
MPI Applications on Grids: a Topology Aware
Approach

Camille Coti† Thomas Herault‡† Franck Cappello†
coti@lri.fr herault@lri.fr fci@lri.fr

†INRIA, F-91893 Orsay France
‡Univ Paris Sud; LRI; F-91405 Orsay France

Abstract

Porting on grids complex MPI applications involving collective communica-
tions requires significant program modification, usually dedicated to a single grid
structure. The difficulty comes from the mismatch between programs organiza-
tions and grid structures: 1) large grids are hierarchical structures aggregating par-
allel machines through an interconnection network, decided at runtime and 2) the
MPI standard does not currently provide any specific information for topology-
aware applications, so almost all MPI applications have been developed following
a non-hierarchical and non-flexible vision. In this paper, we propose a generic
programming method and a modification of the MPI runtime environment to make
MPI applications topology aware. In contrary to previous approaches, topology
requirements for the application are given to the grid scheduling system, which
exposes the compatible allocated topology to the application.

1 Introduction

Porting MPI applications on grids and getting acceptable performance is challenging.
However two clear user motivations push researchers to propose solutions: 1) Thede-
facto standard for programming parallel machines is the Message Passing Interface
(MPI). One of the advantages of MPI is that it provides a single, well defined program-
ming paradigm, based on explicit message passing and collective communications. It is
interesting to consider an MPI for grids, since complex applications may use non trivial
communication schemes both inside and between clusters; 2)Because of their experi-
ence in parallel machines, many users wish to port their existing MPI applications, but
redeveloping large portions of their codes to fit new paradigms requires strong efforts.

Not all parallel applications will perform well on a grid, and in general optimiza-
tions are required to reach acceptable performance. However, computation intensive
applications following the master-worker or monte-carlo approaches are good candi-
dates and some of them have been ported and executed successfully on grids [1, 19, 4].

In this paper, we investigate the issue of porting more complex MPI applications
on grids. More specifically, we consider applications involving some collectives com-

1

2

munications. In order to port complex MPI applications on grids, several issues have to
be addressed. In [8], we already addressed the problem of designing an efficient MPI
on grids and enabling transparent inter-cluster communications. However, with this
framework, MPI applications cannot take full advantage of the grid performance. In-
deed, the communication pattern does not differentiate communications between nodes
inside a cluster and remote nodes. As a consequence, the application may continuously
communicate between clusters, with a significant impact on performances.

The difficulty of porting complex MPI applications on grids comes from 1) the dif-
ference between MPI programs organization and grid structures and 2) the static orga-
nization of existing MPI programs that does not fit with the diversity of grid structures.
Cluster of clusters grids are intrinsically hierarchical structures where several parallel
machines are connected through a long-distance interconnection network. In contrary,
MPI standard does not currently provide any specific information on the topology, so
almost all MPI applications have been developed following anon-hierarchical vision.
In addition all grids differ in their topology and there is nomechanism in MPI to self-
adapt the topology of the application to the one of the execution environment.

Previous works addressed the lack of topology awareness in MPI by exposing the
topology of the available resources to the application. However, this approach requires
a strong effort from the application to adapt itself to potentially any kind of resources
that can be available at the time of submission, and is a key lock to building topology-
aware MPI applications for grids. Such applications need tohave a generic computa-
tion pattern that can adapt itself to any communication pattern, and such applications
are very difficult (and sometimes impossible) to program. Our approach to address this
problem is to combine: a) a modification of the MPI program organization to make it
hierarchical and flexible b) a description by the programmerof its hierarchical commu-
nication pattern through a virtual topology and c) a mappingof the virtual topology to
the physical one as provided by the grid reservation and scheduling service.

