instance, a laboratory can buy a set of computation nodes and put them together in a cluster.
A specific node, called the front-end, is used to access the computation nodes and a batch scheduler
installed on this front-end node issues reservations on the nodes. The nodes cannot be accessed by a user
that does not have an ongoing reservation on the said node issued by the batch scheduler. In practice,
this reservation system is implemented using a single job queue that maintains a list of jobs that need to
be executed and a list of available resources, and schedules the former on the latter [1, 9, 3, 2].

However, in many situations, this architecture cannot be implemented. For instance, a small lab
who bought a handful of GPU nodes might not want to dedicate hardware and human time to setup and
administrate a front-end node with a batch scheduling system. On some critical systems, this component
can be seen as a single point of failure and then reduce the reliability of the whole system. However, in
these situations, it is still necessary to make sure that applications have exclusive access to the machines
they are using.

In this paper, we present a completely distributed reservation system, based on the state maintained by
each machine itself, and the local network protocol Zeroconf [4]. This system was modeled using (timed)
Petri Nets in [11, 10]. However, we have seen that this system is highly parametrizable. the purpose of
this paper is to present it as a parametric system for verification and parameter synthesis. The resulting
model has a high level of complexity, and therefore forms a case-study which cannot be reasonably
solved with current methods. With this paper we aim at presenting it in order to open a discussion for
methods that would tackle these problems, for instance by combining or hybriding methods.
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The rest of this paper is organized as follow. The global architecture of the system and the algorithms
are described in Section 2. Section 3 describes how it can be modeled. Section 4 specifies the expected
behavior of the system and how parameter synthesis is useful to verify this behavior. Finally, section 5
concludes this paper and opens questions for the community.

2 Presentation of the system

This section presents the reservation system itself. The global architecture is described in section 2.1,
the algorithms are presented in section 2.2 for the reservation protocol itself and in section 2.3 for the
machines.

2.1 Architecture

The global architecture of the system, named QURD, is depicted in Figure 1. Computing resources
declare themselves on the Zeroconf bus, and users/clients look on the Zeroconf bus to see which resources
are available. An application (or a job) is made of several processes that are meant to run on a set of
resources, also called machines. The user submits an application through a client.

The Zeroconf bus [4] is a network protocol used for self-configuration of network services. It was
originally designed to allow automatic configuration of computers without any intervention from the
user nor any centralized server, and later extended to various services. For instances, it is widely used
for services such as DNS or network printers. In the latter example, printers declare themselves on the
Zeroconf bus, and workstations look on the Zeroconf bus to find out which printers are available.

Zeroconf uses multicast UDP datagrams. It features three operations, two of them can be used for
automatic service detection: discover and advertise. The third operation is called resolution: for instance,
it is used by the multicast DNS protocol (mDNS) works as follows: 1) the client sends a multicast
datagram to ask “what is the IP address that corresponds to this symbolic name”; 2) the hosts that has
this symbolic name name answers with a unicast message to the client. A host that provides a service
would typically advertise it. For this purpose, it sends a multicast datagram to tell all the machines of the
networks “I provide this service and on that port”. The other mode that can be used for service detection,
discover, works the other way around: 1) a client sends a multicast datagrapm to as “who provides this
service?”; 2) servers that host the requested service reply to the client using a unicast datagram.

In our system, machines declare themselves on the Zeroconf bus when they are available and with-
draw themselves when they are taken by a client, i.e. when a job is running on them: they use the
advertise mode. Clients listen and receive the multicast declarations that are sent on the network.

However, this is not sufficient to ensure exclusive access to the machines, because of the asyn-
chronous nature of the system and the absence of a consistent view between concurrent clients. Besides,
the Zeroconf protocol does not have real-time accuracy: a machine which is not available anymore might
be still visible on it. For instance, if a resource is available at a given moment, two clients will see it on
the Zeroconf bus. Both will issue a request, but only one of them should get it.

2.2 Reservation algorithm

When a client wants to reserve a set of machines, the submission protocol works as follows. The client
listens to the Zeroconf bus for available machines. It gets a list of available machines. It contacts them
one by one and waits for a reply. If the machine acknowledges the reservation, the client receives an
“OK” message and keeps the machine. Otherwise, the client receives a “KO” message.
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Figure 1: Architecture of a QURD system.

