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Abstract

A long-term trend in high-performance computing is the
increasing number of nodes in parallel computing plat-
forms, which entails a higher failure probability. Fault
tolerant programming environments should be used to
guarantee the safe execution of critical applications. Re-
search in fault tolerant MPI has led to the develop-
ment of several fault tolerant MPI environments. Dif-
ferent approaches are being proposed using a variety of
fault tolerant message passing protocols based on coor-
dinated checkpointing or message logging. The most
popular approach is with coordinated checkpointing.
In the literature, two different concepts of coordinated
checkpointing have been proposed: blocking and non-
blocking. However they have never been compared
quantitatively and their respective scalability remains
unknown. The contribution of this paper is to provide
the first comparison between these two approaches and a
study of their scalability. We have implemented the two
approaches within the MPICH environments and eval-
uate their performance using the NAS parallel bench-
marks.

1 Introduction

A long-trend in high-performance computing systems
is the increase of the number of nodes. This is illus-
trated by the composition of the Top500 supercomputer
list. The average number of processors per machine in
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the top 500 supercomputers is currently greater than
1000. Moreover, more than three quarter of these su-
percomputers have between 257 and 1024 processors,
and the three most powerful systems have more than
10,000 processors. As the number of processors in-
creases, the probability of failure of a single component
also increases. So fault-tolerance becomes a key prop-
erty for parallel applications running on these systems.

The concept of grids has emerged recently, consist-
ing of gathering resources of different parallel comput-
ers (clusters or constellations), often increasing the sys-
tem size to thousands of processors (TeraGrid, EGEE,
Grid’5000, DEISA, NAREGI, etc.). These Grids span
multiple domains, often administrated whith different
active policies. Because of the system and administra-
tive complexities, it becomes cumbersome for the users
to manage failures occurring during application execu-
tion. Thus, it is essential to provide a certain level of
automation to allow application to run until completion,
when failures occur during execution.

The Message Passing Interface (MPI) is currently
the programming paradigm and communication library
most commonly used on supercomputers. Thanks to
its high availability on parallel machines from low cost
clusters to clusters of vector multiprocessors, it allows
the same code to run on different kind of architectures.
Moreover, it also allows the same code to run on differ-
ent generations of machines, ensuring a long lifetime for
the code. MPI conforms to popular high-performance,
message passing programming styles. Even if many
applications follow the SPMD programming paradigm,
MPI is also used for Master-Worker execution, where
MPI nodes play different roles. For these reasons, MPI
is the preferred programming environment for many
high-performance applications. MPI in its specification
[Snir et al. 1996] and most deployed implementations
(MPICH [Gropp et al. 1996]) follows the fail stop seman-



tic (specification and implementations do not provide
mechanisms for fault detection and recovery). Thus,
MPI applications may be stopped at any time during
their execution due to an unpredictable failure.

In order to avoid complete restarts of an MPI appli-
cation because of only one failure, a fault tolerant MPI
implementation is essential. The typical fault tolerant
technique implemented in a MPI library is coordinated
checkpointing [Bosilca et al. 2002] [Burns et al. 1994].
This technique consists of regularly taking a global
state of the system and, if a failure occurs, restarting
this application from this global state. There are two
main ways to implement this technique. The first one,
called the blocking coordinated checkpointing, consists
of stopping the MPI computation to take the global
state. This permits better control on the state of the
different processes and their communication channels.
The second one, called non-blocking coordinated check-
pointing, does not provide this kind of control, but does
not require the interruption of the MPI computation.

The blocking solution is simple to implement in a
high-performance driver because it requires few mod-
ifications in the low-level communication layer. The
non-blocking solution, even if it does not stop the com-
putation, can require modifications that introduce over-
heads in the driver. As the number of processes regu-
larly increases, it is important to evaluate the impact
of these kinds of fault tolerant protocols on large-scale
MPI computations. In this paper, we compare these
two protocols, the blocking and the non-blocking ones,
and evaluate their impact on large-scale applications.
We detail the implementation of the blocking proto-
col inside MPICH2, compare it with our previous non-
blocking implementation MPICH-Vcl [Lemarinier et al.
2004] and evaluate its impact on overall performance.

The paper is organized as follows. Section 2 presents
the related works highlighting the originality of this
work. Section 3 presents the common principle of the
global checkpointing protocols, then the blocking and
non-blocking solutions. Section 4 presents the two im-
plementations used to compare these two fault tolerant
MPI protocols in a fair way. Section 5 presents the ex-
perimental results in terms of application performance
and fault tolerance using the NAS benchmarks. Section
6 sums up what we learned from these experiments.

