MPI Applications on Grids: a Topology Aware
Approach

Camille Cotif Thomas Heraultr Franck Cappellp
coti@lri.fr herault@lri.fr fci@lri.fr
TINRIA, F-91893 Orsay France
tUniv Paris Sud; LRI; F-91405 Orsay France

Abstract

Porting on grids complex MPI applications involving colige communica-
tions requires significant program modification, usuallgidated to a single grid
structure. The difficulty comes from the mismatch betweesg@ms organiza-
tions and grid structures: 1) large grids are hierarchicattures aggregating par-
allel machines through an interconnection network, detateruntime and 2) the
MPI standard does not currently provide any specific infdiomafor topology-
aware applications, so almost all MPI applications haveliesveloped following
a non-hierarchical and non-flexible vision. In this papeg pvopose a generic
programming method and a modification of the MPI runtime mmment to make
MPI applications topology aware. In contrary to previouprapches, topology
requirements for the application are given to the grid salied system, which
exposes the compatible allocated topology to the apptioati

1 Introduction

Porting MPI applications on grids and getting acceptabiéopeance is challenging.
However two clear user motivations push researchers toogegolutions: 1) Thde-
facto standard for programming parallel machines is the Messagsify Interface
(MPI). One of the advantages of MPI is that it provides a gnglell defined program-
ming paradigm, based on explicit message passing and tedleommunications. Itis
interesting to consider an MPI for grids, since complex mapilons may use non trivial
communication schemes both inside and between clusteBe@use of their experi-
ence in parallel machines, many users wish to port theitiagi# Pl applications, but
redeveloping large portions of their codes to fit new panadigequires strong efforts.
Not all parallel applications will perform well on a grid, &in general optimiza-
tions are required to reach acceptable performance. Hoywewputation intensive
applications following the master-worker or monte-cagip@aches are good candi-
dates and some of them have been ported and executed sutigessfrids [1, 19, 4].
In this paper, we investigate the issue of porting more cemapPI| applications
on grids. More specifically, we consider applications imid some collectives com-

munications. In order to port complex MPI applications oldgyseveral issues have to
be addressed. In [8], we already addressed the problem igindleg an efficient MPI
on grids and enabling transparent inter-cluster commtioics. However, with this
framework, MPI applications cannot take full advantagehef grid performance. In-
deed, the communication pattern does not differentiatenconications between nodes
inside a cluster and remote nodes. As a consequence, theaign may continuously
communicate between clusters, with a significant impactesfopmances.

The difficulty of porting complex MPI applications on gridsroes from 1) the dif-
ference between MPI programs organization and grid strestand 2) the static orga-
nization of existing MPI programs that does not fit with theedsity of grid structures.
Cluster of clusters grids are intrinsically hierarchidalistures where several parallel
machines are connected through a long-distance interctionaetwork. In contrary,
MPI standard does not currently provide any specific infdromaon the topology, so
almost all MPI applications have been developed followinwa-hierarchical vision.
In addition all grids differ in their topology and there is mechanism in MPI to self-
adapt the topology of the application to the one of the exeow@nvironment.

Previous works addressed the lack of topology awareness$linbyl exposing the
topology of the available resources to the application. e\, this approach requires
a strong effort from the application to adapt itself to pai@ty any kind of resources
that can be available at the time of submission, and is a layttmbuilding topology-
aware MPI applications for grids. Such applications neeldaiee a generic computa-
tion pattern that can adapt itself to any communicationgpaftand such applications
are very difficult (and sometimes impossible) to programr &aproach to address this
problem is to combine: a) a modification of the MPI programamigation to make it
hierarchical and flexible b) a description by the programafi&s hierarchical commu-
nication pattern through a virtual topology and c¢) a mapmihthe virtual topology to
the physical one as provided by the grid reservation anddsdimg service.