Once the client has enough machines, it starts its job on the said machines. Otherwise, two behaviors
are possible. Either the client waits for other machines to become available, with a limit of time set by a
timeout (called the wait semantics), or it cancels its reservation and frees the machine it has reserved, to
try again later (called the fail semantics). The algorithm corresponding to the latter approach is given by
algorithm 1.

Algorithm 1: Resource reservation algorithm (fail semantics)

reserveNodes( nbNodes) begin
Data: machines = {}
listenZeroconf();
foreach machine m newly discovered do

if card( machines ) < nbNodes then
contactMachine( m ) ;
ack = receiveAck( m );
if ack == OK then

machines.append( m ) ;

if card( machines ) == nbNodes then
return machines ;

else
freeMachines( machines ) ;
return {} ;

One important issue with these two reservation semantics is to avoid deadlocks between concurrent
reservation requests. For instance, if we consider a system with three machines and two concurrent
reservation requests, one for two machines and one for three machines. If the first request gets one
machine and the second gets two machines, neither of them has obtained enough machines and there is
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no spare machine left. This situation would lead to a deadlock without the possibility to release and retry
(fail semantics) or release everything after a timeout (wait semantics). The wait semantics is still useful
if there is no available resource because some of them are used by running applications. In this case, as
soon as an application is done, the request can get its resources.

2.3 Exclusive access protocol

In order to make sure that jobs have exclusive access to the machines that have been assigned to them,
each machine implements a protocol based on its state. When a machine is available for jobs, its state is
set to available. It can be reserved only when it is in the stat available. Otherwise, in any other state, it
answers all the requests with “KO”.

2.4 End of a job

Once the process running on a machine is done, the machine’s state is set to finished. A job ends when
all the processes are done: the client keeps track of which machine is done. Once the job is finished, the
machines switch back into state available and republish themselves on the Zeroconf bus.

2.5 Resource volatility

Resources can be subject to failures. If they fail while they are idle, they switch to state unavailable or,
if they are still visible on the Zeroconf bus, they never answer the clients’ requests and the clients try to
find another resource. If they fail while they are in state reserved, they never confirm the start-up of the
application to the client it has been reserved by and the client handles this case too. If it fails when it
is in state finished, the client has already taken into account the fact that this resource is done executing
its part of the job, so it has no consequence on the execution of the process. The resource goes to state
unavailable instead of available.

The main issue is when the failure happens when the resource is running the job. The failure is
detected by a failure detector [6] and the machine is considered to be dead. The client is notified of this
failure and tries to find a new machine to replace the failed one.

3 Modeling the system

This section presents models for the two parts of the system: the machines (section 3.1) and the reserva-
tion system of the clients (section 3.2). These two components interact with each other. These interac-
tions are detailed in section 3.3.

The models are presented using a finite-state formalism. Transitions between states are represented
by edges. Guards can be present on edges, given between brackets. When the system can chose be-
tween two transitions depending on a probability, the probability to chose a given edge is given between
parenthesis. Edges related with each other by a probability are linked by an arc. The actions taken by a
transition is given on the corresponding edge. In particular, when a transition can be taken only after T
units of time (i.e. the system must remain in a state during at least T units of time), the time is initialized
before entering the state by an action on the incoming edge (time := 0), and a guard on the outgoing edge
sets the condition on the time to take this transition (time > T ).
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Interactions between automata are modeled by synchronizations on actions, in a similar way as what
is presented in [8]. For instance, when an automaton sends a request, the corresponding edge contains
the request! action and the automaton receives it with request? on the guard of an edge.

3.1 Model of each machine

availablestart

unavai-
lable

reserved running

dead

finished

[request?]
ack1!

[cancel?]

[launch?]
ack2!, time:=0

[crash, time=τ], (λ )

[time > T ], (1−λ )
ack3!

Figure 2: Automaton modeling the algorithm running on each machine.

The states of a machine are represented in the automaton depicted on figure 2. When no job is
running on it, a machine is in the available state. For some (local) reason, such as an action from an
administrator or a local user (when the machines are unused workstations, for instance with desktop
grids), it can become unavailable. When the machine is in the state available, it can be reserved by a
client: in this case, it enters the state reserved. We have seen in section 2.2 that a client can cancel a
reservation; in this case, the machine returns to the state available.

