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Abstract. This paper investigates the use of one-sided communications in the
context of state space exploration. This operation is often the core component of
model checking tools that explores a system state space to look for behaviours de-
viating from its specification. It basically consists in the exploration of a (usually
huge) directed graph whose nodes and edges represent respectively system states
and system changes. We revisit the state of the art distributed algorithm and adapt
it to RDMA clusters with an implementation over the OpenSHMEM library and
report on preliminary experiments conducted on the Grid’5000 cluster. This asyn-
chronous approach thus reduces the significant communication costs induced by
process synchronisation in two-sided communications.

1 Introduction

Model checking [2] based on state space exploration is a prominent approach used to
prove that finite-state systems match behavioural specifications. In its most basic form,
it is based on a systematic exhaustive exploration of all system states (the state space)
in the search for illegal behaviours violating the specification. This state space can be
viewed as a graph capturing the behaviour of the system. Its nodes represent system
states (e.g., program counters and content of variables and channels in the case of a
distributed system) and its edges represent system changes (e.g., variable assignments
or synchronisations). Despite the simplicity of this technique, its practical application
is subject to the well-known state explosion problem [17]: the state space may be far
too large to be explored in reasonable time or to fit within the available memory. Dis-
tributed verification thus arose [16] as a natural means to push the limits of model
checking: distributing state space search allows to benefit from the aggregate memory
and computational power of a machine network and hence to analyse larger models
and/or reduce exploration times.

Although distributed algorithms have been proposed for various classes of proper-
ties, e.g., LTL (Linear-time Temporal Logic) properties [4,18], we focus in this work
on the verification of safety properties, i.e., system invariants that can be verified us-
ing a simple enumeration of system states. Many interesting properties can however be
expressed as system invariants.

An important characteristic of graph-based algorithms used in verification is that the
graph is not known a priori. The model checker is instead provided with an initial state
describing the system’s initial configuration and a successor function that, from one



state, can generate its successors. Many verification algorithms are built upon this state
space construction step. Therefore, the workload cannot be divided using traditional,
static domain decomposition techniques. Moreover, the granularity of this step does not
make it a good candidate for chunk-based approaches such as master-worker patterns.

The state-of-the-art algorithm that can be used for the verification of safety prop-
erties [16] distributes the search by partioning the state space among participating pro-
cesses. A partition function maps state vectors (i.e., bit strings encoding states) to pro-
cesses. Each process is then responsible of any state that is assigned to it: it stores it in
a local state table, generates its successors and sends them to their owners that will later
process these states in the same way.

To the best of our knowledge, all implementations of [16] are based on two-sided
communications. In this distributed programming paradigm, two processes have to syn-
chronise to exchange data. This means that, from a development perspective, the pro-
grammer has to explicitly mention in the code where processes have to wait for incom-
ing data by invoking a receive statement. This constraint adds points of synchronisation
in the code that makes each communication a big concern in terms of performance.

In this paper we redesign the algorithm of [16] to adapt it to one-sided communi-
cations. In such a model, a process can directly access remote memory segments of
another process without the latter being aware of this access. The one-sided communi-
cation model is particularly interesting here, because when a process needs data located
in another process’s memory, the target process does not need to be aware that the
source process needs it: the source process can get the remote data on its own.

In the more general context of model checking, [14] is the only work we are aware
of, that proposes a distributed algorithm for Remote Direct Memory Access (RDMA)
clusters. It can be used in the context of symbolic model checking, a different algorith-
mic approach than ours.

After an overview of the verification process by state space exploration considered
in this work in Section 2 and a quick presentation of the communication and distributed
memory model in Section 3, our new algorithm is described in Section 4. We present
experiments conducted with this new implementation and compare it to the well known
distributed model checker DiVinE [3] in Section 5.

2 Background

Model checking by state space exploration explores all the possible states of the system
until it finds a counterexample of the property to be verified. If it can explore all possible
states without finding a counterexample, it concludes that the property is always verified
by the system. Therefore, it is of major importance to use an efficient algorithm for this
state space exploration.

In this paper we assume a universe of system states S, an initial state s0 ∈ S and
a mapping succ : S→ 2S, that, from one state s, gives its set of successors. We want
to explore the state space induced by these parameters, i.e., the smallest set R ⊆ S of
reachable states defined inductively as : s0 ∈ R∧ (s ∈ R⇒ succ(s) ∈ R).

