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99, av. J.-B. Clément, 93430 Villetaneuse, France
{camille.coti,sami.evangelista,laure.petrucci}@lipn.univ-paris13.fr

Abstract—We propose a distributed implementation of the
collapse compression technique used by explicit state model
checkers to reduce memory usage. This adapatation makes
use of lock-free distributed hash tables based on one-sided
communication primitives provided by libraries such as Open-
SHMEM. We implemented this technique in the distributed
version of the model checker Helena. We report on experiments
performed on the Grid’5000 cluster with an implementation over
OpenMPI. These reveal that, for some models, this distributed
implementation can altogether preserve the memory reduction
provided by collapse compression and reduce execution times by
allowing the exchanges of compressed states between processes.

I. INTRODUCTION

Model checking [2] is an automatic verification technique
for finite state systems. It consists, in its most basic form, of
an exhaustive exploration of a directed graph capturing the
system behaviour (i.e. its state space) in search for executions
violating its expected properties. The nodes of this graph are
system states (e.g. a memory snapshot in case of a concurrent
program) and its edges represent system changes (e.g. a
statement execution). The main obstacle to the use of this
technique on real life systems is the size of this state space
graph that can grow exponentially with respect to the number
of components in the system (e.g. threads). This phenomenon
is known as the state space explosion problem [17].

Various methods have been proposed to alleviate this prob-
lem. Distributing the verification [16], [13] on a cluster is
one of them. By benefiting from the aggregate memory and
computational power of a machine network it is then possible
to analyse larger models and/or reduce exploration times.

The state-of-the-art algorithm [16] upon which most dis-
tributed verification algorithm are built distributes the search
by partioning the state space among participating processes. A
partition function maps state vectors (i.e. bit strings encoding
states) to processes. Each process is then responsible of any
state that is assigned to it: it stores it in a private state table,
generates its successors and sends them to their owners that
will later process these states in the same way.

Another possibility to tackle the state space explosion
problem is to make use of compression techniques such as
tree [12] or automaton-based [10] compression in order to
compute memory efficient representations of state spaces that
could otherwise not fit in the available memory.

Collapse compression described in [16] and initially imple-
mented in the Spin model checker [9] is another alternative.

This compression technique is based on the use of hash
tables storing local state spaces of components (e.g. processes)
constituting the analysed system. Global system states can
then be represented as integer vectors containing references
to component states in their respective hash tables.

Collapse compression is fully compatible with state of the
art distributed algorithms since compression operations can
remain purely local using private hash tables. However, in such
a setting, contents of hash tables may differ among processes,
meaning that only full states can be sent through the network
as a compressed state is only meaningful for the process that
computed it.

In this article we introduce a distributed version of the col-
lapse compression, meaning that the compression operations
are made in a distributed and concurrent way and involve
all verification processes. We design for this a distributed
partitioned hash table structure adapted from [11] and based on
RDMA (Remote Direct Memory Access) operations as those
provided by the OpenSHMEM specification. They allow for
one-sided communications where a process can read and write
in another process’s memory, thus being the sole actor of the
communication.

This method allows for consistent representations of com-
pressed system states among processes and, consequently,
compressed states can be exchanged through the network.
Hence, it features reduced communication times, and saves
memory for communication buffers. We have implemented
distributed collapse compression in our model checker He-
lena [7] and we show through a series of experiments that,
for some models, it can significantly reduce exploration times
while achieving the same memory reduction as using a non-
distributed collapse compression based on private hash tables.

This article is organised as follows. We give in Section II the
elements necessary for the understanding of our method. Our
distributed compression method is described in Section III.
Some variations and optimisations of this method are then
given in Section IV. Experimental results are presented in
Section V and Section VI concludes our work and gives some
perspectives.

II. BACKGROUND

We review in this section the principle of (distributed) state
space exploration, the collapse compression technique and the
distributed memory model used in this paper.
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1: procedure exploreSequential is
2: Q.init(s0);R.init(s0)
3: while ¬Q.isEmpty() do
4: s := Q.remove()
5: for s′ ∈ succ(s) do
6: if ¬s′.checkInvariant() then
7: halt and report error
8: else if ¬R.isIn(s′) then
9: Q.insert(s′);R.insert(s′)

Fig. 1. Sequential state space exploration

A. Sequential and distributed state space exploration

Model checking by state space exploration explores all
possible states of the system until it finds a counterexample
of the property to be verified, or all states have been explored
and thus the property is valid. If it can explore all possible
states without finding a counterexample, it concludes that the
property is always verified by the system. Therefore, it is of
major importance to use an efficient algorithm for this state
space exploration.

In this paper we assume a universe of system states S, an
initial state s0 ∈ S and a mapping succ : S→ 2S, that, from
one state s, gives its set of successors. We want to explore the
state space induced by these parameters, i.e. the smallest set
R⊆ S of reachable states defined inductively as : s0 ∈ R∧ (s ∈
R⇒ succ(s) ∈ R).