Once the client has all the machines it needs to start a job, it sends a command to all of the machines
it has reserved. These machines enter the state running, because it is running a process from a job.
However, the machine can crash or fail during the execution. It happens with probability λ : then, the
machine enters the state dead. The probability is given between parenthesis on the edges between states.

A more detailed model is given in figure 3. The resource has a probability λ of dying. If it dies, it
reaches the state fragile. If it does not, if reaches the state sustain. It stays in the sustain state for (at least)
T time units, representing the execution time of the process. Figure 2 is a more compact representation
of this subpart of the model, since the transition after the state running is conditioned by a probability
and a time.

Once the execution is done (i.e. after a given period of time and with probability 1−λ ), it enters the
state finished and then can be available again.

When the machine is reserved, the machine notifies the client it acknowledges the request. Similarly,
when the machine starts the application, it acknowledges the client. At the end of the execution, it notifies
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the client it is done with its local process.
We can seen that a machine can evolve between states, except if a failure happens and it dies. In this

case, it stays in the state dead until an administrator performs an action to fix the problem and restart
the machine, which can take a long time compared to the typical execution time of each transition of the
automata presented here. As a consequence, we are considering here that the machine stays in the state
dead.

running

sustain

fragile

finish

dead

(1−λ )
time:=0

(λ )

[time > T ]

Figure 3: Modeling the volatility of a resource.

3.2 Model of the reservation system

The reservation system is modeled by the automaton given on figure 4. It uses counters. Initially, the
system is in state begin. A counter is used to count the number of machines that have acknowledged the
reservation; it is initialized to zero when the system transitions from the state begin to the state reserve.
Each time a machine acknowledges the reservation, the counter is incremented. When the required
number of machines have acknowledged (NB OK answers), the automaton reaches the state launch. In
a similar way, it counts the number of machines that have acknowledged application start-up. Once they
all have answered, the automaton reaches the state wait, until all the machines are done.

The automaton presented here implements the wait semantics. If not enough machines can be re-
served, the system releases the machines and returns to the initial state.

A detailed model for the state reserve is given in Figure 5. This model is made of two parts. The top
part of the model is the discovery system of Zeroconf: the client listens to the Zeroconf bus, and sends a
request when it discovers a new machine. In the same time, the client waits for acknowledgements from
the machines: this corresponds the lower part of the model. Every time an acknowledgement is received,
a counted is incremented. When enough machines have answered, both automata reach the final state by
synchronizing on the done action.

We have seen in section 2.5 that resources can fail during the execution of a job. In this case, the
reservation system is informed by the failure detector and reaches the state failure. Then it requests an
additional resource and starts the application on it.
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beginstart reserve launch wait done

timeout failure

cnt := 0

[ack1?]
cnt++

[cnt = NB]
cb := 0

[ack2?]
cb++

[cb = NB]
fin := 0

[ack3?]
fin++

[ f in = NB]

[TIMEOUT]
release

[crash]
NB++

Figure 4: Automaton modeling the reservation system (wait semantics)

discover
[done?]

[found]
request!

listencnt=0

[cnt=NB]
done!

[ack1?]
cnt++

Figure 5: Detailed model for the state reserve (wait semantics)

3.3 Interactions between the automata

We have seen in Figure 2 that the machines need some actions from the reservation systems and that
some actions are made to this reservation system. In a similar way, we have seen in figure 4 that the
reservation system interacts with the machines. This set of actions forms a mini-protocol between the
two automata.
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1. The reservation system sends a request to the machines it has found on the Zeroconf bus (request
action). When a machine receives a request, it answers OK or KO depending on the state it is
currently in.

2. The available machines acknowledge the request (ack1 action). For each acknowledgement it
receives, the client increments a counter.

3. The reservation system sends a command to the machines that were assigned to it (launch action).
When each machine receives it, it starts the command.

4. The available machines acknowledge the command (ack2 action). The client counts the number
of acknowledgement it receives.

5. The available machines notify the reservation system that the execution of its local process is done
(ack3 action). The client counts the number of acknowledgement it receives and, when it has
received all of them, the execution is done.

4 Parameter synthesis and verification of the system

This system contains many parameters, and its behavior depends on these parameters. Parameter syn-
thesis can be useful to verify is behavior under different parameters. An exploration of the behavior of
such as system, for instance using behavioral cartography [7], can give the ranges of parameters for the
system to behave as expected.