2 Related Works

MPI is a standard for message-passing systems widely
used for parallel applications. Several implementations
of this standard are available, among them are two main
open-source projects: MPICH [Gropp et al. 1996] and
OpenMPT [Gabriel et al. 2004].

Fault tolerance in MPI applications can be imple-
mented following three strategies: explicit (managed by

the programmer), semi-automatic (guided by the pro-
grammer) and automatic (transparent for the program-
mer/user). In this paper we focus on the last strategy,
that achieves fault tolerance without any intervention
from the programmer.

Several techniques are used to implement fault tol-
erance in high-performance computing. Simple replica-
tion is not relevant for such systems, since if the system
is designed to tolerate n faults, every component must
be replicated n times and the computation resources are
thus divided by n. An important part of the ressources
are then used for something that does not contribute
directly to the computation. The two main techniques
used are message-logging and coordinated checkpoints.
A review of the different techniques can be found in
[Elnozahy et al. 2002].

Message-logging consists of saving the messages sent
between the compute nodes, and replaying them if a
failure occurs. It is based on the piecewise determinis-
tic assumption: the execution of a process is a sequence
of deterministic events separated by non-deterministic
ones (generally the reception events) [Strom and Yem-
ini 1985]. With this assumption, replaying the same
sequence of non-deterministic events at the same mo-
ment makes possible the recovery of the state preceding
a failure. Thus, for every process, these protocols con-
sist of saving all its non-deterministic events in a reliable
manner and to checkpoint regularly. When a failure oc-
curs, only the crashed process is restarted from its last
checkpoint, and it recovers its last state after having re-
played all saved events. There is no need to coordinate
the checkpoints of the different processes. No orphaned
processes (i.e.,processes whose state depends on a non-
deterministic event that cannot be reproduced during
recovery) are created. The recover mechanism is more
complex than with coordinated checkpoints as a pro-
cess must obtain its past events and be able to replay
them. Moreover the overhead induced during failure-
free execution decreases the performance in reliable en-
vironments, such as clusters [Lemarinier et al. 2004].
Furthermore, it can lead to the domino effect [Randell
1975]: a process that rolls back and that needs a mes-
sage to be replayed, asks another process to rollback.
This process does, and asks another one to do so, etc.
The whole execution can be restarted from the begin-
ning because of cascading rollbacks and so the benefits
of fault tolerance are lost.

Coordinated checkpointing has been introduced by
Chandy and Lamport [1985]. This technique requires
that at least one process sends a marker to notify the
other ones to take a snapshot of their local state and
then form a global checkpoint. The global state ob-
tained from a coordinated checkpoint is coherent, allow-
ing the system to recover from the last full completed
checkpoint wave. It does not generate any orphan pro-



cesses nor domino effect, but all the compute nodes must
rollback to a previous state in case of any failure. The
recover process is straightforward, and a simple garbage
collection reduces the size needed to store the check-
points.

In blocking coordinated checkpointing protocols, the
processes stop their execution to perform the check-
point, save it on a reliable storage support (that can
be distant), send an acknowledgment to the checkpoint
initiator and wait for its commit. They continue the ex-
ecution only when they have received this commit. The
initiator sends the commit only when it has received all
the acknowledgments from all the computing nodes to
make sure that the global state that has been saved is
fully completed. As reported in [Elnozahy et al. 1992],
blocking checkpoints cause significant latency, and non-
blocking checkpoints are more efficient.

Non-blocking coordinated checkpoints with dis-
tributed snapshots consists of taking checkpoints when
a marker is received. This marker can be received from
a centralized entity, that initiates the checkpoint wave,
or from another compute node which has itself received
the marker and transmits the checkpoint signal to the
other nodes. This algorithm assumes that all the com-
munication channels comply with the FIFO property.
Therefore the computational processes do not have to
wait for the other ones to finish their checkpoint, and
then the delay induced by the checkpoint corresponds
only to the local checkpointing.

Checkpointing can be performed at two abstraction
levels: system-level or application-level. System-level
checkpoints at remote storage cause large amounts of
data to be sent through the network, but application-
level checkpoints require modifications of the applica-
tion code, and as such are not completely transparent
to the programmer, in the sense that a code written
for a non-fault-tolerant implementation of MPI requires
some modifications to be executed on a fault-tolerant
implementation of MPI using application-level check-
points [Schulz et al. 2004] [Bronevetsky et al. 2003].