A sequential state space exploration algorithm usable for
checking invariant properties of states is shown in Figure 1. It
operates on a queue Q of unexplored states and incrementally
builds the reachability set R. Both initially contain the initial
state. States are then taken from Q (l. 4), their successors
generated and put in R and Q (if not seen before) to be later
processed (loop at ll. 5–9). The algorithm terminates when
an erroneous state is found (ll. 6–7) or when the queue has
been emptied, which is guaranteed to happen for finite-state
systems.

The distributed algorithm of [16] that represents the core of
many distributed algorithms is given in Figure 2. P exploration
processes are used (l. 2). Each process i owns a local portion
of the queue and the reachable states. The state space is
partitioned among processes using a state hash function. Each
exploration process basically acts as the sequential algorithm
presented above except that when a state s′ is reached, the
process checks if it is the owner of this state (condition at l.
8). In that case, it is processed as in the sequential scenario.
Otherwise it is sent to its owner and discarded by the current
process. Similarly, only the owner of the initial state puts it
in its local data structures (ll. 13–14). Processes also have to
check for incoming messages (ll. 16–19). A state received is
handled as would be any other new state owned by the process
(i.e. ll. 18–19 and ll. 10–11 match).

Termination detection (not shown in the algorithm) is trig-
gered by a unique process (e.g. node 0) when this one has
been idle (i.e. it does not receive any message and its queue
is empty) for some amount of time. It then asks its peers if
they are in the same situation and if all channels are empty

1: procedure exploreDistributed() is
2: launch explore0 || . . . || exploreP−1
3: procedure processQueuei() is
4: s := Q.remove()
5: for s′ ∈ succ(s) do
6: if ¬s′.checkInvariant() then
7: halt and report error
8: else if s′.hash() mod P 6= i then
9: s′.sendTo(s′.hash() mod P)

10: else if ¬R.isIn(s′) then
11: Q.insert(s′);R.insert(s′)
12: procedure explorei() is
13: if s0.hash() mod P = i then
14: Q.insert(s0);R.insert(s0)
15: while ¬termination() do
16: if stateReceived() then
17: s := receiveState()
18: if ¬R.isIn(s) then
19: Q.insert(s);R.insert(s)
20: if ¬Q.isEmpty() then
21: processQueuei()

Fig. 2. Distributed state space exploration [16]

(check made by counting messages sent and received) before
notifying termination to other nodes if both conditions are met.

B. Collapse compression

Collapse compression (or state collapsing) [8] assumes the
system to be analysed is composed of a set of N components
of which the domains are C1, . . . ,CN . A system state (or
global state) is then an item 〈c1, . . . ,cn〉 ∈ C1 × . . .×CN ,
with c1, . . . ,cn being the local states of components C1, . . . ,Cn
respectively. For instance, in the case of a parallel system,
components can be processes (i.e. program counters with
local variable contents), communication channels and global
variables. We define the local state space of a component Ci,
i ∈ {1, . . . ,N} as: Ri =

⋃
s∈R{s[i]} where s[i] denotes the ith

item of tuple s.
The principle of state collapsing is to store each local state

space Ri in a separate hash table Hi. A global state inserted in
the hash table H storing the system state space then consists
of a tuple 〈idx1, . . . , idxN〉 such that each idxi points to an
item of the local hash table Hi. Local state spaces are not
known a priori but incrementally built by the exploration
algorithm similar to the construction of set R in the algorithms
of Figures 1 and 2.

This encoding is illustrated by Figure 3. The model analysed
is a two processes system synchronising through global shared
variables. We decompose this system into three components:
one constituted by global variables (C1) and one for each
process (C2 and C3). Local component state spaces are stored
in three hash tables H1, H2 and H3. The items of H2 and H3
contain program counters (pc) and local process variables. The
system state space contains 6 states obtained through various
combinations of 3, 2 and 2 local states of components C1, C2
and C3 respectively.
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g l o b a l i n t i = 0 ; p r o c e s s P { p r o c e s s Q {
g l o b a l i n t j = 0 ; i n t a [ 3 ] = {0 , 0 , 0} ; i n t x = 1 , y = 2 ;

. . . . . .
} }

H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

〈0,1,3〉 〈2,1,3〉 〈2,1,5〉 〈2,7,3〉 〈6,7,3〉 〈6,7,5〉

H2 0 1 2 3 4 5 6 7

pc = 0

a = [0,0,0]

pc = 1

a = [0,1,3]

H1 0 1 2 3 4 5 6 7

i = 0
j = 0

i = 3
j = 5

i = 2
j = 6

H3 0 1 2 3 4 5 6 7

pc = 0

x = 1
y = 2

pc = 1

x = 2
y = 4

Fig. 3. State space of a two processes system encoded with the collapse compression

Figure 3 illustrates that the efficiency of state collapsing is
conditionned by two factors. First local states must be shared
(i.e. referenced) by many global states. This is usually the
case, since state space explosion originates mostly from the
combination of small components state spaces. Second, the
definition domain of components must be larger than their
local state spaces. Otherwise, if |Ci|= |Ri| for some component
i, then storing an index to an item of Hi consumes at least as
much as memory as the item itself.

In this paper we assume local state spaces are stored in
fixed-size linear hash tables. This means that the user has to
provide the model checker with an upper bound on the local
state space sizes. The recursive indexing method [8] has been
designed to alleviate this requirement.