Algorithm 1 is a sequential state space exploration algorithm usable for invariant
checking. It operates on a queue Q of unexplored states and incrementally builds the



Algorithm 1 Sequential state space exploration
1: procedure exploreSequential is
2: Q.init(s0);R.init(s0)
3: while ¬Q.isEmpty() do
4: s := Q.remove()
5: for s′ ∈ succ(s) do
6: if ¬s′.checkInvariant() then
7: halt and report error
8: else if ¬R.isIn(s′) then
9: Q.insert(s′);R.insert(s′)

reachability set R. Both initially contain the initial state. States are taken from Q (l. 4),
their successors generated and put in R and Q (if not seen before) to be later processed
(loop at ll. 5–9). The algorithm terminates when an erroneous state is found (ll. 6–7) or
when the queue is empty, which is guaranteed to happen for finite-state systems.

The distributed algorithm of [16] that represents the core component of many dis-
tributed algorithms is given in Algo. 2. P exploration processes are used (l. 2). Each
process i owns a local portion of the queue and the reachable states. The state space
is partitioned among processes using a state hash function. Each exploration process
basically acts as the sequential algorithm presented above except that when a state s′

is reached, the process checks if it is the owner of this state (condition at l. 8). In that
case, it is processed as in the sequential scenario. Otherwise it is sent to its owner and
discarded by the current process. Similarly, only the owner of the initial state puts it in
its local data structures (ll. 13–14). Processes also have to check for incoming messages
(ll. 16–19). A state received is handled as would be any other new state owned by the
process (i.e., ll. 18–19 and ll. 10–11 match).

Termination detection (not shown in the algorithm) is triggered by a unique process
(e.g., node 0) when this one has been idle (i.e., it does not receive any messages and
its queue is empty) for some amount of time. It then asks it peers if they are in the
same situation and if all channels are empty (check made by counting messages sent
and received) before notifying termination to other nodes if both conditions are met.

Algorithm 2 Distributed state space exploration algorithm usable for invariant checking
1: procedure exploreDistributed() is
2: launch explore0 || . . . || exploreP−1
3: procedure processQueuei() is
4: s := Q.remove()
5: for s′ ∈ succ(s) do
6: if ¬s′.checkInvariant() then
7: halt and report error
8: else if s′.hash()%P 6= i then
9: s′.sendTo(s′.hash()%P)

10: else if ¬R.isIn(s′) then
11: Q.insert(s′);R.insert(s′)

12: procedure explorei() is
13: if s0.hash()%P = i then
14: Q.insert(s0);R.insert(s0)
15: while ¬termination() do
16: if stateReceived() then
17: s := receiveState()
18: if ¬R.isIn(s) then
19: Q.insert(s);R.insert(s)
20: if ¬Q.isEmpty() then
21: processQueuei()



3 RDMA architectures and the OpenSHMEM specification

This section gives a brief presentation of the one-sided communication model we are
using in this paper, and its implementation in the OpenSHMEM shared heap and com-
munication interface.

3.1 RDMA and one-sided communications

RDMA (Remote Direct Memory Access) is a communication mechanism that imple-
ments one-sided inter-process communication. It relies on two basic communication
primitives: put() and get(). A process can read (get()) and write (put()) in another
process’s memory. In practice, not all the process’s memory can be reached from other
processes, but only a specific, public area.

An attractive feature of one-sided communications is that only the process that ini-
tiates the communication needs to take active part in it. The process that owns the mem-
ory area it is reading from or writing into is not participating to the communication, nor
is it even aware that this communication is happening. This fact makes one-sided com-
munication more tricky to use in parallel, distributed programs compared to two-sided
communications, and more prone to race conditions.

Fast cluster interconnection networks such as InfiniBand implement RDMA com-
munications with zero-copy, meaning that the NIC transfers data directly from one pro-
cess’s memory into the other process’s memory, and, in particular, without involving
the other process’s operating system.

3.2 The OpenSHMEM communication and memory model

OpenSHMEM is an API for parallel programs. It defines a set of one-sided, RDMA
communication routines, designed specifically for clusters featuring low-latency net-
works [1]. The processes are called Processing Elements (PEs). Each PE has its own
(private) memory, and it exhibits a public heap. One particularity of OpenSHMEM is
that this heap is symmetric: every PE has a shared heap of the same size and that con-
tains the same allocated objects and static global objects (Figure 1).