Communication-induced checkpoint protocols (CIC)
perform uncoordinated checkpoints but avoid the
domino effect [Hélary et al. 1999]. Unlike coordinated
checkpoints, they do not require additional messages
for a process to know when it has to perform a local
checkpoint. The information about when a local check-
point must be performed are piggybacked in the mes-
sages exchanged between the processes. Two kinds of
checkpoints are defined: local and forced. Local check-
points are decided by the local process, and forced ones
are decided by the process according to the information
piggybacked in the messages. The forced ones avoid
the domino effect and ensure the progress of the recov-
ery line, i.e., the set of checkpoints of all the processes
involved in a coherent global state. When a failure oc-

curs, all the processes rollback to their most recently
stored local checkpoint and then to the last recovery
line. CIC is an interesting theoretical solution but it
has been shown in [Alvisi et al. 1999], using NPB 2.3
benchmark suite [center 1997], that it is not relevant for
typical cluster applications.

Several MPI libraries are fault tolerant [Gropp and
Lusk 2002]. Coordinated checkpointing has been im-
plemented in several MPI implementations at different
levels of the application.

LAM/MPI [Burns et al. 1994] [Sankaran et al.
2003] implements the Chandy-Lamport algorithm for
a system-initiated global checkpointing. When a check-
point must be performed, the mpirun process receives a
checkpoint request from a user or from the batch sched-
uler. It propagates the checkpoint request to each MPI
process to initiate a checkpoint wave. Each MPI pro-
cess then coordinates itself with all the others, flush-
ing every communication channel, in order to reach a
consistent global state. We used this method in our
blocking Chandy-Lamport implementation. If a fail-
ure occurs, mpirun restarts all the processes from their
most recently stored state. Finally, processes rebuild
their communication channels with the other ones and
resume their execution.

3 Protocols

In this paper, we compare two global checkpointing pro-
tocols. These are rollback recovery protocols. To per-
form this rollback recovery, they regularly take a snap-
shot of the local state of every process (of the system),
such that when a failure occurs, all processes are rolled
back to their most recently stored state. In order to en-
sure the global checkpoint coherence resulting from the
collection of the different local states, these two proto-
cols rely on the Chandy and Lamport algorithm [1985].
In this algorithm, one or more processes can initiate a
checkpoint wave. When a process starts a checkpoint,
it records its local state and sends a marker to all its
neighbors. When a process receives a marker, if it has
not started its checkpoint wave yet, it starts it. Every
message a process receives after it has started its check-
point wave and before having received the marker of the
sender is recorded in the receiver image as the channel’s
state.

The first protocol we consider in this paper, called
Vel, is a direct implementation of the Chandy and Lam-
port algorithm for MPI computations. A MPI process
consists in two Unix processes: a computation process
(MPI) and a communication process (daemon). The
communication process is used to store in-transit mes-
sages and to replay these messages when a restart is
performed. Moreover, we added a process, the check-
point scheduler, which is the only one that can initi-



ate a checkpoint wave. Furthermore, specific processes,
called checkpoint servers are used to store the local im-
ages of all processes. Finally, we define a dispatcher for
launching the different processes in the system, detect-
ing failures and restarting the failed application.
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Figure 1: A Vcl Execution

The protocol works as shown in the Figure 1. The
MPI process 1 initially receives the marker from the
checkpoint scheduler (1), stores its local state (2) and
sends a marker to every process (2). From this point,
every message, like m in the figure, received after the
local checkpoint and before having received the marker
of the sender, is stored by the daemon process. When
the MPI process 0 receives the marker, it starts its local
checkpoint and sends a marker to every other process
(3). The reception of this marker by 1 concludes the
local checkpoint of 1. If a failure occurs, all processes
restart from their last stored checkpoint (4) and the dae-
mon process replays the delivery of the stored messages
(5). Note that the message m’ may be not sent again
in the new execution.

The second protocol, which we call Pcl, is used in
other implementations [Sankaran et al. 2003]. This pro-
tocol consists in synchronizing the different processes for
emptying the communication layer. Thus, during the
checkpoint wave, no message is still being exchanged,
and there is no need to store the channel state in any
way. When the system is restarted after a failure, ev-
ery process reloads its last local image and reinitializes
the communication layer for establishing a connection;
then, the computation can continue.

The synchronization is performed by marker ex-
changes to flush all channels. In Pcl, a global check-
point is made by following this sequence of actions. The
MPI process of rank 0 regularly starts a new checkpoint
wave, and it changes its state to checkpointing and
sends markers to every other process (1). When a pro-
cess receives the first marker, it changes its state to
checkpointing and sends markers to every other pro-
cess (2). After having sent a marker, a process does
not send any other message through the same chan-
nel until it takes its checkpoint (blue segment 3). Such
messages, still in the process memory, are automati-
cally stored in the checkpoint. Similarly, after having
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Figure 2: A Pcl Execution

received a marker, a process does not receive any other
message from the same channel: message receptions are
delayed up until the end of the checkpoint of the pro-
cess (green segment 4). When a process has received the
marker of every other process, it checkpoints and sends
the resulting image to the checkpoint server (5). After
having taken its checkpoint, a process can send and re-
ceive any messages. When the images are completely
stored, the process sends a message to rank 0 to warn
it about the end of its checkpoint and continues its ex-
ecution. Finally the rank 0 MPI process acknowledges
the different checkpoint servers about the coherence of
the wave after having received every confirmation of the
end of the checkpoint from every process. If a failure
occurs, all processes restart from their last stored check-
point (6) and every message delayed in emission will be
sent again after the restart (7).