Typically in our approach, the application developer adapts the application code
in a hierarchical approach and describes its ”virtual” computation and communication
patterns in a companion file. The application developer specifies in the companion file
properties for specific processes and network requirementsbetween nodes. To exe-
cute the application, the user submits it to the grid by providing as usual the binary,
its parameters and data files, the number of desired nodes, and the companion file.
We assume that the grid reservation and scheduling system assigns physical resources
to the application according to a best effort matching with the user requirements and
the application’s companion file. This assumption corresponds to the architecture pro-
posed in the QosCosGrid project, and scheduling techniquesto allocate resources cor-
responding to the developer and user requirements are described in [7, 16, 17]. The
modified MPI system adapts the collective operations to optimize communications on
the physical topology, and exposes the virtual topology required by the developer to
the application, thus optimizing communication patterns to the hierarchical topology.
Since communication costs can vary by orders of magnitude between two consecutive
levels of topology hierarchy, performances can greatly benefit from collective opera-
tions that adapt their point-to-point communications pattern to the physical topology.

We present 4 main contributions to expose our approach in details and demonstrate
its effectiveness: 1) the method to make MPI applications adapt to grids’ hierarchy; 2)

3

the presentation and performance evaluation of a grid-enabled MPI middleware, fea-
turing topology awareness; 3) the evaluation of adapted collective operations that fit
with the topology of the grid using topology information, namely Broadcast, Reduce,
Gather, Allgather and Barrier; 4) the description and evaluation of a grid-enabled ap-
plication that takes advantage of our approach.

2 Related Work

A few approaches tried to tackle the topology adaptation problem (e.g. PACX-MPI
and MPICH-G [10, 14]) by publishing a topology description to the application at run-
time. The Globus Toolkit (GT) [9] is a set of software that aims to provide tools for
an efficient use of grids. MPICH [11] has been extended to takeadvantage of these
features [14] and make an intensive use of the available resources for MPI applica-
tions. MPICH-G2 introduced the concept of colors to describe the available topology.
It is limited to at most four levels, that MPICH-G2 calls: WAN, LAN, system area
and, if available, vendor MPI. Those four levels are usuallyenough to cover most use-
cases. However, one can expect finer-grain topology information and more flexibility
for large-scale grid systems. These approaches expose thephysicaltopology for the
application, which has to adapt by itself to the topology: this is the major difference
with our approach. Practical experiments demonstrated that it is a difficult task to com-
pute an efficient communication scheme without prior knowledge on the topology: the
application must be written in a completely self-adaptive way.

Used along with Globus, Condor-G uses a technique calledgliding-in [21] to run
Condor jobs on a pool of nodes spanning several administrative domains. This way, a
pool of Condor machines is made of the aggregation of those remote resources, the per-
sonal matchmaker and the user’s Condor-G agent. This technique can be a solution for
executing master-worker applications on a grid, but most non grid-specific applications
are written in MPI and cannot be executed with Condor. Moreover, global operations
like broadcasts and reductions cannot be done with Condor.

Collective operations have been studied widely and extensively in the last decades.
However, as pointed out in [20] proposed strategies are optimal in homogeneous envi-
ronments, and most often with a power-of-two number of processes. Their performance
are drastically harmed in the heterogeneous, general case of number of nodes.

Topology-discovery features in Globus have been used to implement a topology-
aware hierarchical broadcast algorithm in MPICH-G2 [13]. However, complex appli-
cations require a larger diversity of collective operations, including reductions, barrier,
and sometimes all-to-all communications.

Grid-MPI [18] provides some optimized collective operations. The AllReduce al-
gorithm is based on the works presented in [20]. The broadcast algorithm is based
on [2]. Collective operations are optimized to make an intensive use of inter-cluster
bandwidth, with the assumption that inter-cluster communications have access to a
higher bandwidth than intra-cluster. However, 1) this is not always a valid assumption
and 2) cluster of clusters grid have a large diversity of topology and results presented
in [18] only concern 2 clusters.

Previous studies on hierarchical collective operations like [6] create a new algo-

4

rithm for the whole operation. Our approach tries to make useof legacy algorithms
whenever possible, i.e, in homogeneous sub-sets of the system (e.g.,a cluster). Mag-
PIe [15] is an extension of MPICH for aggregations of clusters. MagPIe considers as a
cluster any single parallel machine, which can be a network of workstations, SMPs or
MPPs. It provides a set of collective operations based on a two-level hierarchy, using a
flat tree for all the inter-cluster communications. This requirement strongly limits the
scope of hardware configurations. Moreover, a flat tree may not always be the most
efficient algorithm for upper-level communications.