PE0 PE1 PE2

Private

memory

Symmetric
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Static global
objects

Symmetric
objects

Fig. 1. OpenSHMEM memory model.



Symmetry is maintained between shared heaps through the use of dedicated mem-
ory management routines: shmem malloc(), shmem realloc(), shmem align() and
shmem free() (or shmalloc(), shrealloc(), shmemalign() and shfree() until
OpenSHMEM v1.2). The OpenSHMEM specification states that these routines are col-
lective routines and must end by something semantically equivalent to a barrier. Hence,
every object is allocated at the same offset from the beginning of the buffer on all the
PEs [8]. Besides, global and static variables are also located in the shared heaps and
therefore remotely accessible by other PEs.

The OpenSHMEM specification also defines interfaces for atomic accesses (such as
fetch-and-add), collective operations, locks and synchronisation and ordering routines.

4 Distributed reachability analysis with one-sided communications

We now propose a distributed algorithm (see Algorithm 3) for state space exploration
on RDMA clusters using one-sided communications. It assumes the following two pro-
cedures are provided by the communication layer:

– getMem(i,o) returns the shared object o stored on PE i
– putMem(i,o,data) stores data in the shared object o of PE i.

These correspond in the OpenSHMEM API to shmem getmem and shmem putmem.
Our algorithm acts basically as the distributed algorithm presented in Sect. 2. PEs

exchange states on the basis of a state space partition induced by the state hash function.
These states are communicated through the shared memory space using remote put
operations. Hence, we focus next on the specificities of our implementation.

A PE shares two objects with its peers: buf , an array of buffers containing states
sent by other PEs ; and free, a boolean array used to prevent the PE from erasing states
it has previously put in the buf object of another PE and which have not been consumed
yet. Basically, it is an invariant property of the algorithm that getMem(i, free[j]) = true
implies that the buffer getMem( j,buf [i]) does not contain states put by PE i for PE j
but not consumed by PE j yet.

Besides its private queue Q of states to process and its reachable states R, a PE also
owns an array sbuf containing buffers of states to be sent to their owner and grouped
together to avoid sending individual states.

In the main procedure (ll. 3–12), each PE periodically processes incoming states
(ll. 7–8). This is done (ll. 36–43) by inspecting the buf array of its local shared memory
space. All the states put by remote PEs are put in the private queue and in the reachable
states set (ll. 42–43). Each time a buffer has been retrieved, the remote PE that sent these
states is notified via the free array (l. 40) located in the shared memory of this remote
PE. The implementation of checkForIncomingStates used to decide if input buffers
must be inspected is discussed in Sect 5. As soon as its queue empties the process also
has to flush its output buffers containing states destinated to remote PEs (ll. 9–10). This
is mandatory to avoid a premature termination caused by all PEs being idle and ready
to terminate whereas buffers still contain potentially new states to be processed. This
is the purpose of procedures flushOutBufferi described below and flushOutBuffersi (ll.
23–26) that simply flushes all non empty buffers.



Any state s belonging to another PE is processed by function processOutStatei
(ll. 13–16). The PE puts s in a private buffer containing states to be sent to their owner,
i.e., the PE j = s.hash%PES. This private buffer is sbuf [ j]. If it becomes full, it has to
be put in the shared space memory of PE j using procedure flushOutBufferi (ll. 17–22).
In this one, the PE first periodically polls its local shared memory to check whether
the states it previously put in the shared memory of PE j have been consumed by this
one. The condition at l. 18 evaluates to false as soon as PE j has completed its put
statement at l. 40. Hence, we see that the purpose of the free shared array is to avoid
communications when checking whether or not the states can be remotely put in the
shared memory segment of its owner. Also note that, during polling, the process also has
to process incoming states it may have received (l. 19). This is mandatory as, otherwise,
a deadlock could occur. This would be the case, for instance, with two PEs, each PE
waiting for the other to free its buffer, i.e., completing the put operation at l. 40, whereas
it is blocked at ll. 18–19.