4 Implementation Details

MPICH is a prominent project developed at the Ar-
gonne National Laboratory. It aims at providing a high-
performance MPI library implementation. The first ma-
jor revision, called MPICH, addresses the MPI-1 speci-
fication. The latest major revision, called MPICH2, ex-
tends the performance of the first one and addresses the
new specifications of MPI-2. In this section we present
the details of the integration of the global checkpointing
mechanism inside these two major versions.

4.1 Non-Blocking Checkpointing
mentation Inside MPICH

Imple-

A fundamental abstraction used by MPICH to imple-
ment the MPI standard is the notion of a channel. Such
a channel implements the basic communication routines
for a specific hardware or for new communication proto-
cols. We developed a generic framework, called MPICH-
V [Bosilca et al. 2002] [Lemarinier et al. 2004], to com-
pare different fault tolerance protocols for MPI applica-
tions. This framework implements a channel for the
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MPICH 1.2.7 library, based on the ch_p4 default chan-
nel.

MPICH-V (see Figure 3) is composed of a set of
runtime components and a channel called ch_v. This
channel relies on a separation between the MPI appli-
cation and the actual communication system. Com-
munication daemons (Vdaemon) provide all communi-
cation routines between the different components in-
volved in MPICH-V. The fault tolerance is performed
by implementing hooks in relevant communication rou-
tines. This set of hooks is called a V-protocol. The two
main V-protocols of interest in this paper are Vcl and
Vdummy. Vdummy is a minimalist implementation of
a non-fault-tolerant protocol using the MPICH-V archi-
tecture. Vdummy is used to measure the performance
of the ch_v device and its communication daemon. Vcl
implements the Chandy and Lamport algorithm (c.f.
Section 3).

Daemon A daemon manages communication between
nodes, namely sending, receiving, reordering and estab-
lishing connections. It opens one TCP socket per MPI
process and one per server type (the dispatcher and a
checkpoint server for the Vel implementation). It is
implemented as a single-threaded process that multi-
plexes communications through select calls. Moreover,
to limit the number of system calls, all communications
are packed using zovec techniques. The communication
with the local MPI process is done using blocking send
and receive on a Unix socket.

Dispatcher The dispatcher is responsible for start-
ing the MPI application. It starts the different pro-
cesses and servers first, then MPI processes, using ssh
to launch remote processes. The dispatcher is also re-
sponsible for detecting failures and restarting nodes. A
failure is assumed after any unexpected socket closure.

Failure detection relies on the OS TCP keep-alive pa-
rameters. Typical Linux configurations define a failure
detection a 9 consecutive losses of keep-alive probes,
where keep-alive probes are expected every 75 sec-
onds. These settings can be changed through the
tcp_keepalive_probes and tcp_keepalive_intvl
system parameters to provide more reactivity to hard
system crashes. In this work, we emulated failures by
killing the task, not the operating system, so failure de-
tection was immediate, and the TCP connection was
broken as soon as the task was killed by the operating
system.

Checkpoint Server and Checkpoint Mechanism The
two implementations use the same abstract check-
pointing mechanism. This mechanism provides a unified
API to address three system-level task checkpointing li-
braries, namely Condor Standalone Checkpointing Li-
brary [Litzkow et al. 1997], libckpt [Zandy 2005] and
the Berkeley Linux Checkpoint/Restart [J. Duell 2003;
Sankaran et al. 2003]. All these libraries allow the user
to take a Unix process image in order to store it on a
disk and to restart this process on the same architec-
ture. By default, BLCR, which is the most up-to-date
library, is used.

The checkpoint servers are responsible for collecting
local checkpoints of all MPI processes. When a MPI
process starts a checkpoint, it duplicates its state by
calling the fork system call. The forked process calls
the checkpoint library to create the checkpoint file while
the initial MPI process can continue the computation.
The daemon associated with the MPI process connects
to the checkpoint server that first creates a new process
responsible for managing the checkpoint of this MPI
process. Then three new connections are established
(data, messages and control) between the daemon and
the server. The clone of the MPI process writes its local
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checkpoint to a file, and the daemon pipelines the read-
ing and the sending of this file to the checkpoint server
using the data connection. When the checkpoint file
has been completely sent, the clone of the MPI process
terminates and the daemon closes the data connection;
then it sends the total file size using the control con-
nection. Every message to be logged according to the
Chandy and Lamport algorithm is temporarily stored
in the volatile memory of the daemon in order to be
sent to the checkpoint server in the same way using the
message connection. Using this technique, the whole
computation is never interrupted during a checkpoint
phase.