3 Architecture

In this section we present how application developers can program their applications in
order to make them fit to grids. We assume two kinds of topologies: the virtual topol-
ogy, seen by the programmer, and the physical topology, returned by the scheduler.
The virtual topology connects MPI processes or groups of processes in a hierarchical
structure; the physical topology connects resources (core, CPU, cluster, MPP...) fol-
lowing a hierarchical structure. We consider that a physical topology is compatible
with a virtual topology if the general structure of both topologies are matching and
if the physical topology is not more scattered than the virtual topology (the physical
topology preserves the geographical locality of inter-process communications).

For example, if the developer requested three groups for tightly coupled processes,
the scheduler can map them on three clusters, or two clustersonly: both physical
topologies meet the requirements of the virtual topology, since the geographical lo-
cality is preserved.

We assume that the programmer designed the virtual topologywithout considering
a specific physical topology. However, when the programmer developed an application,
he can define requirements on the physical topology through parametrization of the
virtual topology. Parameters in the virtual topology are link bandwidth, link latency,
available memory... (these requirements are optional). The requirements are provided
to the grid meta-scheduler, that tries to allocate nodes on aphysical topology matching
these requirements; the allocation algorithm and a topology aware Grid meta-scheduler
are described in details in [17] and are not the object of thispaper.

Besides, we have developped new collective operations in the MPI library that
adapt themselves to the physical topology returned by the scheduler. If we consider
the aforementioned example, global collective operationswill be optimized for two
subsets of processes instead of three subsets of processes as required by the virtual
topology. The current version of the adaptation algorithm assumes that geographical
locality always reduces the collective communication execution time.

Our collective operations use the best implementation of collective operations avail-
able for every computing resource in the hierarchical structure. Compared to collective
operations for homogeneous environments discussed in Section 2, our collective oper-
ations adapt themselves to the physical topology.

To submit and execute a topology-aware application, the developer writes his appli-
cation and describes processes or process groups and communications in a companion
file called jobProfile. The jobProfile is submitted to the scheduler, that providesthe

5

Vanilla Ray2mesh:
Broadcasts
if I am master:

while(chunk)
distribute among workers
receive results from workers

else/* worker */
upon receive chunk:

calculate ray tracing
send results to the master

endif
Broadcast
AllToAll
Output local result

Hierarchical Ray2mesh:
Broadcasts
if I am central master:

while(chunk)
distribute among bosses
receive results from bosses

else
if I am a boss:

upon receive chunk:
while(chunk)
distribute among workers
receive results from workers

send results to the central mas-
ter or my upper-level boss

else/* worker */
upon receive chunk:

calculate ray tracing
send results to the boss

endif
endif
Broadcast
AllToAll
Output local result

Figure 1: Ray2mesh, vanilla and hierarchical code versions

list of allocated machines to the launcher. The applicationis deployed and started on
this set of machines. The MPI runtime environment obtains the physical and virtual
topologies and transmits them to the MPI library (for collectives communications) and
the application in order to identify the location of every MPI process in the virtual
topology.

The following three subsections explain in more details howeach step of the adap-
tation are done. Subsection 3.1 describes a specifically adapted application, Subsection
3.2 describes how the topology is adapted to the application’s requirements in terms of
resources and communications, and Subsection 3.3 describes a set of collective opera-
tions designed to fit on the physical topology and knowledge about proximity between
processes.

3.1 Grid-enabled application

The master-worker approach is used for a very wide range of parallel applications.
Its major drawback is the single point of stress (master) creating a bottleneck. We
consider the class of master-worker applications where parallel computations are done
from one or several large partitionnable data sets, initially located on the central master.
Partitions of the data set(s), that we call ”chunks” are distributed to the workers during
the execution, following a scheduling algorithm.