For termination detection (not shown in the algorithm to avoid overloading it) we
adapted the algorithm of [16]. As soon as PE 0 has been idle for 100 ms it sends a to-
ken to PE 1. A PE receiving the token passes it to the next PE if it is idle, or destroys it
otherwise. If PE 0 receives back the token, it asks all other PEs to participate to termina-
tion detection: a synchronisation barrier occurs, then all PEs process incoming states (if
any) and publish in the shared memory their status (idle, i.e., without any state to pro-
cess, or working). Termination occurs when all the processes are idle. The circulation
of the token can be more efficient than a ring, for instance using Bruck’s algorithm [6],
which has a logarithmic number of steps. However, we have measured in the experi-
mental evaluation of this algorithm that the termination phase is not significantly long
with respect to the overall execution time. A more scalable algorithm can be used if this
algorithm is meant to be executed on a large scale system.

Sketch of proof that all states in a buffer are indeed read. Let us assume a PE i has
written states in the buffer of PE j. PE j can read them as long as they are not superseeded
by other values, which could only be the result of PE i flushing a new version of the
buffer. This operation is performed by flushOutBufferi( j). Before PE i actually flushes
the buffer at l. 21, it waits for free[ j] to become true (l. 18). This boolean value can only
be set to true at l. 40 by PE j. This occurs after PE j reads the contents at l. 38. Note that
PE i is also the only PE to set this variable to false, at l. 20, before writing the contents.

Therefore, it is not possible to write twice to a distant buffer without the correspond-
ing process reading in between.

Sketch of proof that all states are processed. A state is created as the initial state s0
at ll. 4–5, or as the successor of a state being processed. In this case, if it belongs to
the same PE, it is inserted in the local queue at l. 35. Otherwise, processOutState is
called, and the state is added to its PE buffer at l. 14, to be sent later. The buffer is sent
when it is full (l. 16), or when the current PE has an empty queue (l. 10). In both cases,
flushOutBuffer is eventually called, which puts the buffer in its associated PE memory.
A PE checks its incoming states regularly, at l. 7 and l. 19. In both cases, the states read
from the buffers are inserted in the local queue at l. 43.

Thus, all states are explored either processed locally or sent/received/processed.



Algorithm 3 Distributed state space exploration based on one-sided communications

Constant PES : int := number of processing elements
Shared objects buf : state list[PES] := {empty, . . . ,empty};

free : bool[PES] := {true, . . . , true};
Private objects Q,R : state set := empty;

sbuf : state list[PES] := {empty, . . . ,empty};

1: procedure exploreDistributed() is
2: launch explore0 || . . . || explorePES−1
3: procedure explorei() is
4: if s0.hash()%P = i then
5: Q.insert(s0);R.insert(s0)
6: while ¬termination() do
7: if checkForIncomingStates() then
8: processInStatesi()
9: if Q.isEmpty() then

10: flushOutBuffersi()
11: else
12: processQueuei()
13: procedure processOutStatei(j,s) is
14: sbuf [ j].append(s)
15: if sbuf [ j].full() then
16: flushOutBufferi( j)
17: procedure flushOutBufferi( j) is
18: while ¬getMem(i, free[ j]) do
19: processInStatesi()
20: putMem(i, free[ j], false)
21: putMem( j,buf [i],sbuf [ j])
22: sbuf [ j].empty()

23: procedure flushOutBuffersi() is
24: for j ∈ {0, . . . , |PES|−1} with j 6= i do
25: if ¬sbuf [ j].isEmpty() then
26: flushOutBufferi( j)
27: procedure processQueuei() is
28: s := Q.remove()
29: for s′ ∈ succ(s) do
30: if ¬s′.checkInvariant() then
31: halt and report error
32: else if s′.hash()%P 6= i then
33: processOutStatei(s′.hash()%P,s′)
34: else if ¬R.isIn(s′) then
35: Q.insert(s′);R.insert(s′)
36: procedure processInStatesi() is
37: for j ∈ {0, . . . , |PES|−1} with j 6= i do
38: buf := getMem(i,buf [ j])
39: if ¬buf .isEmpty() then
40: putMem( j, free[i], true)
41: for s ∈ buf do
42: if ¬R.isIn(s) then
43: Q.insert(s);R.insert(s)

Sketch of proof that there is no livelock at l. 18. The only place where a PE could
get stuck waiting forever is at l. 18. In this case, PE i is waiting for PE j to free the
memory by reading it and setting the free boolean to true. This operation is done in
processInStates j, which reads all incoming buffers. Note that a PE cannot be stuck
in processInStates nor calls any function from it. Function processInStates j is called
either in the while loop at ll. 18–19 or from explore j at l. 8. PE j is thus handling its own
states in the while loop at ll. 6–12, one by one, checking for any incoming state after
processing one state. If it has no state to handle it flushes its buffers, and thus executes
processInStates j at l. 19.