When a global checkpoint is complete it is not nec-
essary to still store the past global checkpoints. Thus,
checkpoint servers only store one complete global check-
point at a time using two files alternatively to store the
current global checkpoint and the last complete one.

If a failure occurs, all MPI processes restart from the
local checkpoint stored on the disk if it exists; otherwise
they obtain it from the checkpoint server.

Checkpoint Scheduler The checkpoint scheduler
manages the different checkpoint waves. It regularly
sends markers to every MPI process. The checkpoint
frequency is a parameter defined by the user. It then
waits for an acknowledgment of the end of the check-
point from every MPI process before asserting the end
of the global checkpoint to the checkpoint servers. The
checkpoint scheduler starts a new checkpoint wave only
after the end of the previous one.

4.2 Blocking Checkpointing Implementa-
tion Inside MPICH2

MPICH?2 is a new implementation of the MPI standard
which extends results obtained in MPICH and addresses
the issue of the MPI2’s new functionalities. MPICH2
is structured in three layers: 1) the abstract device
interface (ADI3) which links the MPI standard to an
extended set of high-level communication routines, 2)

chameleon 3 (CH3) which abstracts the ADI3 routines
to an API composed of a few (ten to twenty) communi-
cation routines and 3) channels which implements this
CH3 API depending on the specific network hardware
or communication protocol.

We introduce in this paper a new implementation of
a blocking checkpointing mechanism for fault tolerance
inside MPICH2 called MPICH2-Pcl (see Figure 4). This
implementation consists of a new channel, called ft-sock,
based on the TCP sock channel, and two components,
i.e., a checkpoint server and a specific dispatcher.

Ft-sock Channel The ft-sock channel is a derivation of
the existing sock implementation. It consists of a basic
set of communication routines using a poll mechanism to
multiplex I/O and iovec to reduce the number of system
calls. The core of the communication system is based on
sequences of request to send and request to receive for
each MPI peer. Sending or receiving messages consists
of posting such requests to the sock channel.

To implement the blocking checkpointing mechanism,
the main modifications involve adding a hook in the re-
quest posting function for verifying and delaying these
posts if a checkpoint wave is currently active. The ex-
change of markers used in the protocol (c.f. Section 3)
is done by using the communication primitive defined
in sock and adding a new type of packet.

By contrast to MPICH-Vcl, there is not a specific
checkpoint scheduler server to start checkpoint waves.
This role is now dedicated to the MPI process of rank 0.

Checkpoint Implementation Details The same check-
point server as in MPICH-V is used to store MPICH2-
Pcl checkpoint images. As explained in Section 3, a
process starts taking its image only after it receives and
sends all markers. At this time, the process forks to
create its checkpoint file in the same way as in MPICH-
Vel while the main process releases the delayed requests
and continues the MPI computation. When the clone
ends the checkpoint, the SIGCHLD signal is delivered
to the main process that sends a message to the MPI



process of rank 0 such that a new checkpoint wave can
be scheduled.

Runtime: MPD and FTPM MPICH2 introduces a
new process management environment called MPD,
which runs a persistent daemon on every node of the
system for launching MPI jobs. All these daemons are
connected in a ring topology. This avoids the use of
sequential ssh commands to start a job. When a job is
launched on n nodes, the n MPD fork to create process
managers (PMs). Then the process managers fork to
execute n MPI processes. The different MPI processes
are not connected together at the start of the execu-
tion. Two MPI processes connect themselves only from
the first communication request between them. The role
of process manager is to provide information about the
different nodes’ locations. In the current MPICH2 im-
plementation, the MPD is known to be fault tolerant
but the process manager is not. When a failure occurs,
all the PMs and the MPI processes of the job are killed.

Our implementations of fault tolerant protocols in-
clude checkpoint servers. When a failure occurs, all the
non-failed processes must be killed but not the check-
point servers. This could be implemented by the MPD
architecture using two daemons: one for the comput-
ing nodes and one for the checkpoint servers. However,
computing nodes need to locate the checkpoint servers.
The MPD implementation does not provide a means
of getting information from other jobs. We propose to
add a new concept in the MPD architecture; namely a
process group. A job would consist of one or more pro-
cess groups, each process being managed by a process
manager.