For these applications, after computing a chunk, a worker sends its result to the
master and waits for a new chunk. Data prefetch could be used as an optimization
to overlap communication and computation in order to reduceworker idle time [3].
However this approach requires strong modifications of the application, for both master
and worker code and compromises the utilisation of externallibraries in the application.

In a hierarchical communication and computation pattern, we introduce local mas-
ters in the virtual topology that can be used to relay data from the central master to
the workers, and results from the workers to the central master. In the following, we
call such a local master aboss. Bosses must be used at every intermediate level of the
topology. A boss receives data from its upper-level boss, and sends it down to its lower-
level boss or worker. Bosses are used in the virtual topologyto reduce the number of
cross-level communications and to foster locality of communications.

6

We have applied our hierarchical execution approach to Ray2mesh [12], a geo-
physics application that traces seismic rays along a given mesh containing a geographic
area description. It uses the Snell-Descartes law in spherical geometry to propagate a
wave front from a source (earthquake epicenter) to a receiver (seismograph). In the
following, we consider the master-worker implementation of Ray2mesh.

The execution of Ray2mesh can be split up into three phases (see Figure 1). The
first one consists of successive collective operations to distribute information to the
computation nodes. The second phase is the master-worker computation itself. The
third phase is made of collective operations to give information from all workers to all
others, before they can output their part of the final result.

We use the topological information to build a multi-level implementation of the
three phases involved in Ray2mesh to make the communicationpattern fit with the
typically hierarchical topology of the grid.

This approach provides the same attractive properties as a traditional master-worker
application, with any number of levels of hierarchy. Hence,it performs the same load-
balancing, not only among the workers, but also among the bosses. This property
allows suiting to different sizes of clusters and differentcomputation speeds. Moreover,
it allows each boss handling fewer data requests than in an organization with a unique
master.

3.2 Hardware resources and application matching

The communications of an application follow a certain pattern, which involve some
requirements to be fulfilled by the physical topology. For example, tightly-coupled
processes will require low-latency network links, whereassome processes that do not
communicate often with each other but need to transfer largeamounts of data will have
bandwidth requirements. Those requirements can be described in aJobProfile. The
jobProfile is submitted to the grid scheduler, that tries to allocate resources with respect
to the requirements by mapping the requested virtual topology on available resources
whose characteristics match as tightly as possible the onesrequested in the JobProfile.

The JobProfile describes the process groups involved in the computation, in partic-
ular by specifying the number of processes in each group and requirements on inter-
and intra-cluster communication performances. Some parameters are left blank, and
filled by the meta-scheduler with the characteristics of theobtained mapping.

ThegroupIddefined in the jobProfile will be passed to the application at runtime,
along with the virtual topology of the resources that were allocated to the job. Using
groupIds, it is simple to determine during the initialization of the application which
group a given process belongs to, and which processes belongto a given group. The
virtual topology description is passed like it was done for MPICH-G2 (cf Section 2),
using an array of colors. Basically, two processes having the same color at a same
hierarchy depth belong to the same group. In MPICH-G2, the depth of a hierarchy is
limited to four. Our virtual topologies does not have this limitation.

7

3.3 Adapted collective operations

Collective operations are one of the major features of MPI. Astudy conducted at the
Stuttgart High-Performance Computing Center [20] showed that on their Cray T3E,
they represent 45% of the overall time spent in MPI routines.

To the best of our knowledge, no equivalent study was ever done on a production
grid during such a long period. However, one can expect non-topology-aware collec-
tive communications to be even more time-consuming (with respect to all the other
operations) on an heterogeneous platform.

As in other Grid-MPI work (cf Section 2), our MPI for grids features collective
communication patterns adapted to the physical topology inorder to optimize them. In
the following paragraphs, we describe which collective operations have been modified
for topology-awareness and how they have been modified.

MPI BcastSending a message between two clusters takes significantly more time
than sending a message within a cluster. The latency for small synchronization mes-
sages, can be superior by several orders of magnitude, and the inter-cluster bandwidth
is shared between all the nodes communicating between clusters.