Typically in our approach, the application developer agdpe application code
in a hierarchical approach and describes its "virtual” catafion and communication
patterns in a companion file. The application developerifipsdén the companion file
properties for specific processes and network requirentettgeen nodes. To exe-
cute the application, the user submits it to the grid by piimg as usual the binary,
its parameters and data files, the number of desired noddshancompanion file.
We assume that the grid reservation and scheduling systsgnagphysical resources
to the application according to a best effort matching wité tiser requirements and
the application’s companion file. This assumption corresisdo the architecture pro-
posed in the QosCosGrid project, and scheduling technimuedtocate resources cor-
responding to the developer and user requirements areilokx$én [7, 16, 17]. The
modified MPI system adapts the collective operations tontipé communications on
the physical topology, and exposes the virtual topologyireg by the developer to
the application, thus optimizing communication pattemghie hierarchical topology.
Since communication costs can vary by orders of magnitutiedas two consecutive
levels of topology hierarchy, performances can greatlyefiefrom collective opera-
tions that adapt their point-to-point communicationsgratto the physical topology.

We present 4 main contributions to expose our approach ailsdend demonstrate
its effectiveness: 1) the method to make MPI applicatiorapatb grids’ hierarchy; 2)

the presentation and performance evaluation of a gridieda@PI middleware, fea-
turing topology awareness; 3) the evaluation of adaptel@cdle operations that fit
with the topology of the grid using topology information,mealy Broadcast, Reduce,
Gather, Allgather and Barrier; 4) the description and eatdun of a grid-enabled ap-
plication that takes advantage of our approach.

2 Related Work

A few approaches tried to tackle the topology adaptatiomlera (e.g. PACX-MPI
and MPICH-G [10, 14]) by publishing a topology descriptiortie application at run-
time. The Globus Toolkit (GT) [9] is a set of software that aito provide tools for
an efficient use of grids. MPICH [11] has been extended to takentage of these
features [14] and make an intensive use of the availablairess for MPI applica-
tions. MPICH-G2 introduced the concept of colors to degctite available topology.
It is limited to at most four levels, that MPICH-G2 calls: WAMNAN, system area
and, if available, vendor MPI. Those four levels are usuatigugh to cover most use-
cases. However, one can expect finer-grain topology infaomand more flexibility
for large-scale grid systems. These approaches expoghysecaltopology for the
application, which has to adapt by itself to the topologys i the major difference
with our approach. Practical experiments demonstratediktisaa difficult task to com-
pute an efficient communication scheme without prior knagkeon the topology: the
application must be written in a completely self-adaptiayw

Used along with Globus, Condor-G uses a technique calieéhg-in [21] to run
Condor jobs on a pool of hodes spanning several adminigrdtimains. This way, a
pool of Condor machines is made of the aggregation of thaseteeresources, the per-
sonal matchmaker and the user’s Condor-G agent. This tgeécian be a solution for
executing master-worker applications on a grid, but mostgral-specific applications
are written in MPI and cannot be executed with Condor. Moeeaylobal operations
like broadcasts and reductions cannot be done with Condor.

Collective operations have been studied widely and extehsin the last decades.
However, as pointed out in [20] proposed strategies arengbpin homogeneous envi-
ronments, and most often with a power-of-two number of psees. Their performance
are drastically harmed in the heterogeneous, general €¢asentoer of nodes.

Topology-discovery features in Globus have been used téemmgnt a topology-
aware hierarchical broadcast algorithm in MPICH-G2 [13twéver, complex appli-
cations require a larger diversity of collective operasigncluding reductions, barrier,
and sometimes all-to-all communications.

Grid-MPI [18] provides some optimized collective operago The AllReduce al-
gorithm is based on the works presented in [20]. The broaddgerithm is based
on [2]. Collective operations are optimized to make an isimuse of inter-cluster
bandwidth, with the assumption that inter-cluster comroatibns have access to a
higher bandwidth than intra-cluster. However, 1) this isalways a valid assumption
and 2) cluster of clusters grid have a large diversity of togp and results presented
in [18] only concern 2 clusters.

Previous studies on hierarchical collective operatioks |6] create a new algo-

rithm for the whole operation. Our approach tries to makeafdegacy algorithms
whenever possible, i.e, in homogeneous sub-sets of themsygtg.,a cluster). Mag-
Ple [15] is an extension of MPICH for aggregations of clustdiagPle considers as a
cluster any single parallel machine, which can be a netwbvkookstations, SMPs or
MPPs. It provides a set of collective operations based orodéwel hierarchy, using a
flat tree for all the inter-cluster communications. Thisuiegment strongly limits the
scope of hardware configurations. Moreover, a flat tree mayays be the most
efficient algorithm for upper-level communications.