Rather than modifying the process manager, we im-
plement a simpler environment, which we call a fault
tolerant process manager (FTPM), to start, manage,
detect failures and restart applications. The FTPM is
composed of an mpiexec and PMs. In FTPM, there is no
MPD daemon, and we use a modified version of PMs. In
particular, checkpoint servers are now launched through
them. We also modify the machinefile format in order
to add the specification of the mapping between ma-
chines used as computing nodes and machines used as
checkpoint servers.

At run time, mpiezec determines which computing
nodes are used as MPI processes and launches the cor-
responding checkpoint servers and then the processes
through the PMs. Process and checkpoint server spawn-
ing is done using a ssh command. To improve the exe-
cution time, these spawns are done in parallel. To avoid
throttling a node running mpiexec, the number of con-
current ssh connections is bounded by a parameter. For
the remainder of the execution, mpierec has to mon-
itor the MPI processes and to maintain a distributed
database. Node monitoring is done in the same way as

in MPICH.

Each MPI process publishes its location to the oth-
ers by associating in the distributed database its rank
to a business card (composed as in MPD of the pro-
cess IP address, hostname and port to connect). The
database is also used to store the greatest successful
checkpoint wave number and to locate which checkpoint
server holds which local checkpoint. Since at restart
time MPI processes may be assigned to spare nodes,
their last local checkpoint may be not located on the
local disk or on the local server associated with the run-
ning machine.

5 Performance Measurements

In this section we present the performance measure-
ments of the two implementations introduced in this
paper. We conducted the experiments on three classical
platforms of high-performance computing; namely clus-
ters of workstations with GigaEthernet network, clus-
ters connected with high-performance communication
networks and computational grids. We conducted all
the experiments on the experimental Grid5000 platform
or some of its components.

5.1 Grid5000

Grid5000 [F. Cappello et al. 2005] is a physical platform
featuring 13 clusters, each with 20 to 216 PCs, con-
nected by the Renater French Education and Research
Network. Grid5000 is a computer science project dedi-
cated to the study of grids, and is funded by the French
government through the ACI Grid initiative.

At the time of writing article, it consisted of 964 com-
puters featuring four architectures (Itanium, Xeon, G5
and Opteron) organised as 13 clusters over 9 cities in
France.

For the three platforms previously mentioned (clus-
ter, high speed network and grid), we used only homoge-
neous clusters with AMD Opteron 248 (2.2 GHz/1MB
L2 cache) dual-processors running at 2GHz. This in-
cluded 6 of the 13 clusters of Grid5000: the 48-node
cluster at Bordeaux, the 53-node cluster at Lille, the
216-node cluster at Orsay, a 64-node cluster at Rennes,
the 105-node cluster at Sophia and the 58-node clus-
ter at Toulouse. Moreover, each node featured 20GB of
swap and SATA hard drives. All the cluster experiments
were run on the 216-node cluster at Orsay. Nodes were
interconnected by a Gigabit Ethernet switch. Myrinet
experiments were run on the 48-node cluster at Bor-
deaux. Each node was similar to the nodes at Orsay,
interconnected by a Myrinet2000 M3-E64 with 48 ports
and PCIXD (Lanai XP) network interface cards.

One major feature of the Grid5000 project is the abil-
ity of the user to boot her own environment (includ-
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Figure 5: Impact of the Number of Checkpoint Servers
on BT Class B for 64 Processes with a Given Period of
Time Between Checkpoints

ing the operating system, distribution, libraries...) on
all the computing nodes booked for her job. We used
this feature to run all our measurements in an homoge-
neous environment including the Berkeley Linux Check-
point/Restart library. All the nodes were booted under
Linux 2.6.13.5. The tests and benchmarks are compiled
with GCC-4.0.3 (with flag -03). All tests were run in
dedicated mode, and each measurement was repeated 5
times, and we present the mean time.

Most of the experiments were done using NAS par-
allel benchmarks (NPB-2.3) [Bailey et al. 1995] writ-
ten by the NASA NAS research center to test high-
performance parallel machines. These benchmarks ex-
hibit classical communication patterns, which are sig-
nificant for the performance evaluation of fault toler-
ant implementations. Checkpoints were triggered by
timeouts. In the following experiments, we used very
small values for these timeouts (tens of seconds) in or-
der to emphasize the impact of checkpoint frequency
while maintaining reasonable experimental times.