The broadcast has been modified for exploiting the hierarchyof the physical topol-
ogy. The root of the broadcast, if it belongs to the top-levelmaster communicator,
broadcasts the message along this top-level communicator.Otherwise,the root process
sends the message to a top-level process which does exactly the same thing afterwards.
Each process then broadcasts the message along its “sub-masters” communicator, until
the lowest-level nodes are reached.

MPI ReduceUsing associativity of the operator in the Reduce operation, it can be
made hierarchical as follows: each lowest level cluster performs a reduction towards
their master, and for each level until the top level is reached the masters perform a
reduction toward their level master.

MPI GatherA Gather algorithm can also be done in a hierarchical way: a root
is defined in each cluster and sub-cluster, and an optimized gather algorithm is used
within the lowest level of hierarchy, then for each upper level until the root is reached.

The executions among sub-masters gather buffers which are actually aggregations
of buffers. This aggregation minimizes the number of inter-cluster communications, for
the cost of only one trip time while making a better use of the inter-cluster bandwidth.

MPI Allgatheraggregates data and makes the resulting buffer available onall the
nodes. It can be done in a hierarchical fashion by successiveAllgatheroperations from
the bottom to the top of the hierarchy, followed by a hierarchical Bcastto propagate
the resulting buffer. MPIBarrier is similar to an MPIAllgather without propagating
any data.

4 Experimental Evaluation

We modified the runtime environment and the MPI library of theQosCosGrid Open
MPI implementation presented in [8] to expose the virtual topology to the application.
We also implemented the collective operations described inSection 3.3 using MPI
functions.

8

We conducted the experiments on two traditional platforms of high performance
computing: clusters of workstations with GigaEthernet network and computational
grids. These experiments were done on the experimental Grid’5000 [5] platform or
some of its components.

First, we measure the efficiency of topology-aware collective operations, using
micro-benchmarks to isolate their performance. Then we measure the effects of hi-
erarchy on a master-worker data distribution pattern and the effects on the Ray2mesh
application. In the last section, we present a graph showingthe respective contribu-
tion of the hierachical programming and topology aware collective operations on the
application performance.

4.1 Experimental Platform

Grid’5000 is a dedicated reconfigurable and controllable experimental platform featur-
ing 13 clusters, each with 58 to 342 PCs, inter-connected through Renater (the French
Educational and Research wide area Network). It gathers roughly 5,000 CPU cores fea-
turing four architectures (Itanium, Xeon, G5 and Opteron) distributed into 13 clusters
over 9 cities in France.

For the two families of measurement we conducted (cluster and grid), we used only
homogeneous clusters with AMD Opteron 248 (2 GHz/1MB L2 cache) bi-processors.
This includes 3 of the 13 clusters of Grid’5000: the 93-node cluster at Bordeaux, the
312-node cluster at Orsay, a 99-node cluster at Rennes. Nodes are interconnected by a
Gigabit Ethernet switch.

We also used QCG, a cluster of 4 multi-core-based nodes with dual-core Intel Pen-
tium D (2.8 GHz/2x1MB L2 cache) processors interconnected by a 100MB Ethernet
network.

All the nodes were booted under linux 2.6.18.3 on Grid’5000 and 2.6.22 on the
QCG cluster. The tests and benchmarks are compiled with GCC-4.0.3 (with flag -O3).
All tests are run in dedicated mode.

Inter-cluster throughput on Grid’5000 is 136.08 Mb/s and latency is 7.8 ms, whereas
intra-cluster throughput is 894.39 Mb/s and latency is 0.1 ms. On the QCG cluster,
shared-memory communication have a throughput of 3979.46 Mb/s and a latency of
0.02 ms, whereas TCP communications have a throughput of 89.61 Mb/s and a latency
of 0.1 ms.

4.2 Collective operations

We ran collective operation benchmarks on 32 nodes across two clusters in Orsay and
Rennes (figures 2a-b). A configuration with two clusters is anextreme situation to
evaluate our collective communications: a small and constant number of inter-cluster
messages are sent by topology-aware communications, whereasO(log(p)) (wherep

is the total number of nodes) inter-cluster messages are sent by standard collective
operations.