C. RDMA architectures and the OpenSHMEM specification

Our goal in this paper is to propose an implementation of the
collapse compression technique using distributed hash tables
and usable on a cluster of machines connected via RDMA
devices. We therefore give in the remainder of this section a
brief presentation of the one-sided communication model we
use, and its implementation in OpenSHMEM.

RDMA and one-sided communications: RDMA is a com-
munication mechanism that implements one-sided inter-
process communication. It relies on two basic communication
primitives: put() and get(). A process can read (get()) and
write (put()) in another process’s memory. In practice, not all
the process’s memory can be reached from other processes, but
only a specific, public area.

An attractive feature of one-sided communications is that
only the process that initiates the communication needs to
take active part in it. The process that owns the memory area
it is reading from or writing into is not participating to the
communication, nor is it even aware that this communication
is happening.

Fast cluster interconnection networks such as InfiniBand
implement RDMA communications with zero-copy, meaning
that the NIC (Network Interface Card) transfers data directly
from one process’s memory into the other process’s memory
without involving its operating system.

PE0 PE1 PE2
Private

memory

Symmetric
heap

Static global
objects

Symmetric
objects

Fig. 4. OpenSHMEM memory model.

The OpenSHMEM communication and memory model:
OpenSHMEM is a parallel programming interface that defines
a set of one-sided, RDMA communication routines, aiming
specifically at clusters featuring low-latency networks [1]. The
processes are called Processing Elements. Each PE has its own
(private) memory, and exhibits a public heap. One particularity
of OpenSHMEM is that this heap is symmetric: every PE has
a shared heap of the same size and that contains the same
allocated objects and static global objects (Figure 4).

Symmetry is maintained between shared heaps through
the use of dedicated memory management routines (e.g.
shmem_malloc() and shmem_free()). The OpenSHMEM
specification states that these routines are collective routines
and must end by something semantically equivalent to a
barrier. Hence, every object is allocated at the same offset
from the beginning of the buffer on all the PEs [5]. Besides,
global static variables are also located in the shared heaps and
therefore remotely accessible.

The OpenSHMEM specification also defines some other
interfaces for collective operations, locks and atomic remote
accesses (such as fetch-and-add or compare-and-swap), which
are of particular interest for our distributed state compression
technique.

III. DISTRIBUTED STATE COLLAPSING BASED ON
ONE-SIDED COMMUNICATIONS

A. Motivations

Collapse compression does not depend on a specific ex-
ploration algorithm and is therefore fully compatible with the
distributed algorithm of Figure 2. This requires each PE to
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possess a local hash table for each component, but in practice
the memory used by these is low compared to the global hash
table H. Hence, a direct use of state collapsing provides the
same memory reduction as in the sequential case.

Nevertheless, a proper combination of state collapsing in
distributed state space exploration should also impact network
usage which this simple combination fails to provide. Indeed,
since each PE owns a portion of the global state space, the
contents of local hash tables (tables Hi) may differ among
PEs. Moreover, due to hash collisions, the same local state
could be found at different indexes among PEs. These reasons
prevent the exchanges of collapsed states between PEs: only
uncompressed global states can be sent through the network
because a collapsed state is only meaningful for the PE that
computed it. This naturally impacts transmission times but also
increases the memory allocated to reception buffers.

B. Design of partitioned hash tables

We now propose a distributed state collapsing method
that addresses the issue of exchanging collapsed states. This
method is based on the use of distributed partitioned hash
tables that can be efficiently implemented with the communi-
cation primitives provided by the OpenSHMEM specification.

The principle of our distributed collapse compression is to
maintain consistency between the different local hash tables
of PEs storing local state spaces. Let c be a component of
the system analysed and PE be the set of PEs. A simple
solution would be to assign c to a single PE p, in other words,
this PE would then be responsible for storing the most up-to-
date version of the local state space in a hash table H p

c made
available to other PEs via the shared heap. All PEs would
then concurrently access H p

c to insert or retrieve local states.
This solution would however break the symmetry between
processes which in turn would penalise the performance of
our method as it is likely that some PEs would then have
their shared heap accessed more frequently (e.g. those that are
responsible of larger local state spaces), resulting in a network
bottleneck.

To maintain, as much as possible, this symmetry between
processes, the solution we propose is to partition the local state
space table of a component c into |PE| blocks of size B= Lc

|PE| ,
Lc being the number of slots in the hash table associated with
component c (assumed to be a multiple of |PE| for the sake of
simplicity). A PE p ∈ {0, . . . , |PE|−1} is then responsible of
the B consecutive slots within range [p ·B,(p+1) ·B−1]. Only
these B slots are shared with other PEs through the symmetric
heap. These slots are said to be owned by PE p. Other slots
remain in the private area.