5.2 GigaEthernet Clusters

Figure 5 presents first a study on the scalability of check-
point servers. We executed the BT benchmark of class
B with 64 processors (over 32 dual-processor nodes),
and set a period of time between checkpoints of 30 sec-

onds. Thus, according to the implementation, after hav-
ing fully transferred a checkpoint image to a checkpoint
server, the system waits for 30 seconds before beginning
a new checkpoint wave. The figure consists of two parts.
In the upper part, we measure the execution time for
various ratios of the number of checkpoint server and
number of computing nodes: from 1 server for the 64
computing nodes to 1 server for 8 computing nodes. In
the lower part, we present the number of checkpoint
waves completed by the system during the correspond-
ing executions. We ran this experiment for the two
implementations (Pcl, the blocking implementation in
MPICH2 and Vcl, the non-blocking implementation in
MPICH-1.2).

The completion time of Vcl remains almost constant
whereas the completion time of Pcl decreases when
the number of checkpoint servers increases. When the
number of checkpoint servers increases, the duration of
checkpoint image transfer decreases. For Pcl, this is
seen clearly in the first part of the curve as comple-
tion time decreases. In Pcl, before a process takes a
checkpoint image, it has blocked all its communication.
When it starts its checkpoint image transfer, it simul-
taneously continues these communications. So, these
communications and the checkpoint transfer compete
for the network bandwidth. When the bandwidth con-
tention decreases (e.g. when the number of checkpoint
servers increases), overall performance increases. The
timeout for the next checkpoint wave is set as soon as
every process has transferred its image. So, increasing
the number of checkpoint servers decreases the time be-
tween two checkpoint waves. However, as seen in the
bottom half of the figure, the overall completion time
decreases enough to prevent triggering an additional
checkpoint wave.

On the contrary, for Vcl, most of the time saved for
transferring the checkpoint image is used to increase the
number of checkpoint waves. Vcl does not block the
communications for the checkpoint, and less communi-
cations compete with the checkpoint transfers. So, it
has a lesser impact on the MPI communication and de-
creasing the time to take the checkpoint still decreases
the period of time between two checkpoint waves. This
introduces more checkpoint waves without altering the
near-optimal completion time. The small difference be-
tween Pcl and Vel for 8 checkpoint servers illustrates
the better performance of MPICH2 as compared to
MPICH-Vcl.

The four graphs of Figure 6 present the scalability of
fault tolerance with respect to the number of processes
for given times between checkpoints. The BT class B
benchmark is run at varying sizes, for different values
of time between checkpoints, and the completion time
is measured for the two implementations and compared
to a checkpoint-free execution. All executions use the
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Figure 6: Execution Time as Function of the Number of Processes for Four Checkpoints’ Frequency

same number of checkpoint servers (9).

Without checkpoint, the two implementations behave
similarly at all the sizes. The MPICH2 implementa-
tion is slightly more efficient for 256 processors. For
all implementations, there is an observable slowdown at
169 processors. Only 150 computers were available for
this test, and we used single process deployments for up
to 144 computing nodes, and bi-processor deployments
(limiting the number of computers to 128) for experi-
ments with more than 160 computing nodes. The gap is
due to sharing the network interface card between the
two processors.

Without considering the measurement at 10s between
checkpoints, where the communications are heavily per-
turbed by the blocking protocol, one can see that the
number of nodes has no measurable impact on the
overhead of checkpointing, whatever the protocol used.
The blocking protocol has a high-performance degra-
dation when subject to high checkpointing frequencies.
It spends most of the time synchronizing to make a
global checkpoint, and MPI communications happens
in bursts. The Vcl implementation does not introduce
the same synchronizations and is always closer to the

executions without checkpointing.

When the time between checkpoints increases, this
gap reduces to a constant overhead for the two check-
pointing implementations.

5.3 High-Performance Communication

Clusters

The first row of graphs in Figure 7 shows the results
of the BT class B benchmark on 64 processors, and in
the second row the CG class C benchmark on 64 pro-
cessors; all benchmarks ran over a 36-node cluster in-
terconnected by a myri2000 network. Four nodes were
used as checkpoint servers, and the computing nodes
were distributed equally among the checkpoint servers.
The experiments were conducted with the MX-2G 1.1.1
driver from myricom, enabling Ethernet over myri2000.

The left column of graphs presents the completion
time as a function of time between two checkpoints, and
the number of checkpoint waves for each run, while the
right column presents the completion time of the same
experiments as a function of the number of checkpoint
waves.
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Figure 7: Impact of Checkpoint Frequency on BT.B.64 and CG.C.64 for Myricom Network

The Pcl execution time follows the number of check-
point waves, and the right column of graphs demon-
strate that the completion time is roughly linear with
the number of checkpoints. This is easily explained by
the synchronizations introduced by the blocking proto-
col. As explained in the cluster experiments, the num-
ber of checkpoint waves does not directly influence the
performance of the Vel implementation.