We also conducted some experiments on the QCG cluster with 8 processes mapped
on each machine. Although this mapping oversubscribes the nodes (8 processes for 2
available slots), our benchmarks are not CPU-bound, and this configuration enhances

9

 1

 10

 100

 1000

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k

32
k

64
k

12
8k

25
6k

51
2k 1M 2M

T
im

e
 (

m
s)

Message size (B)

QCG_Bcast

Standard
Grid

(a) Broadcast (Grid’5000)

 0.1

 1

 10

 100

 1000

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k

32
k

64
k

12
8k

25
6k

51
2k

tim
e

 (
m

s)

message size (B)

QCG_Reduce

Standard
Grid

(b) Reduce (Grid’5000)

 100

 1000

 10000

 100000

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k
32

k
64

k
12

8k
25

6k
51

2k 1M 2M

T
im

e
 (

m
s)

Message size (B)

QCG_Reduce

Standard
Grid

(c) Reduce (QCG)

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 4 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1k 2k 4k 8k 16

k
32

k
64

k
12

8k
25

6k
51

2k 1M 2M 4M 8M

T
im

e
 (

m
s)

Message size (B)

QCG_Gather

Standard
Grid

(d) Gather (QCG)

Figure 2: Comparison between standard and grid-enabled collective operations on a
grid.

the stress on the network interface. Measurements with a profiling tool validated the
very low CPU usage during our benchmark runs.

We used the same measurement method as described in [14], using the barrier
described in Section 3.3 to synchronize time measurements.

Since we implemented our hierarchical collective operations in MPI, some pre-
treatment of the buffers may be useful. Messages are pre-cutand sent chunk after
chunk. Then it is possible to pipeline the successive stagesof the hierarchical opera-
tion. It appeared to be particularly useful when shared-memory communications were
involved, allowing fair system bus sharing.

Figures 2(a) and 2(b) picture comparisons between standardand hierarchical MPI-
Bcast and MPIReduce on Grid’5000. Message pre-cutting appeared to be useful for
MPI Bcast, whereas it was useless for MPIReduce, since big messages are already
split by the algorithm implemented in Open MPI.

One can see that, as expected, hierarchical MPIBcast (Figure 2(a)) always per-
forms better than the standard implementation. Moreover, pre-cutting and pipelining
permits to avoid the performance step around the eager/rendez-vous mode transition.

When messages are large regarding communicator size, MPIReduce (Figure 2(b))
in Open MPI is implemented using a pipeline mechanism. This mechanism allows
communication costs to be dominated by the high throughput of the pipeline rather
than the latency of a multi-steps tree-like structure. Hierarchy shortens the pipeline:
then its latency (i.e., time to load the pipeline) is smaller and it performs betteron
short messages. But for large messages (beyond 100 kB), the higher throughput of a
longer pipeline outperforms the latency-reduction strategy. In this case, hierarchical
communications are not an appropriate approach, and a single flat pipeline performs
better.

10

(a) Scalability of Ray2mesh on a grid

 40

 60

 80

 100

 120

 140

 160

15 30 45 60 90 120

P
er

ce
nt

ag
e

of
 A

cc
el

er
at

io
n

w
.r

.t.
 V

an
ill

a
R

ay
2m

es
h

of nodes

Execution Time of Ray2mesh on a Grid

Grid Optimized Collectives
Topology Aware

Vanilla

(b) Relative acceleration of Ray2mesh, with respect to
the vanilla implementation

Figure 3: Comparison of vanilla Ray2mesh with vanilla Ray2mesh using optimized
collective communications, and fully topology-aware Ray2mesh

Figures 2(c) and 2(d) picture comparisons between standardand hierarchical MPI-
Reduce and MPIGather on the QCG cluster. On a cluster of multi-cores, collective
operations over shared-memory outperform inter-machine TCP communications sig-
nificantly enough to have a negligible cost. Therefore, on a configuration including
a smaller number of physical nodes, inducing more shared-memory communications,
our hierarchical MPIReduce performs better (Figure 2(c)).