3 Architecture

In this section we present how application developers cagram their applications in
order to make them fit to grids. We assume two kinds of topekigihe virtual topol-
ogy, seen by the programmer, and the physical topologyrrretlby the scheduler.
The virtual topology connects MPI processes or groups ofgsses in a hierarchical
structure; the physical topology connects resources (€iPéJ, cluster, MPP...) fol-
lowing a hierarchical structure. We consider that a phygmaology is compatible
with a virtual topology if the general structure of both téggies are matching and
if the physical topology is not more scattered than the wirtopology (the physical
topology preserves the geographical locality of intergess communications).

For example, if the developer requested three groups fotlyigoupled processes,
the scheduler can map them on three clusters, or two clustdys both physical
topologies meet the requirements of the virtual topology;es the geographical lo-
cality is preserved.

We assume that the programmer designed the virtual topeligput considering
a specific physical topology. However, when the programraeelbped an application,
he can define requirements on the physical topology throaganpetrization of the
virtual topology. Parameters in the virtual topology arklbandwidth, link latency,
available memory... (these requirements are optionalg. réequirements are provided
to the grid meta-scheduler, that tries to allocate nodespitysical topology matching
these requirements; the allocation algorithm and a togcd@gare Grid meta-scheduler
are described in details in [17] and are not the object offihjser.

Besides, we have developped new collective operationsenMRI library that
adapt themselves to the physical topology returned by thedsder. If we consider
the aforementioned example, global collective operatisitisbe optimized for two
subsets of processes instead of three subsets of procasesguared by the virtual
topology. The current version of the adaptation algorittssuanes that geographical
locality always reduces the collective communication exien time.

Our collective operations use the best implementation lkéciive operations avail-
able for every computing resource in the hierarchical stmec Compared to collective
operations for homogeneous environments discussed iflo8&tour collective oper-
ations adapt themselves to the physical topology.

To submit and execute a topology-aware application, theldger writes his appli-
cation and describes processes or process groups and cacatiaurs in a companion
file calledjobProfile The jobProfile is submitted to the scheduler, that provities

Vanilla Ray2mesh: Hierarchical Ray2mesh:
Broadcasts Broadcasts else/* worker */
if |_.am.master if |_.am.centraLmaster upon receive chunk:
while(chunk') while(chunk') calculate ray tracing
distribute among workers distribute among bosses send results to the boss
receive results from workers receive results from bosses endif
else/* worker */ else endif
upon receive chunk: if l.am.a_boss Broadcast
calculate ray tracing upon receive chunk: AllToAll
send results to the master while(chunk) Output local result
endif distribute among workers
Broadcast receive results from workers
AllIToAll send results to the central mas-
Output local result ter or my upper-level boss

Figure 1: Ray2mesh, vanilla and hierarchical code versions

list of allocated machines to the launcher. The applicasateployed and started on
this set of machines. The MPI runtime environment obtaiesphysical and virtual
topologies and transmits them to the MPI library (for cdilees communications) and
the application in order to identify the location of every Mitocess in the virtual
topology.

The following three subsections explain in more details lkkawh step of the adap-
tation are done. Subsection 3.1 describes a specificalpt@edapplication, Subsection
3.2 describes how the topology is adapted to the applicatiequirements in terms of
resources and communications, and Subsection 3.3 deserié®t of collective opera-
tions designed to fit on the physical topology and knowledmmiaproximity between
processes.

3.1 Grid-enabled application

The master-worker approach is used for a very wide range i@liphapplications.
Its major drawback is the single point of stress (masteratarg a bottleneck. We
consider the class of master-worker applications wherallehcomputations are done
from one or several large partitionnable data sets, ihjtiatated on the central master.
Partitions of the data set(s), that we call "chunks” areritigted to the workers during
the execution, following a scheduling algorithm.