Figure 5 illustrates the memory layout of this solution for a
system composed of two components and with |PE|= 4 and
L1 = L2 = 8. Each PE p shares exactly two slots of every table
H p

c (H p
c being the local state space hash table of component c

on PE p). Other slots remain in the PE private memory. This
layout implies that if a PE hashes a component value and finds
out that the corresponding slot is owned by another PE, it will
first look in its (private) copy of the slot to check whether the
value is present. Then, only if this slot is empty, will it try

H0
1 H0

2PE0

H1
1 H1

2PE1

H2
1 H2

2PE2

H3
1 H3
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Fig. 5. Memory layout of the distributed partitioned hash tables used by
distributed state collapsing method for a two components system example

to insert the item in the owner’s slot (using remote put and
atomic compare-and-swap operations as described below).

The consistency of this layout is expressed through the two
following invariant properties verified for any PE p:
(I1) If a slot owned by p is empty, then this slot is also empty

on all other PEs.
(I2) If a slot owned by p contains an item, then this slot may

not contain a different item on any other PE.
Note that the symmetry of this layout makes it particularily

suited to the OpenSHMEM memory model.

C. Implementation of the partitioned tables

We detail now the implementation of the compress and
uncompress functions used by our algorithm. Our hash tables
must basically only support: a find-or-put operation that re-
turns the index of an item in the table after its insertion, if
required; and a lookup operation that retrieves the item at a
specific index. For this, we use a straightforward adaptation
of the hash table structure proposed in [11] also adapted
in [14] for RDMA networks (but for non-partitioned tables and
with asynchronous communications). We assume below that
the following procedures are provided by the communication
layer:
• getMem(p,o) returns the shared object o stored on PE p
• putMem(p,o,data) stores data in the shared object o of

PE p
• cswap(p,b,old,new) atomically checks if the shared byte

b stored on PE p has value old and, if it is the case,
updates it with value new. Function cswap returns the
value of the shared byte before its execution.

Figure 6 gives the pseudo-code of the find-or-put and lookup
operations required for our distributed collapse compression
method. Our hash tables are arrays of slots (type hashSlot)
that comprise two values, a status and the item stored in that
slot. The status is used to control the content of slots as well
as concurrent accesses performed by the find-or-put operation
detailed below. Initially, all slots have the EMPTY status.

When considering an item, findOrPut looks at slots starting
from hash(item) mod H.length. If it meets an empty slot in its
private copy of the table (l. 25), it performs a remote atomic
swap on the slot status of the owner of the slot (l. 26) to
change this status from EMPTY to WRITING. By this update,
the PE notifies its peers that it is currently updating the cell.
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1: type pe is {0, . . . , |PE|−1}
2: type slotStatus is {EMPTY,WRITING,READY}
3: type hashSlot is status : slotStatus× item : data
4: type hashTable is array of hashSlot
5:
6: procedure compress(s : state, p : pe) is
7: return 〈findOrPut(H p

1 ,s[1]), . . . ,findOrPut(H p
N ,s[N])〉

8:
9: procedure uncompress(s : compressedState, p : pe) is

10: return 〈lookup(H p
1 ,s[1]), . . . , lookup(H p

N ,s[N])〉
11:
12: procedure lookup(H : hashTable, idx : int) is
13: if H[idx].status 6= READY then
14: H[idx] := getMem(idx/|PE|,H[idx])
15: return H[idx].item
16:
17: procedure getItem(H : hashTable,owner : pe, idx : int) is
18: repeat
19: H[idx] := getMem(owner,H[idx])
20: until H[idx].status = READY

21: procedure findOrPut(H : hashTable, item : data) is
22: idx := hash(item) mod H.length
23: loop
24: owner := idx/|PE|
25: if H[idx].status = EMPTY then
26: st := cswap(owner,H[idx].status,EMPTY,WRITING)
27: if st = EMPTY then
28: putMem(owner,H[idx].item, item)
29: putMem(owner,H[idx].status,READY)
30: H[idx] := (READY, item)
31: else if st = WRITING then
32: getItem(H,owner, idx)
33: else /* ⇒ st = READY */
34: H[idx] := (READY,getMem(owner,H[idx].item))
35: else if H[idx].status = WRITING then
36: getItem(H,owner, idx)
37: if item = H[idx].item then
38: return idx
39: else
40: idx := (idx+1) mod H.length

Fig. 6. Compression and decompression procedures used by our distributed state collapsing method

If this swap succeeds, the PE writes the item in the slot of
its owner, changes again its status to READY (meaning the
slot is now occupied and available to other PEs) and updates
its private copy of the slot (ll. 27–30). Note that access with
a WRITING status only occurs once, for a single PE, to set
the value; subsequent accesses are only reading the slot and
can be concurrent. If the swap fails, two cases have to be
considered. Either another PE is currently updating the slot
(ll. 31–32), in which case, the PE has to wait for it to become
ready by periodally interrogating its owner (procedure getItem
at ll. 17–20). Or, the slot has already been assigned an item
(ll. 33–34), in which case the PE just has to recover it from
its owner. Note that the getMem operation is used for either
retrieving the status and the item (e.g. l. 19), or the item only
(when the status is known, e.g. l. 34).

When checking for the status of the slot in its private copy,
the PE may also find out that this slot is currently being
updated (ll. 35–36). This may happen if and only if the PE is
the owner of the slot. In that case, it also waits for the slot to
become ready.