4.3 Adapted application

The execution phases of Ray2mesh are presented in Section 3.1. It is made of 3 phases:
two collective communication phases and a master-worker computation phase in be-
tween them. When the number of processes increases, one can expect the second
phase to be faster but the first and third phases to take more time, since more nodes are
involved in the collective communications.

Figure 3(a) presents the scalability of Ray2mesh under three configurations: stan-
dard (vanilla), using grid-adapted collective operations, and using a hierarchical master-
worker pattern and grid-adapted collective operations. Those three configurations rep-
resent the three levels of adaptation of applications to theGrid. The standard devia-
tion is lower than 1% for each point. The fourth line represents the values of the last
configuration, measured with the same number of computing elements as in the first
configuration, thus removing the local boss in the process count.

First of all, Ray2mesh scales remarkably well, even when some processes are lo-
cated on a remote cluster. When a large number of nodes are involved in the computa-
tion, collective operations represent an important part ofthe overall execution time. We
can see the improvement obtained from grid-enabled collectives on the “grid-optimized
collectives” line in Figure 3(a). The performance gain for 180 processes is 9.5%.

Small-scale measurements show that the grid-enabled version of Ray2mesh does
not perform as well as the standard version. The reason is that several processes are
used to distribute the data (the bosses) instead of only one.For example, with 16 pro-

11

cesses distributed on three clusters, 15 processes will actually work for the computation
in a single-master master-worker application, whereas only 12 of them will contribute
to the computation on a multi-level (two-level) master-worker application. A dynamic
adaptation of the topology according to the number of involved node would select the
”non hierarchical” version for small numbers of nodes and would select the hierarchical
version when the number of nodes exceeds 30.

However, we ran processes on each of the available processors, regardless of their
role in the system. Bosses are mainly used for communications, whereas workers do
not communicate a lot (during the master-worker phase, theycommunicate with their
boss only). Therefore, a worker process can be run on the sameslot as a boss without
competing for the same resources. For a given number of workers, as represented by the
“workers and master only” line in Figure 3(a), the three implementations show the same
performance for a small number of processes, and the grid-enabled implementations
are more scalable. The performance gain for 180 processes is35% by adding only 3
dedicated nodes working exclusively as bosses.

The relative acceleration with respect to the vanilla implementation is represented
Figure 3(b). We can see that the application speed is never harmed by optimized col-
lective operations and performs better on large scale, and atopology-aware application
is necessary to get a better speedup for large-scale application.

5 Conclusion

In this paper, we proposed a new topology-aware approach to port complex MPI ap-
plications on grid through a methodology to use MPI programming techniques on
grids. First we described a method to adapt master-worker patterns to grids’ hier-
archical topology. We used this method to implement a grid-enabled version of the
Ray2mesh geophysics applications featuring a multi-levelmaster-worker pattern and
our hierarchical collective operations. Then we proposed away to describe the com-
munication patterns implemented in the application in order to match the application’s
requirements with the allocated physical topology. In the last part we presented a set
of efficient collective operations that organize their communications with respect to the
physical topology in order to minimize the number of high-latency communications.

Experiments showed the benefits of each part of this approachand their limitations.
In particular, experiments showed that using optimized collectives fitted to the phys-
ical topology of the grid induce a performance improvement.They also showed that
adapting the application itself can improve the performances even further.

We presented an extension of the runtime environment of an MPI implementation
targeting institutional grids to provide topology information to the application. These
features have been implemented in an MPI library for grids.

Acknowledgements. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, an initiative from the French Ministry of Research
through the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see https:// www.grid5000.fr), and founded by the QosCosGrid Eu-
ropean project (grant number: FP6-2005-IST-5 033883).

12

References
[1] E. I. Atanassov, T. V. Gurov, A. Karaivanova, and M. Nedjalkov. Monte carlo grid application for

electron transport. InProc. of ICCS, volume 3993 ofLNCS, pages 616–623. Springer, 2006.