For these applications, after computing a chunk, a workedsés result to the
master and waits for a new chunk. Data prefetch could be useth aptimization
to overlap communication and computation in order to reduceker idle time [3].
However this approach requires strong modifications of gfii@ation, for both master
and worker code and compromises the utilisation of extdibmalries in the application.

In a hierarchical communication and computation pattemintroduce local mas-
ters in the virtual topology that can be used to relay datefthe central master to
the workers, and results from the workers to the central enast the following, we

call such a local mastertzoss Bosses must be used at every intermediate level of the

topology. A boss receives data from its upper-level bos$ sends it down to its lower-
level boss or worker. Bosses are used in the virtual topologgduce the number of
cross-level communications and to foster locality of cominations.

We have applied our hierarchical execution approach to Ragh [12], a geo-
physics application that traces seismic rays along a giveshroontaining a geographic
area description. It uses the Snell-Descartes law in spdilegeometry to propagate a
wave front from a source (earthquake epicenter) to a recé&etsmograph). In the
following, we consider the master-worker implementatibRay2mesh.

The execution of Ray2mesh can be split up into three phasesHigure 1). The
first one consists of successive collective operations stridite information to the
computation nodes. The second phase is the master-workgsutation itself. The
third phase is made of collective operations to give infdromefrom all workers to all
others, before they can output their part of the final result.

We use the topological information to build a multi-levelglamentation of the
three phases involved in Ray2mesh to make the communicpétiarn fit with the
typically hierarchical topology of the grid.

This approach provides the same attractive propertiesadiional master-worker
application, with any number of levels of hierarchy. Herntperforms the same load-
balancing, not only among the workers, but also among thedasos This property
allows suiting to different sizes of clusters and differeminputation speeds. Moreover,
it allows each boss handling fewer data requests than inganaration with a unique
master.

3.2 Hardwareresources and application matching

The communications of an application follow a certain pattevhich involve some
requirements to be fulfilled by the physical topology. Foamyle, tightly-coupled
processes will require low-latency network links, whersase processes that do not
communicate often with each other but need to transfer @mgeunts of data will have
bandwidth requirements. Those requirements can be dedciibaJobProfile The
jobProfile is submitted to the grid scheduler, that trieditacate resources with respect
to the requirements by mapping the requested virtual tayodm available resources
whose characteristics match as tightly as possible theregegsted in the JobProfile.

The JobProfile describes the process groups involved indimpatation, in partic-
ular by specifying the number of processes in each group equinements on inter-
and intra-cluster communication performances. Some petesare left blank, and
filled by the meta-scheduler with the characteristics ofab&ined mapping.

Thegrouplddefined in the jobProfile will be passed to the applicatioruatime,
along with the virtual topology of the resources that wetecalted to the job. Using
grouplds it is simple to determine during the initialization of thppdication which
group a given process belongs to, and which processes btlangiven group. The
virtual topology description is passed like it was done fdPIKIH-G2 ¢f Section 2),
using an array of colors. Basically, two processes haviegstime color at a same
hierarchy depth belong to the same group. In MPICH-G2, timttdef a hierarchy is
limited to four. Our virtual topologies does not have thisitiation.

3.3 Adapted collective operations

Collective operations are one of the major features of MP$tudy conducted at the
Stuttgart High-Performance Computing Center [20] showed on their Cray T3E,
they represent 45% of the overall time spent in MPI routines.

To the best of our knowledge, no equivalent study was evee dorna production
grid during such a long period. However, one can expect npolbgy-aware collec-
tive communications to be even more time-consuming (wigpeet to all the other
operations) on an heterogeneous platform.

As in other Grid-MPI work ¢f Section 2), our MPI for grids features collective
communication patterns adapted to the physical topologyder to optimize them. In
the following paragraphs, we describe which collectiverafiens have been modified
for topology-awareness and how they have been modified.

MPI_BcastSending a message between two clusters takes significaatly time
than sending a message within a cluster. The latency forl syrathronization mes-
sages, can be superior by several orders of magnitude, andtén-cluster bandwidth
is shared between all the nodes communicating betweerecdust

The broadcast has been modified for exploiting the hierao€tiye physical topol-
ogy. The root of the broadcast, if it belongs to the top-lemalster communicator,
broadcasts the message along this top-level communi€ioerwise,the root process
sends the message to a top-level process which does exsetguine thing afterwards.
Each process then broadcasts the message along its “stibrsiiasmmunicator, until
the lowest-level nodes are reached.