CG is a benchmark with a lot of small communica-
tions, and therefore a latency-bound benchmark. Vel is
implemented with a communication daemon, and each
message has to pass through two UNIX sockets and the
Ethernet emulation of the myri2000 card, implying un-
necessary copies and a high latency overhead. This is
why Pcl performs much better than Vel for this bench-
mark.

BT is a computation-bound benchmark, with a rela-
tively small number of long communications. So the Vcl
implementation does not suffer from the overhead of its
messages copies, and the overhead of the synchroniza-
tion of Pcl results in better performance for Vel with
high checkpoint wave frequency.

5.4 Large Scale Experiments

The large-scale experiments are conducted on Grid5000.
Its clusters are interconnected with internet links. In
order to evaluate the results of the benchmarks, we first
measure the raw performance of this platform using the
NetPIPE [Sunell et al. 1996] utility. This is a ping pong
test for several message sizes and small perturbations of
these sizes.

Figure 8 presents the bandwidth and latency mea-
surements between each pair of clusters. The network
is up to 20 times faster between two nodes of the same
cluster than between two nodes of two clusters. More-
over, the latency is up to two orders of magnitude
greater between clusters than between nodes.

We present here results only for the Pcl implementa-
tion. The Vcl implementation was not designed for this
scale, because it uses the select system call to multi-
plex its communication channels, and this tool is not
scalable beyond a thousand sockets (in Linux, a file de-
scriptor set has a size of at most 1024/8 bytes). Each
node of the Vcl implementation opens up to 3 sockets
with the dispatcher (one for alive messages and avail-
ability, two for standard input and output), and this
precludes tests with more than 300 processes.
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By contrast, Pcl was designed to scale to large
platforms, and we conducted experiments with up to
1024 processes. Due to insufficient host availability in
Grid5000, we cannot be certain of its scalability at the
moment, but we present here results up to 529 proces-
SOTS.

Figure 9 presents the measurement of the BT class
B benchmark with a varying number of processes dis-
tributed over the grid. Each node used a local ma-
chine (among 4) as its checkpoint server. The figure
presents three results: the completion time without
checkpointing, the completion time with a checkpoint
wave every 60s and the number of checkpoint waves for
each run.

Although BT.B is not scalable on such a grid deploy-
ment, we consider it a stress test for the fault toler-
ant protocol, since it introduces complex communica-
tion schemes among all nodes.

The execution without checkpointing presents a slow-
down for 529 processes due to the heterogeneity of the
grid, and the use of remote processors at this scale. This
leads to a longer execution time, in which the check-
pointing execution has more time to make up to 6 check-
point waves. Since the completion time is proportional
to the number of checkpoint waves, this increases the
completion time of the execution with checkpoints ev-
ery 60s.

This is confirmed by the Figure 10, which presents on
its left side the completion time and number of check-



point waves according to the time between checkpoints
and on its right side the completion time as function
of the number of checkpoint waves for the BT class B
with 400 processes benchmark. The benchmark is run
in similar conditions as the previous experiment.

Even in grid deployments, the execution time is still
linear to the number of checkpoint waves. This number
itself is proportional to the frequency of checkpoint, that
is the inverse of the time between checkpoints.

6 Conclusion

In this paper, we present Pcl, a new implementation of a
blocking, coordinated checkpointing, and fault tolerant
protocol inside MPICH2. We evaluate its performance
on three typical high performance architectures: clus-
ters of workstations, high speed network clusters, and
computational grids. We compare the performance to
Vcl, an implementation of a non-blocking, coordinated
checkpointing protocol.

A blocking, coordinated checkpointing protocol re-
quires flushing communication channels before taking
the state of a process in order to ensure the coherency of
the view built. It introduces synchronization in the dis-
tributed system while communications are frozen. How-
ever, since it does not require copies of incoming or out-
going messages, it is simpler to implement in an existing
high-performance communication driver.

A non-blocking, coordinated checkpointing protocol
consists of saving the state of the communication chan-
nels during the checkpoint without interrupting the
computation. It requires logging in-transit messages
and replaying them at restart, which implies coordina-
tion with the match-making engine and queue mecha-
nisms.

The experimental study demonstrated that for high-
speed networks, the blocking implementation gives the
best performance for sensible checkpoint frequency. On
clusters of workstations and computational grids, the
high cost of network synchronization to produce the
checkpointing wave of the blocking protocol introduces
a high overhead that does not appear with the non-
blocking implementation.

An experimental study on a cluster demonstrated
that the checkpoint frequency has more significant im-
pact on the performance than the number of nodes in-
volved in a checkpoint synchronization for both non-
blocking and blocking protocols. We are conducting a
larger study to evaluate this result on computational
grids.
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