Hence no process gets stuck in the while loop of ll. 18–19.

5 Experiments

We have implemented the algorithm of the previous section in the Helena tool [9]
(see http://www-lipn.univ-paris13.fr/˜evangelista/helena). We experimen-

http://www-lipn.univ-paris13.fr/~evangelista/helena


ted with our algorithm on models of BEEM [15], a database of models written in the
DVE modelling language and used to benchmark model checkers.

Helena first compiles the model into a C library including state and transition defini-
tions, the transition relation (successors computation), the initial state definition, and so
on. This library is then linked with the model checking engine integrating search algo-
rithms to produce a dedicated executable. This approach, adopted by many other model
checkers, greatly speeds up the verification compared to model checkers that directly
interpret the model without compiling it.

5.1 Experimental environment

Experiments presented in this paper were carried out using the Grid’5000 [7] testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organisations (see https://www.grid5000.
fr). We used the Graphene cluster, which is made of 144 nodes (although we could not
experiment with more than 127 nodes), each of which features a quad-core Intel Xeon
X3440 running at 2.53 GHz, 16 GiB of RAM and a 20G InfiniBand network intercon-
nection. The nodes were running a 64-bit Linux 4.9 kernel. All the code was compiled
using the GNU gcc 6.3.0 compiler with -03 optimization flag. We used the OpenSH-
MEM implementation provided by OpenMPI 2.0.1 and the InfiniBand communication
libraries libverbs 1.2.1 and librdmacm 1.1.0.

Since the machines feature four cores, we executed four processes per node. Each
experiment was run 5 times and plots present the average and standard deviation of the
set of measurements. Each run consisted of a complete state space exploration, i.e., no
property was checked.

5.2 Implementation details

We now address some implementation details that were left out in the description of the
algorithm of the previous section.

First, at l. 7 in the main procedure, a process checks if it has received any new state
to be processed. Such a check implies to look at all buffers of the shared memory space
and must therefore not be done too frequently. The simple solution we adopted is to
perform this check every 10 000th state processed. We experimented with other values
and this one yielded the best performance on the average although we did not witness
this parameter to have a large impact unless set to a too small value. It would however
be relevant to experiment with a dynamic solution allowing this frequency to evolve
during the search in order to try to maximise the state generation rate.

The SHMEM heap size was set to a number that allows buffers of 65 000 bytes
which is close to the MTU of our network interfaces. Hence, a buffer becomes full (test
at l. 15 of the algorithm) when it cannot store any more state (DVE states are encoded
with a constant number of bytes). We did not intensively experiment with that parameter
and leave this to future works.

https://www.grid5000.fr
https://www.grid5000.fr


5.3 Scalability

We evaluated the scalability of Helena on models of various sizes. The sizes (number of
states and transitions) of these models are given in Table 1. The last column indicates the
range of process numbers we experimented with on the model. Unless noted otherwise,
the speed-up is computed as, by definition, the ratio between the execution time of the
sequential implementation of Helena and the execution of the parallel implementation
on a given set of processes, using one core per process.

Name States Transitions Processes used

Small size models
(runnable on 1 node)

iprotocol.7 59 794 192 200 828 479 1–384
peterson.5 131 064 750 565 877 635 1–384
elevator.5 185 008 051 185 008 051 1–384

Medium size models
(< 109 states)

lifts.9 266 445 936 846 144 885 16–384
firewire link.3 425 333 983 1 621 543 475 16–384
leader filters.8 431 401 020 1 725 604 080 32–384
collision.5 431 965 993 1 644 101 878 32–384
iprotocol.8 447 570 146 1 501 247 756 32–384
anderson.8 538 699 029 2 972 732 133 32–384

Large size models
(≥ 109 states)

public subscribe.5 1 153 014 089 5 447 695 171 32–508
lamport.9 1 436 848 880 7 025 053 020 48–508
brp.8 1 526 547 707 3 207 513 490 32–508
synapse.9 1 675 298 471 3 291 122 975 48-508
szymanski.6 6 779 809 484 38 604 341 308 256–508

Table 1. Model characteristics

As expected, small size models (see Fig. 2(a)) can be run on a small number of
cores, but they do not scale well beyond a certain number of processes, i.e., about 100–
150 processes. Then the runtime tends to slightly increase. Indeed, as the number of
processes grows, the number of states owned by each process decreases, meaning that
queues often become empty. This causes an excessive number of flushes of partially
filled buffers (l. 16 of the algorithm), synonym of an inefficient network usage.