MPI_ReducdJsing associativity of the operator in the Reduce operattaran be
made hierarchical as follows: each lowest level clustefgoers a reduction towards
their master, and for each level until the top level is redctiee masters perform a
reduction toward their level master.

MPI_Gather A Gatheralgorithm can also be done in a hierarchical way: a root
is defined in each cluster and sub-cluster, and an optimiadteg algorithm is used
within the lowest level of hierarchy, then for each uppeelaywntil the root is reached.

The executions among sub-masters gather buffers whichceually aggregations
of buffers. This aggregation minimizes the number of irdleister communications, for
the cost of only one trip time while making a better use of titeri-cluster bandwidth.

MPI_Allgatheraggregates data and makes the resulting buffer availalbddl dme
nodes. It can be done in a hierarchical fashion by succeafiiyatheroperations from
the bottom to the top of the hierarchy, followed by a hierazahBcastto propagate
the resulting buffer. MPBarrier is similar to an MPJAllgather without propagating
any data.

4 Experimental Evaluation

We modified the runtime environment and the MPI library of @esCosGrid Open
MPI implementation presented in [8] to expose the virtupblogy to the application.
We also implemented the collective operations describe8eiction 3.3 using MPI
functions.

We conducted the experiments on two traditional platforfkigh performance
computing: clusters of workstations with GigaEthernetwoek and computational
grids. These experiments were done on the experimentalsBaa [5] platform or
some of its components.

First, we measure the efficiency of topology-aware coNectperations, using
micro-benchmarks to isolate their performance. Then wesoreathe effects of hi-
erarchy on a master-worker data distribution pattern aackffects on the Ray2mesh
application. In the last section, we present a graph shottiagespective contribu-
tion of the hierachical programming and topology awareemiVe operations on the
application performance.

4.1 Experimental Platform

Grid’5000 is a dedicated reconfigurable and controllabjgeeimental platform featur-
ing 13 clusters, each with 58 to 342 PCs, inter-connectexitiir Renater (the French
Educational and Research wide area Network). It gathegig®,000 CPU cores fea-
turing four architectures (Itanium, Xeon, G5 and Opterasjributed into 13 clusters
over 9 cities in France.

For the two families of measurement we conducted (clustégaid), we used only
homogeneous clusters with AMD Opteron 248 (2 GHz/1MB L2 edii-processors.
This includes 3 of the 13 clusters of Grid’5000: the 93-noldster at Bordeaux, the
312-node cluster at Orsay, a 99-node cluster at Rennes.sNwdénterconnected by a
Gigabit Ethernet switch.

We also used QCG, a cluster of 4 multi-core-based nodes wahabre Intel Pen-
tium D (2.8 GHz/2x1MB L2 cache) processors interconnected 100MB Ethernet
network.

All the nodes were booted under linux 2.6.18.3 on Grid’50668 2.6.22 on the
QCG cluster. The tests and benchmarks are compiled with @&0G-(with flag -O3).
All tests are run in dedicated mode.

Inter-cluster throughput on Grid’5000 is 136.08 Mb/s antditay is 7.8 ms, whereas
intra-cluster throughput is 894.39 Mb/s and latency is 0sl ®n the QCG cluster,
shared-memory communication have a throughput of 3979.48 éind a latency of
0.02 ms, whereas TCP communications have a throughput®1 8%b/s and a latency
of 0.1 ms.

4.2 Collective operations

We ran collective operation benchmarks on 32 nodes acrassltsters in Orsay and
Rennes (figures 2a-b). A configuration with two clusters isatreme situation to
evaluate our collective communications: a small and constamber of inter-cluster
messages are sent by topology-aware communications, ag@(éog(p)) (wherep
is the total number of nodes) inter-cluster messages attebgestandard collective
operations.