At l. 37, it is guaranteed that the status of the slot is READY
and that it contains the item stored on the owner of the slot.
Then, the PE just has to compare the item to the content of
the slot, and return the index if both are equal, or move to the
next slot.

Using findOrPut, the compress procedure (ll. 6–7) simply
returns the N-tuples of indexes of the state component values
in their respective hash tables. Similarly the uncompress pro-
cedure (ll. 9–10) can rebuild the full state vector by recovering
the N state component values using the lookup procedure
(ll. 12–15). In this latter procedure, the PE first has to recover
the slot from its owner if its local copy of the slot does not
contain an item (test at l. 13).

Now that the algorithm has been detailed, we show that the
invariants (I1) and (I2) hold.

Sketch of proof of invariants: When a value is processed
by a PE, if the slot is empty in its owner’s hash table, the item
is inserted in the hash table of the owner and of the current PE,
if it is not the owner. Hence the first invariant (I1). Moreover,
this operation sets together the value in the owner and the PE
hash tables. If the slot is not empty in the owner’s hash table,
it is copied from it and put in the PE hash table. Thus, the
value in the owner’s table cannot be changed, and is copied
by all PEs that encounter the corresponding item. Hence they
all carry the same value, as stated by invariant (I2).

D. Use of partitioned tables in distributed state collapsing

With the distributed hash table structure described above, it
is straightforward to implement a distributed state collapsing
method. When a PE p reaches a state belonging to another
PE q, it first computes a compressed representation of this
state (i.e. an integer tuple) which is sent to q. Upon reception,
q stores the compressed state in its private hash table H
storing global (compressed) states. Later, this state will be
uncompressed in order to be processed by q (i.e. its successors
generated).

IV. VARIATIONS AND OPTIMISATIONS

We discuss in this section some variations and optimisations
of our distributed state collapsing method.

A. Compatibility with variable length state vectors

The method presented in the previous section assumes that
components have constant sizes. This disallows its use for the
verification of some models specified in a language such as
high-level Petri nets. A simple way to address this issue is to
store local component states in a separate buffer of the shared
heap that would grow as the exploration progresses. An item
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of a partitioned hash table would then consist of a pointer
to the location of the local state in this buffer, coupled with
the length of the local state. Two remote operations are thus
necessary to get/put a state from/to its owner (one to access
the table and one to access the buffer).

B. Recovering multiple items simultaneously

In the algorithm of Figure 6, each remote access allows
us to get a single item from a partitioned table. The second
variation we propose is, when requesting an item, to get several
consecutive items owned by the interrogated PE, starting from
the requested one. This is indeed possible since PEs own
blocks of consecutive items in a partitioned table. For instance,
in the example of Figure 5, if PE1 requests local state 5 of
component 2 from PE3 it could also get local state 8 using
the same getMem operation. This will possibly save a future
request for local state 8. This modification does not affect the
algorithm in any other way.

This optimisation is parametrised by the size of the blocks
recovered this way. It will be named BR(B) (Block Retrieval)
thereafter with B being the block size (a size of 0 indicating
that the optimisation is turned off).

C. Broadcasting new local states

It is clear from the layout of Figure 5 that maintaining
the partitioned hash table storing the local state space of
a component c requires a number of remote operations in
O(|Rc| · |PE|) (assuming an ideal situation with no hash
conflict) since each local state can be retrieved from its owner
by any other PE. This unfortunately means that the number of
remote operations used to maintain local state spaces increases
linearly with the number of PEs involved which may in turn
impact the acceleration of the exploration algorithm. This
becomes problematic for large local state spaces.

To alleviate this issue, we implemented an optimisation con-
sisting of broadcasting new local states discovered. Basically,
each time a PE inserts a new local state in a partitioned table
(ll. 28–29 in the algorithm of Figure 6), it also puts it (i.e. a
triple containing the component number, the index of the new
local state in its partitioned table, and the value of this local
state) in the output buffers storing compressed global states to
be sent to other PEs. Upon reception of this local state, a PE
inserts it in its local state space.

The principle of this optimisation is that when a PE reaches
a state that causes the insertion of a new local state in a
partitioned table, it is likely that other PEs will later have
to retrieve this local state. Hence, to avoid having these PEs
retrieving it using a costly remote get carrying a single local
state, it is put in output buffers to be sent together with other
data. Proceeding this way can thus save subsequent individual
getMem operations that would otherwise be performed by
these PEs to request the new local state.

This optimisation will be named BS (Broadcast of new local
States) thereafter.

V. EXPERIMENTS

We have implemented our method in the Helena verification
tool [7] on top of the distributed algorithm of [6]. We have
conducted experiments with input models written in the DVE
language, the input language of the DiVinE model checker [3].
A future implementation of the variation proposed in Sec-
tion IV-A to deal with state vectors of variable length will
allow us for using also high-level Petri nets as a formalism
for input models.

A. An implementation of state collapsing for DVE models
DVE allows to model concurrent systems made of processes

having private variables and synchronising through global
shared variables or communication channels.

We have seen that collapse compression relies on a de-
composition of the system into components. A straightforward
decomposition scheme associates each process to a component
and all global data (variables or channels) to another compo-
nent. This scheme will be named DP hereafter (Decomposition
by Process).