4.1 Expected behavior

The system must have several properties. The soundness of the system [5] (option to complete, proper
completion and no dead transitions) was verified in [10, 11]: in the absence of failures, all the jobs are
executed and complete. If resources can fail, there can be too many failures, in which case the jobs that
need more resources than there are surviving resources cannot be executed. In this case, it was verified
that there exists an execution in which all the jobs complete.

More specifically, it is also necessary to ensure exclusive access of the processes of all the jobs on
the resources. It is one of the expected properties of this system: when a process of a job is executed on
a resource, this resource must not be attributed to any other job. This property is important for instance
for computation resources (computation nodes, GPUs...): if a node runs more processes than the number
of cores it has, the processes need to share the execution time. This situation is called oversubscription.
This property was also verified using Petri nets in [10, 11].

Timed models such as timed Petri nets [11] give a more precise idea of the behavior of the system in
terms of, for example, deadlines. Verification techniques on such models can provide properties such as
“in T time units, all the jobs have completed”.

Parameter synthesis is particularly important to have a more precise idea of these properties. For
instance, it can give precise completion time for a range of execution times. It is highly important for
critical systems for example, to verify what is doable and under which conditions. In particular, one can
want to make sure that for every possible execution, all the jobs complete before a certain number of
time units. Parameter synthesis would help dimensioning the system (number of resources, number of
jobs to put in the system) to be sure that the system behaves as required.



C. Coti 9

4.2 Parameters of the model

We have seen in sections 3.1 and 3.2 that the model depends on several parameters:

• The number of machines in the system;
• The number of clients issuing requests in the system;
• The number of resources asked by each client;
• The execution time of the processes of each job;
• The failure probability of each resource;
• In the wait semantics, the value of the timeout;
• In the fail semantics, the time after which the request is issued again.

The number of resources asked by each client is specific for each client. For instance, a client may
ask for three machines and another one may ask for six machines. The execution time is assumed to be
roughly the same for all the processes of a given job but not necessarily the same. As a consequence,
machines spend some time in the state finished, but this time is generally small compared to the time
spent in the state running.

However, if a resource has crashed during the execution of a process, the failed process must be re-
executed, possibly from the beginning (some applications include a failure-recovery protocol that may
reduce the re-execution time). Therefore, at the end of the execution of this job, the other resources used
by the job are waiting for it in the state finished.

Therefore, the failure rate is very important to compute a likelihood of execution time. For instance,
one can expect a result like “There is a likelihood of 50% that all the applications will be done after N
time units, 25% after 2N time units, 15% after 3N time units and 10% that machines will crash too often
for the applications to complete”.

Besides, keeping some parameters unknown would allow to dimension the system with respect to
some requirements. For instance, for a given number of resources, how many jobs can be executed and
finish on time? Or the other way around, for a given number of jobs, how many resources does the
system need to have to make sure that all the jobs will be executed and finish on time?

5 Conclusion

In this paper, we have presented a distributed algorithm for resource discovery and reservation. This
algorithm was verified using model checking techniques (P/T Petri nets, Colored Petri nets and Timed
Petri nets) in a previous paper, but these tools did not take into account the fact that the system contains
several parameters, including on times and probabilities.

Parameter synthesis techniques such as behavioral cartography would permit to exhibit values for
these parameters that would guarantee that the system follows a certain behavior. However, the com-
plexity of the model, which is in the same time parametric, timed and probabilistic, makes it challenging
for current parameter synthesis techniques.

Therefore, we hope that the system presented and modeled in this paper will be a challenge for the
parameter synthesis community to find fitting parameter synthesis, maybe by hybridizing or combining
several existing techniques, or developing new, specific ones.

One approach would be to consider parts of the problem as smaller instances and to decompose it
as models of increasing complexity. A finite-state model, with no probability, can be used to perform a
worst-case analysis. A real-time model, with parameterized delays, timeouts and number of processes
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and resources but no probability, can be used to do a verification and quantification of the behavior of
the system without failures. Last, the full model allows to perform verification and behavior analysis of
the complete system.

Moreover, some assumptions can be made to perform a worst-case analysis and verify some prop-
erties. For instance, the failure probability can be simplified by a global failure rate, such as “at most
10% of the resources fail during the execution of a job”. Under this assumption, the model loses its
probabilistic nature.
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