We also conducted some experiments on the QCG cluster withc@pses mapped
on each machine. Although this mapping oversubscribesdbdes(8 processes for 2
available slots), our benchmarks are not CPU-bound, ascctrifiguration enhances

QCG_Bcast QCG_Reduce
1000 T T T T T T T T T T T T T 1000 T T T T T T T T T T T
Standard ‘
I Grid seesees > 100 - m o= - - , 'I'I *93].
£ £ H FaE i T
= RORETE SR AE LI SR RE S [1
E g L A
= B =
H LF standard B 3
T T T S N Y 0.1 L Grd e L1
BN ARIS3EF53833 R
Message size 6%)‘ message size 68)
(a) Broadcast ?GI’Id'S 0) (b) Reduce (Grid’5000)
QCG_Reduce QCG_Gather
100000 T T T T T T T T T T T T 100000 rrrrrrrrrrrrrrrTr T TrTrTT
Standard 10000 F Staméar_g ¥
i [i 1000 F rid -eeeeee E
10000
% % 100 F E
£ 3 T e T —. R £ 10 F E
= lOOOf foRabl T A CRTIY B0 <. = 14 XX&X E
0.1,.:??'?(')}('** 3
100 001 B L 1111}

111
T OONTOONXX XX
AMONL o= NSO

— N
e SIZi

Messa
(d) Gather (QCG)

Figure 2: Comparison between standard and grid-enabléectioé operations on a
grid.

the stress on the network interface. Measurements with fipgatool validated the
very low CPU usage during our benchmark runs.

We used the same measurement method as described in [14d, thei barrier
described in Section 3.3 to synchronize time measurements.

Since we implemented our hierarchical collective opereim MPI, some pre-
treatment of the buffers may be useful. Messages are prarmglsent chunk after
chunk. Then it is possible to pipeline the successive stafjfee hierarchical opera-
tion. It appeared to be particularly useful when shared-brgrocommunications were
involved, allowing fair system bus sharing.

Figures 2(a) and 2(b) picture comparisons between stamaartierarchical MR}
Bcast and MPIReduce on Grid’5000. Message pre-cutting appeared to bel dee
MPI_Bcast, whereas it was useless for MRduce, since big messages are already
split by the algorithm implemented in Open MPI.

One can see that, as expected, hierarchical_Biist (Figure 2(a)) always per-
forms better than the standard implementation. Moreovercptting and pipelining
permits to avoid the performance step around the eagegreviols mode transition.

When messages are large regarding communicator sizeRd&lice (Figure 2(b))
in Open MPI is implemented using a pipeline mechanism. Théshanism allows
communication costs to be dominated by the high throughpttie pipeline rather
than the latency of a multi-steps tree-like structure. &fiely shortens the pipeline:
then its latencyi(e., time to load the pipeline) is smaller and it performs better
short messages. But for large messages (beyond 100 kB)igherhihroughput of a
longer pipeline outperforms the latency-reduction sgaten this case, hierarchical
communications are not an appropriate approach, and sediiaglpipeline performs
better.

10

Execution time of Ray2mesh on a Grid Execution Time of Ray2mesh on a Grid

350 T T T T 160 T —T T
Vanilla —— Grid Optimized Collectives

h

Grid-optimized collectives === S Topology Aware s
140 L Vanilla

300 R\ Topology-awar -
%% Topology-aware, workers and master only ==

250

w.r.t. Vanilla R:

200

Execution time (s)

150

ge of A

100 -

15 30 45 60 90 120 8 O 2 T T T X
of procs # of nodes

(a) Scalability of Ray2mesh on a grid (b) Relative acceleration of Ray2mesh, with respect to
the vanilla implementation

Figure 3: Comparison of vanilla Ray2mesh with vanilla Rag&musing optimized
collective communications, and fully topology-aware Rangzh

Figures 2(c) and 2(d) picture comparisons between starashartlierarchical MP}
Reduce and MRGather on the QCG cluster. On a cluster of multi-cores, ctille
operations over shared-memory outperform inter-machi@® Tommunications sig-
nificantly enough to have a negligible cost. Therefore, ommfiguration including
a smaller number of physical nodes, inducing more sharadenecommunications,
our hierarchical MPIRReduce performs better (Figure 2(c)).