Scheme DP is however not always adapted. This may, for
instance, be the case if the system is composed of a large
number of small components (e.g. 1 or 2 bytes), in which case
the memory reduction ratio will be close to 1 or even larger.
Similarly, if some component represents a large fraction of the
state vector, it is likely that its local state space will also suffer
from combinatorial explosion, thereby cancelling the benefit
of state collapsing.

Another decomposition algorithm we used tries to tackle
these issues by proceeding as follows. A first decomposition
is done using scheme DP. Components are then ordered by
increasing size and then merged or split according to the
following two rules:
• Consecutive components are merged together in a new

one if their overall size does not exceed M bytes, M being
a parameter of this scheme. The decomposition algorithm
always tries to merge as many components as possible.

• Components exceeding M bytes are split into sub-
components of size M bytes. The last sub-component
contains the remaining bytes of the component if its size
is not a multiple of M.

This scheme will be named DMS(M) hereafter (Decomposi-
tion by Merge and Split).

B. Input models
We used models from the BEEM database for benchmark-

ings [15]. We experimented with models of Table I selected
according to their size (state space and state vector). The table
gives model names, numbers of states and transitions in the
state space, the decomposition strategy used (see Section V-A)
and, in the last five columns, compression information for
this specific strategy. Column Partitioned table size gives the
size (i.e. number of slots in the table) of a single partitioned
table storing local states. All partitioned tables are given the
same size. Hence, the number of bits required to encode a
compressed state vector equals

Components · log2(Partitioned table size)
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TABLE I
DVE MODELS USED FOR BENCHMARKING

Name States Transitions Decomposition Components Partitioned Local states State Compressed
strategy table size vector (B) state vector (B)

firewire_tree.6 22 690 105 126 238 660 DMS(20) 21 212 5 255 483 32
leader_election.6 35 777 100 233 195 212 DMS(20) 11 216 24 823 235 22
firewire_tree.7 121 230 111 778 073 817 DMS(20) 28 212 7 780 647 42
leader_election.7 235 183 948 1 712 371 948 DMS(20) 12 216 29 242 281 24
lifts.9 266 445 936 846 144 885 DMS(16) 3 220 918 975 43 8
collision.5 431 965 993 1 644 101 878 DMS(20) 3 212 6 289 52 5
pgm_protocol.11 499 396 802 1 207 512 586 DMS(8) 19 220 503 957 129 48
brp.8 1 526 547 707 3 207 513 490 DP 7 222 1 358 728 18 20
synapse.9 1 675 298 471 3 291 122 975 DMS(12) 4 218 48 959 58 9

Column Local states gives the number of unique local states
over all components, (i.e. this equals ∑c∈{1,...,N} |Rc|). This
number corresponds to the number of items stored in the
partitioned hash tables.

To determine the decomposition strategy we picked
DMS(20) as the default strategy. We then started with a par-
titioned table size of 28 and progressively increased (quadru-
pled) its size until the search could terminate successfully.
Indeed, since partitioned hash tables cannot be resized nor
extended, the search has to be aborted as soon as one of these
tables fills up as it is done with the non-distributed collapse
compression [8]. If the search could not terminate with a size
of 222, we then tried with a lower value of M (DMS(16),
DMS(12), . . . ) and repeated this process until a run could
finish successfully. For model brp.8 we had to fall back to
strategy DP, since no run could successfully terminate with
strategy DMS. Note that state collapsing is useless for this
model as the compressed state is larger than the original one.

C. Experimental environment

Experiments presented in this paper were carried out using
the Grid’5000 [4] testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and
several Universities as well as other organisations (see https:
//www.grid5000.fr).

We used the Graphene cluster, which is composed of
144 nodes, each of which features a quad-core Intel Xeon
X3440 running at 2.53 GHz, 16 GiB of RAM and a 20G
InfiniBand network interconnection. The nodes were running
a 64-bit Linux 4.9 kernel. All the code was compiled using
the GNU gcc 6.3.0 with -03 optimisation flag. We used the
OpenSHMEM implementation provided by OpenMPI 2.0.1
and the InfiniBand communication libraries libverbs 1.2.1
and librdmacm 1.1.0.

D. Impact of the optimisations

In tables II, III and IV, we compare the execution times (in
seconds) on 256, 128 and 32 cores, with various optimisation
options on a set of models. The fastest time is coloured in
green; those slower by 10% or less are coloured in lighter
green; those slower by 20% or less are coloured in light green.

The lift.9 and brp.8 models stand apart from the other
models, since they are the only ones on which the local

compression version is faster, for any number of processes.
We believe that this can be explained by the relatively small
state vector (40 bytes with lifts.9, 18 bytes for brp.8 and
the state spaces: lifts.9 has only 266 millions of states,
whereas although brp.8 has a large state space (1.5 billions),
it has a lot of local states compared to the state space (1.4
millions).

Hence, the state vectors are too small to benefit from the
states compression before they are sent (on brp.8 the state is
so small that the compressed vector is bigger than the original
one). In their case, maintaining the shared hash tables induces
a lot of communications, since they contain a lot of local states.
Therefore, the performance gain from the state compression
is not significant enough to compensate the overhead due to
these additional communications.