[2] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. van de Geijn, and J. Watts. Building a high-
performance collective communication library. InProc. of SC’94, pages 107–116. IEEE, 1994.

[3] S. Boutammine, D. Millot, and C. Parrot. An adaptive scheduling method for grid computing. InProc.
of Euro-Par’06, volume 4128 ofLNCS, pages 188–197. Springer, 2006.

[4] S. Branford, C. Sahin, A. Thandavan, C. Weihrauch, V. N. Alexandrov, and I. T. Dimov. Monte carlo
methods for matrix computations on the grid.Future Gener. Comput. Syst., 24(6):605–612, 2008.

[5] F. Cappello, E. Caron, and M. Daydeet al. Grid’5000: A large scale and highly reconfigurable grid
experimental testbed. InProc. The 6th Intl. Workshop on Grid Computing, pages 99–106, 2005.

[6] F. Cappello, P. Fraigniaud, B. Mans, and A. L. Rosenberg.HiHCoHP: Toward a realistic communi-
cation model for hierarchical hyperclusters of heterogeneous processors. InProc. of IPDPS, page 42.
IEEE, 2001.

[7] M. Charlot, G. De Fabritis, A.L. Garcia de Lomana, A. Gomez-Garrido, and D. Groen et al. The
QosCosGrid project. InIbergrid 2007 conference, Centro de Supercomputacion de Galicia, 2007.

[8] C. Coti, T. Herault, S. Peyronnet, A. Rezmerita, and F. Cappello. Grid services for MPI. InProc. of
CCGRID, pages 417–424. IEEE, 2008.

[9] Ian T. Foster. Globus toolkit version 4: Software for service-oriented systems.J. Comput. Sci. Technol,
21(4):513–520, 2006.

[10] E. Gabriel, M. M. Resch, T. Beisel, and R. Keller. Distributed computing in a heterogeneous computing
environment. InProc. of EuroPVM/MPI, volume 1497 ofLNCS, pages 180–187. Springer, 1998.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, portable implementation of the MPI
message passing interface standard.Parallel Computing, 22(6):789–828, 1996.

[12] M. Grunberg, S. Genaud, and C. Mongenet. Parallel seismic ray tracing in a global earth model. In
Proc. of PDPTA, volume 3, pages 1151–1157. CSREA Press, 2002.

[13] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting hierarchy
in parallel computer networks to optimize collective operation performance. InProc. of SPDP, pages
377–386. IEEE, 2000.

[14] Nicholas T. Karonis, Brian R. Toonen, and Ian T. Foster.MPICH-G2: A grid-enabled implementation
of the message passing interface.CoRR, cs.DC/0206040, 2002.

[15] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A.F. Bhoedjang. MAGPIE: MPI’s collective
communication operations for clustered wide area systems.In Proc. of PPoPP, volume 34.8 ofACM
Sigplan, pages 131–140. ACM Press, 1999.

[16] V. Kravtsov, D. Carmeli, A. Schuster, B. Yoshpa, M. Silberstein, and W. Dubitzky. Quasi-opportunistic
supercomputing in grids, hot topic paper. InProc. of HPDC, 2007.

[17] V. Kravtsov, M. Swain, U. Dubin, W. Dubitzky, and A. Schuster. A fast and efficient algorithm for
topology-aware coallocation. InProc. of ICCS, volume 5101 ofLNCS, pages 274–283, 2008.

[18] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and Y. Ishikawa. TCP adaptation for MPI on long-and-
fat networks. InProc. of CLUSTER, pages 1–10. IEEE, 2005.

[19] P. Nascimento, C. Sena, J. da Silva, D. Vianna, C. Boeres, and V. Rebello. Managing the execution of
large scale mpi applications on computational grids.Proc. of SBAC-PAD, pages 69–76, 2005.

[20] R. Rabenseifner. Optimization of collective reduction operations. InProc. of ICCS, volume 3036 of
LNCS, pages 1–9. Springer, 2004.

[21] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. InGrid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