4.3 Adapted application

The execution phases of Ray2mesh are presented in Sectidhi8.made of 3 phases:

two collective communication phases and a master-workewpcation phase in be-

tween them. When the number of processes increases, onexpact ¢he second

phase to be faster but the first and third phases to take nmoeg $ince more nodes are
involved in the collective communications.

Figure 3(a) presents the scalability of Ray2mesh undeetboafigurations: stan-
dard (vanilla), using grid-adapted collective operatj@msl using a hierarchical master-
worker pattern and grid-adapted collective operation@s€hthree configurations rep-
resent the three levels of adaptation of applications to@hd. The standard devia-
tion is lower than 1% for each point. The fourth line représehe values of the last
configuration, measured with the same number of computiegehts as in the first
configuration, thus removing the local boss in the proceastco

First of all, Ray2mesh scales remarkably well, even whenesprocesses are lo-
cated on a remote cluster. When a large number of nodes areaahin the computa-
tion, collective operations represent an important pahebverall execution time. We
can see the improvement obtained from grid-enabled colecon the “grid-optimized
collectives” line in Figure 3(a). The performance gain f80Jrocesses is 9.5%.

Small-scale measurements show that the grid-enablecowes$iRay2mesh does
not perform as well as the standard version. The reason isévaral processes are
used to distribute the data (the bosses) instead of onlyRereexample, with 16 pro-

11

cesses distributed on three clusters, 15 processes willlactvork for the computation
in a single-master master-worker application, whereag d2lof them will contribute
to the computation on a multi-level (two-level) master-karapplication. A dynamic
adaptation of the topology according to the number of inedlmode would select the
"non hierarchical” version for small numbers of nodes andldselect the hierarchical
version when the number of nodes exceeds 30.

However, we ran processes on each of the available prosgssgardless of their
role in the system. Bosses are mainly used for communicgtiohereas workers do
not communicate a lot (during the master-worker phase, ¢baymunicate with their
boss only). Therefore, a worker process can be run on the skatnas a boss without
competing for the same resources. For a given number of wgr&e represented by the
“workers and master only” line in Figure 3(a), the three iempéntations show the same
performance for a small number of processes, and the gdbtited implementations
are more scalable. The performance gain for 180 proces8&84sby adding only 3
dedicated nodes working exclusively as bosses.

The relative acceleration with respect to the vanilla imptatation is represented
Figure 3(b). We can see that the application speed is neverdubby optimized col-
lective operations and performs better on large scale, anplddogy-aware application
is necessary to get a better speedup for large-scale ajmtica

5 Conclusion

In this paper, we proposed a new topology-aware approachrtacpmplex MPI ap-
plications on grid through a methodology to use MPI prograngrechniques on
grids. First we described a method to adapt master-workieerpa to grids’ hier-
archical topology. We used this method to implement a gnidbéed version of the
Ray2mesh geophysics applications featuring a multi-levester-worker pattern and
our hierarchical collective operations. Then we proposeawg to describe the com-
munication patterns implemented in the application in otdenatch the application’s
requirements with the allocated physical topology. In tet part we presented a set
of efficient collective operations that organize their conmications with respect to the
physical topology in order to minimize the number of higketecy communications.

Experiments showed the benefits of each part of this apprerattheir limitations.
In particular, experiments showed that using optimizedecties fitted to the phys-
ical topology of the grid induce a performance improvemditiey also showed that
adapting the application itself can improve the perfornesreven further.

We presented an extension of the runtime environment of ahitilementation
targeting institutional grids to provide topology infortiwan to the application. These
features have been implemented in an MPI library for grids.

Acknowledgements. Experiments presented in this paper were carried out ukig t
Grid’5000 experimental testbed, an initiative from the rieie Ministry of Research
through the ACI GRID incentive action, INRIA, CNRS and REN&R and other con-
tributing partners (see https:// www.grid5000.fr), andrided by the QosCosGrid Eu-
ropean project (grant number: FP6-2005-1ST-5 033883).

12

References

[1] E. I. Atanassov, T. V. Gurov, A. Karaivanova, and M. Nékfe. Monte carlo grid application for
electron transport. IRroc. of ICCS volume 3993 oL NCS pages 616-623. Springer, 2006.