On the other hand, the model with a very small local state
collision.5 gets better performance with no broadcast on
a small number of processes, and scales better with a larger
number of processes.

We can see that, at small scale, the relative difference is
small (almost all the optimisations give a performance within
20% of the fastest time) and the difference increases with the
number of processes used. On most models, broadcasting the
new local states (see Sec. IV-C) gives better performance or,
when it is not the case, very close to the best performance. In
particular, on a small number of processes, when a broadcast
operation is not very expensive, broadcasting the new states
is always the winning strategy (most MPI implementations
implement their broadcast in log(P) steps, except for large
messages, which is not our case).

On models that are too small to scale well such as
firewire_tree.6, the additional communications of the dis-
tributed collapse algorithm harm the scalability. However, as
presented in section V-F, it does not really make sense to run
this model on 256 processes.

On 256 processes, small block sizes (see Sec. IV-B) gives
the best performance, except on the two leader_election
models. They have relatively large numbers of local states
(w.r.t. the state space size) and medium-size state vectors. As
explained about brp.8 and lifts.9, the performance gain
obtained by state vector compression does not overcome the
overhead caused by maintaining the hash table at this scale.
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Distributed collapse
Local BS off BS on

Model collapse BR(0K) BR(4K) BR(8K) BR(16K) BR(32K) BR(64K) BR(128K) BR(0K) BR(4K) BR(8K) BR(16K) BR(32K) BR(64K) BR(128K)
firewire_tree.6 9.37 13.04 12.35 12.49 12.23 13.18 18.89 12.42 17.43 11.84 11.93 12.01 12.15 12.08 12.18
leader_election.6 9.0 8.52 7.92 7.89 7.85 8.04 7.97 7.79 7.32 7.2 7.26 7.17 7.37 7.29 7.45
firewire_tree.7 37.49 27.72 26.73 28.06 29.18 26.72 32.76 26.53 26.01 26.51 27.14 27.175 27.16 26.71 26.29
lifts.9 9.89 381.65 84.2 61.94 30.97 25.66 48.48 35.28 12.6 12.63 12.75 13.04 13.7 14.6 14.87
leader_election.7 35.53 22.14 21.27 21.53 21.29 27.26 21.32 21.3 20.84 20.68 20.68 20.91 20.65 20.89 20.6
collision.5 14.4 12.84 11.39 11.38 11.47 11.42 11.42 11.4 11.1 10.98 11.11 11.15 11.13 11.36 11.18
pgm_protocol.11 31.12 57.96 50.46 54.98 42.09 44.66 49.32 47.81 31.3 44.66 31.55 31.57 32.57 32.2 32.47
synapse.9 34.74 36.62 32.65 30.44 30.25 30.28 30.7 30.41 28.77 29.85 29.81 28.95 29.61 29.0 29.04
brp.8 39.09 140.56 60.23 43.94 56.52 48.91 53.3 58.71 43.5 36.83 37.07 37.18 38.16 48.06 41.65

TABLE II
EXECUTION TIME WITH VARIOUS OPTIMISATION OPTIONS ON 256 PROCESSES

Distributed collapse
Local BS off BS on

Model collapse BR(0K) BR(4K) BR(8K) BR(16K) BR(32K) BR(64K) BR(128K) BR(0K) BR(4K) BR(8K) BR(16K) BR(32K) BR(64K) BR(128K)
firewire_tree.6 10.19 7.81 7.64 7.67 11.8 7.71 7.57 7.82 7.53 7.57 8.38 7.43 7.63 7.62 7.49
leader_election.6 9.49 7.41 8.15 7.05 9.5 7.01 7.04 7.02 6.42 7.68 6.49 6.54 6.49 6.46 6.5
firewire_tree.7 73.08 45.22 48.17 47.37 45.79 47.09 46.7 45.57 44.74 45.98 46.61 45.55 46.06 44.29 45.23
lifts.9 11.1 61.97 25.44 23.7 23.36 26.21 29.42 33.68 12.51 12.96 12.8 13.12 14.1 15.85 17.92
leader_election.7 63.73 34.83 36.51 34.85 35.91 34.15 34.41 33.97 34.11 35.76 34.14 33.63 33.52 34.04 34.08
collision.5 19.22 14.05 13.81 14.4 13.96 13.79 13.83 14.29 13.93 14.79 14.92 13.72 13.55 13.62 13.52
pgm_protocol.11 40.88 51.52 45.09 44.22 44.45 47.11 52.87 57.91 33.56 33.61 33.68 33.72 33.86 34.38 34.57
synapse.9 60.01 53.6 50.83 50.72 50.52 52.58 52.47 51.3 55.1 49.77 49.67 49.79 49.58 49.67 49.89
brp.8 61.95 112.8 66.58 64.6 65.19 68.4 74.7 82.33 55.97 55.69 55.93 56.28 57.11 58.38 60.94