When the size of the input model increases, Helena cannot be run on a single node.
For medium and large size models, we computed the speed-up by normalizing using
the execution time on the smallest number of processes we could get.

For medium size models (see Fig. 2(b)), the plots have the same shape, but the
number of processes for which the execution time stagnates or increases is pushed to
about 300 processes.

For four of the large models (see Fig. 2(c)) we did not observe any slow-down: they
scale well on the full range of processes we were able to execute them on which is
remarkable for a non-embarrassingly parallel application that communicates often.

For model brp.8, we faced some unexpected behaviour described in Section 5.4 that
explains the relatively bad speed-up observed. But beyond this problem, we conjecture
that the high depth of this graph makes this model less appropriate for distributed model
checking. The parallel exploration of such graphs is known to be less efficient.



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350iprotocol.7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350peterson.5

 0

 100

 200

 300

 400

 500

 600

 700

 0  50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350elevator.5

(a) Scalability on small models

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350firewire_link.3

 0

 10

 20

 30

 40

 50

 60

 70

 50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350leader_filters.8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350anderson.8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350lifts.9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350collision.5

 0

 10

 20

 30

 40

 50

 60

 70

 50  100  150  200  250  300  350
 0

 50

 100

 150

 200

 250

 300

 350iprotocol.8

(b) Scalability on medium models

 0

 50

 100

 150

 200

 250

 300

 50  100 150 200 250 300 350 400 450 500
 0

 100

 200

 300

 400

 500
public_subscribe.5

 0

 20

 40

 60

 80

 100

 120

 140

 50  100 150 200 250 300 350 400 450 500
 0

 100

 200

 300

 400

 500
brp.8

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 300  350  400  450  500
 0

 100

 200

 300

 400

 500
szymanski.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50  100 150 200 250 300 350 400 450 500
 0

 100

 200

 300

 400

 500
lamport.9

 0

 20

 40

 60

 80

 100

 120

 50  100 150 200 250 300 350 400 450 500
 0

 100

 200

 300

 400

 500
synapse.9

(c) Scalability on large models

Fig. 2. Scalability of Helena on the models of Table 1. On the X axis are the numbers
of processes. On the left (resp. right) Y axis are execution times (speed-ups). The plain
line with error bars gives execution times. The dashed one gives speed-ups. The dotted
one gives the optimal theoretical speed-up (linear).



5.4 Process workload

We also studied the process workload to further investigate some issues revealed by
Fig. 2 and make sure the load is balanced evenly among processes. Indeed, for some
configurations (same model and number of processes) we noticed significant variations
in the execution times of the five runs performed. This is especially visible for model
brp.8 through the error bars. We thus recorded during each run, the number of states
visited by each process during each second. The heat maps of Fig. 3 reproduce this data
for two problematic runs of models brp.8 and firewire link.3 (with 320 and 304 pro-
cesses respectively) ; and, for the sake of comparison, for two “friendly” runs of models
leader filters.8 and public subscribe.5 (with 240 and 384 processes respectively).

We first observe in all cases a slow start during which all processes have very few
states to visit and spend most of their time idle, waiting for states coming from pro-
cesses. This scenario is actually common to all models although the duration of this
phase can vary, depending on — we conjecture — the structural characteristics of the
state space graph. More specifically, the shape of the graph might be such that little
parallelism can be extracted. The hash function distributes the few states between the
processes and therefore, processes need to access only remote states. In the case of
model brp.8 the long idle time at startup could indeed be explained by the important
depth of its graph and the fact that very few states are gathered around the initial state.
To remedy this issue we will investigate in future works the use of a small state cache
used by a process to explore states it does not own in order to accelerate the discovery
of its states, rather than waiting for other processes to send these states.
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Fig. 3. Workload (number of states processed by second) of processes for four runs

In the case of models brp.8 and firewire link.3, the heat maps also reveal that, af-
ter this slow start, the algorithm enters again a phase during which all processes are
completely idle. This represents approximatively 5 and 7 seconds of the whole exe-
cution times of these two runs. Unfortunately, we are currently unable to explain this



phenomenon. We plan to profile the code to identify the source of this problem. Let us
remark that this issue is actually the only source of the variations we observed during
different runs with the same configuration. When the processes did not mysteriously
halt this way during the search, we obtained remarkably stable performances.

