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Abstract. As the size of high performance systems grows, tolerating
failures has become a major issue in parallel computing. In this paper,
we present a Coloured Petri Net model for a fault tolerant matrix fac-
torisation algorithm. On the model, we prove resiliency properties and
completion of the algorithm in presence of failures whatever the size of
the input. This illustrates how formal modelling and verification tech-
niques can help designing proofs on distributed algorithms.

1 Introduction

The node increase in High Performance Computing (HPC) makes platforms
more subject to failures. Hence, failures can arise anytime, stopping partially
or totally the execution (crash-type failures) or providing incorrect results (bit
errors) [3]. Therefore, such algorithms should be designed to expect failures and
take suitable actions, thus providing a fault-tolerant environment and ensuring
the failure-free execution of critical algorithms.

Recent works [2, 1] have exhibited interesting properties for fault-tolerant al-
gorithms. These properties are not very intuitive. Nevertheless, formal models
allow for better readability and understandability. Here, we have chosen Coloured
Petri Nets (CPN) [6] because of the facilities they provide for modelling and
validating properties of parallel and distributed algorithms. We thus present a
formal model and the associated verifications for the Fault-Tolerant Tall and
Skinny QR Factorisation algorithm (FT-TSQR), and prove it tolerates the fail-
ures, providing low overhead in a failure-free execution and guaranteeing that
the final results are always correct [4].

Outline. Section 2 presents FT-TSQR algorithm. In section 3, a Coloured Petri
Net models the fault-tolerant algorithm. Section 4 presents the most relevant
properties issued from the CPN and demonstrates that the main properties of
the algorithm are correct by construction. Finally, section 5 concludes and draws
some perspectives.



2 The FT-TSQR algorithm

Many applications in linear algebra depend entirely on the execution of the Tall
and Skinny QR (TSQR) Factorisation algorithm. Its fault tolerant version uses a
set of t processes PROC = {P0, P1, . . . , Pt−1} to calculate the QR factorisation of
a tall and skinny matrix Am×n, i.e. a matrix withm rows and n columns,m� n.
The algorithm enjoys data redundancy between processes [5]. The algorithm is
fault tolerant thanks to this data redundancy: if a process fails while performing
a local operation, there exists another process doing the same operation and
holding the same data. Thus the data of the failed process is not lost [3].

Algorithm 1 describes the steps of the fault tolerant TSQR algorithm and
figure 2 displays a failure-free execution of the algorithm with four processes. At
step s of its execution, a process Pi has a partner process Ppi to exchange its
data with. pi = i+2s if i mod 2s+1 = 0, and pi = i−2s otherwise. When a data
exchange between partners has been performed, both processes are updated and
they increment step s (lines 2 and 10).

Initially, matrix Am×n is divided into sub-matrices A
m
t ×n
i . Each sub-matrix

A
m
t ×n
i is factorised as Q̃i and R̃i by a local QR factorisation on process Pi (line

1). The resulting R̃i is sent to the partner process Ppi
to perform a local QR

factorisation (line 5). Pi waits for the resulting matrix computed by its partner.
If the exchange fails, both processes finish either by a failure or at lines 6–7.
Otherwise they concatenate their R̃i and R̃pi matrices to form a matrix ˜Ri,pi

(line 8) and compute its local QR factorisation at line 9. The same procedure is
repeated. At the end of the computation all surviving processes have the final
Q and R matrices.

Fig. 1. Failure-free execution steps in
redundant TSQR for t = 4 processes. Light gray
columns represent where the QR Factorization

takes place.

Algorithm 1: Redundant TSQR
Data: Submatrix A

1 Q, R = QR(A);
2 s = 0 ;
3 while ! done() do
4 pi = myPartner(s) ;
5 f = sendRecv(R, R’, pi) ;
6 if FAIL == f then
7 return;

8 A = concatenate(R, R’);
9 Q, R = QR(A);

10 s = s + 1 ;

/* All the surviving processes reach
this point and own the final R */

11 return R;



3 Model

Figure 2 depicts the Coloured Petri net modelling the algorithm. It focusses on
the structure for the functionning of the algorithm, its different steps and the
communications between processes, and not the actual computation. Place Pro-
cesses contains triples (q, s, k) where q is a process number, s the current step and
k the index of the R̃ matrix it has already computed. Transition compute finds
a partner process q′ and executes a step of the algorithm. Transition nop cap-
tures the case when no partner can be found, and the process thus moves to the
next step. Finally, place MaxFail contains pairs (s, f) which indicates how many
failures are still allowed at step s. It thus limits the number of occurrences of
transition failure. The model mostly depends on a single parameter: the number
of processes in the system. The other ones (number of steps, maximum number
of failures) depend on the number of processes.
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Fig. 2. Model corresponding to Algorithm 1.

4 Properties

We now prove that (a) the system can reach the end of the computation (prop.
1) and (b) the final result is unique and, therefore is the expected one (prop. 2).
We use projection functions Πx to select the xth element of a token which has a
tuple value Πx,y to select the xth and yth elements to form a pair. Πs

x denotes
the value of Πx when the step number is s.

Property 1. At every step s > 0 , the system can tolerate at most 2s−1 failures.

Proof. During the first step, each process performs a local computation. Then at
every step s > 0, transition compute takes the R̃ and R̃′ from two processes q and
q′ and produces R̃′′ on both q and q′ or transition failure consumes a process.



By a trivial recursion, at each step s > 0, it holds that: |Πs
3(M(Processes))| +

Πs
2(M(MaxFail)) = 2s. However, the guard on transition failure ensures that

0 ≤ Πs
2(M(MaxFail)) ≤ 2s − 1. Therefore, we have at each step s > 0: 1 ≤

|Πs
3(M(Processes))| ≤ 2s: at least one process holds each intermediate R̃, which

is sufficient for the computation to proceed with the next step. ut

Property 2. At the end of the computation, if the system did not suffer too many
failures (as specified in property 1), at least one process holds the final R.

Proof. This property is easily derived from the proof of property 1. At each step
s > 0, we have |Πs

3(M(Processes))| ≥ 1. This is sufficient for the algorithm
to reach the final step. We also need to prove that this final R̃ is unique (and
therefore, is the final R). We know that, for each R̃: |Πs

3(M(Processes))| +
Πs

2(M(MaxFail)) = 2s. Moreover, 0 ≤ Πs
2(M(MaxFail)) ≤ 2s − 1. The final

step is when s = log2 t. Hence, |Πs
3(M(Processes))|+Πs

2(M(MaxFail)) = t. As
a consequence, all non-failed processes hold the same R̃, which is the final R. ut

5 Conclusion and perspectives

In this paper, we have presented a model for a fault tolerant algorithm. The
core contributions of this paper are how the failures are modelled, and using
the abstraction provided by the model, the design of proofs of fault tolerance
properties of the algorithm. The number of processes and size of matrix are
parameters of the model, and thus the proof holds for any value. A perspective
is to derive a general modelling and verification approach for such fault-tolerant
algorithms.
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