TABLE III
EXECUTION TIME WITH VARIOUS OPTIMISATION OPTIONS ON 128 PROCESSES

Distributed collapse
Local BS off BS on

Model collapse BR(0K) BR(4K) BR(8K) BR(16K) BR(32K) BR(64K) BR(128K) BR(0K) BR(4K) BR(8K) BR(16K) BR(32K) BR(64K) BR(128K)
firewire_tree.6 34.78 47.21 32.79 24.63 23.03 22.68 23.4 17.7 18.16 17.83 18.03 17.99 18.28 18.19 17.81
leader_election.6 34.03 18.43 18.14 18.15 17.83 18.01 17.71 17.96 17.39 17.7 17.85 17.32 17.39 17.14 17.22
firewire_tree.7 328.21 188.75 177.3 177.2 177.6 177.36 174.17 178.11 178.34 176.45 177.84 22.45 22.89 23.14 22.51
lifts.9 33.79 64.26 43.7 41.76 41.48 42.89 47.78 52.18 29.54 29.73 30.06 30.65 31.23 34.28 37.48
leader_election.7 302.82 149.37 151.33 150.85 148.98 150.09 149.53 150.09 147.84 151.14 150.04 147.35 147.4 149.78 148.88
collision.5 68.17 100.27 20.47 16.71 16.23 44.62 17.12 44.56 46.25 44.39 44.72 44.56 44.83 44.33 44.43
pgm_protocol.11 139.58 120.26 115.94 115.8 114.61 117.47 122.94 129.21 105.17 104.79 105.58 104.82 105.86 105.55 106.92
synapse.9 125.25 96.05 94.44 94.85 92.31 95.28 93.93 94.38 92.92 93.52 94.0 93.11 94.52 94.01 92.16
brp.8 134.89 175.87 145.65 142.6 145.32 148.64 156.24 163.72 132.11 128.9 135.37 134.34 130.77 136.63 136.78

TABLE IV
EXECUTION TIME WITH VARIOUS OPTIMISATION OPTIONS ON 32 PROCESSES
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E. Buffer size

In order to observe the impact of the buffer size on the
performance, we measured the execution time on a set of
models on a given number of processes with respect to the
buffer size with and without broadcast and with local collapse.
Some selected results are given Fig. 7, 8, 9, 10 and 11. As
seen in section V-D, on some models the distributed collapse
is slightly slower than the local collapse.

We notice that the buffer size has little impact on the
performance.
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Fig. 7. Impact of the buffer size: collision 5. The x axis gives the buffer
size while the y axis displays the execution time.
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Fig. 8. Impact of the buffer size: firewire tree 7. The x axis gives the
buffer size while the y axis displays the execution time.
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Fig. 9. Impact of the buffer size: leader election 7. The x axis gives the
buffer size while the y axis displays the execution time.

F. Scalability

On Fig. 12 and 13 we compare the scalability of the various
options. The local compression is slower than distributed com-
pression, but it scales better. The difference between the other
options used for distributed compression is not significant,
neither in terms of raw performance nor on the scalability.
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Fig. 10. Impact of the buffer size: synapse 9. The x axis gives the buffer
size while the y axis displays the execution time.

 0
 20
 40
 60
 80

 100
 120
 140

 1000  10000  100000

DC No bcast
DC Bcast

C

(a) 64 procs

 0
 10
 20
 30
 40
 50
 60

 1000  10000  100000

DC No bcast
DC Bcast

C

(b) 384 procs

Fig. 11. Impact of the buffer size: brp 8. The x axis gives the buffer size
while the y axis displays the execution time.

G. Lessons learned from the experiments

To summarise the conclusions from the experimental results:
• Except on a small number of processes and with a small

local state, broadcasting the new local states always gives
better performance;

• However, since broadcasting the new states induces ad-
ditional communications, it does not scale as well as
without this broadcast;

• The number of states that are retrieved at the same
time (called the buffer size) has little impact on the
performance when broadcast is enabled, but a middle-
size buffer is efficient when there is no broadcast;

• On models with a small state vector and large local state
(compared to the state space), the distributed collapse
algorithm is slightly slower than the local collapse one;

• In all the other cases, the distributed collapse algorithm
with a small block size for multiple simultaneous retrieval
is faster.

VI. CONCLUSION

This paper addressed the optimisation of distributed model-
checking with one-sided communications by using state com-
pression. This new approach has been implemented in the dis-
tributed version of the Helena model-checker, and experiments
on a range of different benchmarks has shown its advantages.

One limitation of our distributed compression technique is
the necessity for the model checker user to provide an upper
bound on the partitioned hash table sizes. Indeed, if the table
fills up, a PE will not be able to insert new item to it, thus
aborting the search. The user then has to rerun the search with
a larger size. This adds to the necessity of providing a value
for parameter M if decomposition strategy DMS is used. Some
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Fig. 12. Execution time and speed-up comparison on three models. The
left plot gives the execution time using various buffer sizes, broadcast and no
broadcast, and local compression; the right plot gives the speed-up normalized
using the smallest number of processes we could execute on.

heuristics for computing a suitable M will be designed in the
future.

Moreover, for sequential model checkers, the recursive in-
dexing compression [8] enhances the collapse compression to
address this issue. One perspective is to extend our technique
in a similar way.
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