[2] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. van de riGegnd J. Watts. Building a high-
performance collective communication library. Bnoc. of SC'94 pages 107-116. IEEE, 1994.

[3] S. Boutammine, D. Millot, and C. Parrot. An adaptive sthieng method for grid computing. IRroc.
of Euro-Par’06 volume 4128 oL NCS pages 188-197. Springer, 2006.

[4] S. Branford, C. Sahin, A. Thandavan, C. Weihrauch, V. Nexandrov, and I. T. Dimov. Monte carlo
methods for matrix computations on the grielture Gener. Comput. Sys24(6):605-612, 2008.

[5] F. Cappello, E. Caron, and M. Daye al. Grid’5000: A large scale and highly reconfigurable grid
experimental testbed. Iroc. The 6th Intl. Workshop on Grid Computjrgages 99-106, 2005.

[6] F. Cappello, P. Fraigniaud, B. Mans, and A. L. RosenbeigHdCoHP: Toward a realistic communi-
cation model for hierarchical hyperclusters of heterogeseprocessors. IRroc. of IPDPS page 42.
IEEE, 2001.

[7] M. Charlot, G. De Fabritis, A.L. Garcia de Lomana, A. Gav@arrido, and D. Groen et al. The
QosCosGrid project. libergrid 2007 conference, Centro de Supercomputacion diei&a2007.

[8] C. Caoti, T. Herault, S. Peyronnet, A. Rezmerita, and Fpiizdlo. Grid services for MPI. Iiroc. of
CCGRID pages 417-424. |IEEE, 2008.

[9] lan T. Foster. Globus toolkit version 4: Software fongee-oriented systems. Comput. Sci. Technol
21(4):513-520, 2006.

[10] E. Gabriel, M. M. Resch, T. Beisel, and R. Keller. Dibtried computing in a heterogeneous computing
environment. IrProc. of EuroPVM/MP]volume 1497 oL NCS pages 180-187. Springer, 1998.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-perfance, portable implementation of the MPI
message passing interface stand&atallel Computing 22(6):789-828, 1996.

[12] M. Grunberg, S. Genaud, and C. Mongenet. Parallel seisay tracing in a global earth model. In
Proc. of PDPTAvolume 3, pages 1151-1157. CSREA Press, 2002.

[13] N.T.Karonis, B. R. de Supinski, |. Foster, W. Gropp, Esk, and J. Bresnahan. Exploiting hierarchy
in parallel computer networks to optimize collective opieraperformance. IProc. of SPDR pages
377-386. IEEE, 2000.

[14] Nicholas T. Karonis, Brian R. Toonen, and lan T. FosPICH-G2: A grid-enabled implementation
of the message passing interfa@RR ¢s.DC/0206040, 2002.

[15] T.Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R.FABhoedjang. M\GPIE: MPI’s collective
communication operations for clustered wide area systémBroc. of PPoPRvolume 34.8 ofACM
Sigplan pages 131-140. ACM Press, 1999.

[16] V.Kravtsov, D. Carmeli, A. Schuster, B. Yoshpa, M. &itbtein, and W. Dubitzky. Quasi-opportunistic
supercomputing in grids, hot topic paper.Rroc. of HPDG 2007.

[17] V. Kravtsov, M. Swain, U. Dubin, W. Dubitzky, and A. Scéter. A fast and efficient algorithm for
topology-aware coallocation. Rroc. of ICCS volume 5101 oL NCS pages 274-283, 2008.

[18] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and Y. Ishika TCP adaptation for MPI on long-and-
fat networks. InProc. of CLUSTERpages 1-10. IEEE, 2005.

[19] P. Nascimento, C. Sena, J. da Silva, D. Vianna, C. Boara$ V. Rebello. Managing the execution of
large scale mpi applications on computational griéiec. of SBAC-PADpages 69-76, 2005.

[20] R. Rabenseifner. Optimization of collective reduntioperations. IrProc. of ICCS volume 3036 of
LNCS pages 1-9. Springer, 2004.

[21] D. Thain, T. Tannenbaum, and M. Livny. Condor and thelghi Grid Computing: Making the Global

Infrastructure a RealityJohn Wiley & Sons Inc., December 2002.