Last, Fig. 3 also shows that the workload is well balanced among processes. This
was however expected since all processes perform the same task and receive approxi-
mately the same amount of work, since states are distributed using the state hash func-
tion. Again, this observation can be generalised to all experiments we made.

5.5 Comparison with the DiVinE model checker

We also experimented with the DiVinE model checker [3], version 3.3, under the same
conditions. DiVinE is a state-of-the-art verification tool that implements parallel algo-
rithms for LTL model checking and reachability analysis using two-sided MPI commu-
nications [18]. Comparing these two tools can be viewed under two perspectives: speed,
which depends highly on the speed of sequential computations, and parallel speed-up,
which exhibits the efficiency of the parallel approach.

In this section, we are presenting both metrics. In their sequential implementation,
Helena is slower than DiVinE, as we can see on the only models for which we were able
to run sequential executions and presented Fig. 4 (top). We can see that, Helena has a
higher speed-up and scales better than DiVinE. Although DiVinE is significantly faster
when run sequentially, the two runtime curves cross each other quickly and Helena
becomes faster. Therefore, our approach is efficient enough to make Helena faster when
we use more than a handful of processes and the parallelism become non-trivial.

On very big models (public subscribe.5, anderson.8), the difference between Helena
and DiVinE is relatively small, especially at large scale. In our algorithm, the number
of communication scales with the size of the model. Therefore, on large models, the
parallel application performs a large number of communications. On DiVinE, we can
expect that communicating often on all the processes reduces the penalty involved by
the “forced” synchronisation between the processes and reduces the performance gap.

As explained in Section 5.3, when we cannot explore the state space with the se-
quential implementations, we normalize the speed-up using the execution time of the
smallest possible parallel execution (using the same number of processes for DiVinE
and Helena). Therefore, for larger models (Fig. 4, bottom), we normalize the speed-up
beyond this cross-over between the execution time of DiVinE and Helena. But still,
Helena scales better than DiVinE. We believe that the higher parallel efficiency of He-
lena is due to the less synchronous nature of the parallel algorithm for the state space
exploration, which is made possible by the one-sided communication model.

6 Conclusion and perspectives

This paper is a first step towards the use of one-sided based communications in the con-
text of distributed state model checking. Our experiments revealed that our distributed
state space exploration algorithm can compete with the DiVinE model checker which
is, to the best of our knowledge, the reference tool in distributed automated verification.
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Fig. 4. Performance comparison between DiVinE and Helena on models of Table 1. On
the X axis are the numbers of processes. On the left (resp. right) Y axis are execution
times (speed-ups). Helena is represented by red lines, that are plain for the execution
time and a pattern made of two dots and a dash for the speed-up. DiVinE is represented
by blue lines, that are dashed for the execution time and a pattern made of a dot and a
dash for the speed-up. Inside of each plot is a zoom on the execution time.

An immediate perspective is to experiment more thoroughly with our algorithm.
The experiments have revealed some undesired behaviour that has to be investigated
and we need to gain better understanding of the impact of some parameters such as the
SHMEM shared heap size.

Our algorithm currently is a direct adaptation of the state of the art distributed
algorithm for the one-sided communication model and it does not fully benefit from
the primitives provided by the OpenSHMEM library (or any other library that falls in
that category, such as MPI 3.0), such as, e.g., remote atomic compare-and-swap. We
therefore plan, in future works, to study how to take advantage of the specificities of
OpenSHMEM to efficiently implement distributed versions of state space reduction
techniques such as the state compression technique of [11] based on distributed hash
tables or other distributed state space exploration algorithms like the one we designed
for multi-core architectures [10].

The adaptation of various optimisations proposed by the model checking commu-
nity, such as load balancing [5,12], to the context of one-sided communications, is an-
other perspective. Such techniques are especially required in the case of heterogeneous
networks, which we did not consider nor experiment with in this work.



Last, we will consider the design of a multi-threaded version of our algorithm as
done in the Eddy Murphi tool [13] that separates state operations (e.g., successor com-
putation, insertion in the hash table) performed by a first thread from communications
done by second thread.
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Model Checking of C and C++ with DIVINE 4. In ATVA 2017, volume 10482 of LNCS,
pages 201–207. Springer, 2017.
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