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Scalability

BIG machines
@ How do we program them?

@ Need for scalable algorithms
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BIG machines
@ How do we program them?

@ Need for scalable algorithms

What is scalability?

@ How does the algorithm evolve when we add cores
@ Two dimensions

o Operations
o Communications
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Scalability

BIG machines
@ How do we program them?

@ Need for scalable algorithms

What is scalability?

@ How does the algorithm evolve when we add cores
@ Two dimensions

o Operations
o Communications

Computations vs communications

@ Nodes are fast

@ Communication speed is limited by physical constraints
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Reliability of components

Life expectancy of an electronic component: the famous bathtub curve

The Bathiub Curve
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Introduction

Large-scale systems
Reliability

Reliability of a distributed system

Mean Time Between Failures
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— The more components a system is made of, the more likely it is to have a
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Requirements for algorithms

Therefore, algorithms must be:
@ Scalable
e Scale with the number of processes
o Fault tolerant
e Able to survive beyond failures

— communication-avoiding algorithms

Large-scale systems
Reliability

— User-Level Failure Mitigation for algorithm-based fault tolerance
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Conclusion

Communication-Avoiding QR

R
Works by panels : -
A A12) (Ru R12)
A = = N
(A21 Az Ql 0 A%Q 9 ° trailing
. 1 3 matrix
Then, recursively, work on A3,...
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CAQ
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FT-CAQR
P nce

Communication-Avoiding QR

R
Works by panels :
A A12) (Ru R12)
A= =
(A21 Az Ql 0 A%Q 9 ° trailing
3 matrix
Then, recursively, work on A%Q...
CAQR algorithm
@ Panel factorization:

An _ R
Aoy =@y

@ Compact representation:
Ql =1- Y1T1Y1T
© Update the trailing matrix:

(1 - Ty (i;z) _ (3;2) —Yi(TT (Y (Am))) - (ng)

Azz Ao
@ Continue recursively on the trailing matrix A3,

@w
bs}
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Tall-and-Skinny QR

Panel factorization: cornerstone of the CAQR algorithm

An R
() o (%)

The matrix (A“) is tall and skinny :
A21

@ number of lines > number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix:

TSQR
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Performance
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TSQR algorithm

Goal: compute the QR factorization of a matrix A:

e A=QR
e A is tall and skinny

To compute it in parallel on P processes:
@ M = number of lines, N = number of columns

e M >NP

— at least square matrices on each process

Ay R:
A | 0
As | — Qul g
Ay 0
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Update of the trailing matrix

Trailing matrix: denoted C, each C; being on process i.

- (8)- (i)
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FT-CAQR
P nce

Update of the trailing matrix

Trailing matrix: denoted C, each C; being on process i.
t\el) Ci[N ]

Operation to perform:

Ro C{)iQRC(]iQRCi‘()
R C1) Co) C
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FT-TSQR
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FT-CAQR

Update of the trailing matrix

Trailing matrix: denoted C, each C; being on process i.
t\el) Ci[N ]
Operation to perform:
Ry C§\ _ (QR C} 7QRC‘()
R Ci) o) (¢4

The compact representation becomes:

()= 0-(2) () (@)
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Update of the trailing matrix: tree

Step 0

Py

P,

Cij
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Update of the trailing matrix: tree

Step 0
Step 1

N N

Py

Py

P,

P

Cij

12 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo



Introdu
CAQR
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Update of the trailing matrix: tree

Step 0

Step 1 Step 2

N—N— NN .

A NN - N —
P X X X

b Py
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Fault tolerant TSQR

Let's look at TSQR in details

QR

Py Ay | N

Vo
Py A | N

Vi
P, Ay | N

Vs
P3 Ay | N

V3
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Conclusion
Fault tolerant TSQR
Let's look at TSQR in details
QR Send/Recv QR
Po Ao | el Bl R
Vi B vy
Py Av | . \‘\1‘?‘
Vi
P, Ay | N
P; As | N
Vs
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Fault tolerant TSQR
Let's look at TSQR in details
QR Send/Recv QR Send/Recv QR
Py Ao | S N . N R S N . S I N
Vo I 173 Vv
P, Al , *\1~f‘
1
Pyo| A | ,
P; As | N
Vi
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Fault tolerant TSQR

Let's look at TSQR in details
@ Py works beginning — end
@ P> works during the first two steps, then stops

@ P and Ps work during the first step, then stops

Let's put these lazy dudes to work!
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What do we expect from fault tolerance?

Have one result at the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR
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What do we expect from fault tolerance?

Have one result at the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Have the result on a given process at the end

@ No matter how many processes survive, the one we want has the final
answer

o Here: Replace TSQR
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What do we expect from fault tolerance?

Have one result at the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Have the result on a given process at the end

@ No matter how many processes survive, the one we want has the final
answer

o Here: Replace TSQR

Have the result on the expected process and all the processes are alive
@ Finish with a system that looks as if nothing bad happened
o Here: Self-Healing TSQR
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FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR
A0 Ry
Vo
A f
Vi
A Ry
Ay
Vi
Ay Rs
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FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

n

Ry

Ay

Ry
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Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

QR

n

Ry

Ry

Ry

Ay
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Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

QR Send/Recv

n

Ry

Ry

, /
R() R[Y

Ay
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FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

QR Send/Recv QR

n

Ry

Ry

Ry Ry R

Ay
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R
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FT-TSQR
FT-CAQR

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.

Py

Py

Py

Ps

17 Camille Coti

QR Send/Recv QR Send/Recv QR
A Ro Ry R)
STOP

Vo
A R

Vi
Ay Ry

Va
Ay Ry
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Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P; acts as P».

QR Send/Recv QR Send/Recv QR

Po Ao Ry Ry Ry Ry R

Py Ay
Py Ay
Py Az
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Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process

QR S/R QR S/R QR

Po Ao Ry Ry Ry Ry R

Py Ay
Py Ay
Py Az
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Update of the trailing matrix: algorithm

Po
Co
P —
T

@ P, sends its C} to P, while P, computes T'
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Update of the trailing matrix: algorithm

Po

Co

CE |

T W =T"(C; - Yi"C1)

@ P, sends its C) to P; while P, computes T'
@ P computes W
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FT-TSQR
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FT-CAQR

Update of the trailing matrix: algorithm

Po

Py

T W =T7(C, - Y{''CY)

@ P, sends its C}) to P; while P; computes T'
@ P, computes W
© P sends W to Py
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FT-TSQR
FT-CAQR

FT-CAQR

Update of the trailing matrix: algorithm

Co=ChH—W
Py

Co w

Py
T W =TT(Cy—Y{CY) C=CL—-viW

@ P, sends its C)) to P; while P, computes T'
@ P computes W

© P sends W to Py

@ P, computes Cé and P, computes C’{

Continue... by pairs of processes.
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Update of the trailing matrix: tree

Po

Py

P

Py

N

N—N—EHEE N\ I

AN

N—N— B N I
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Doing the pairwise computation on both processes

T
P — ]
Co

L
P — |
T

@ P, and P, exchange their C., P, sends its Y}
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FT-TSQR
FT-CAQR

FT-CAQR

Doing the pairwise computation on both processes

r_ W=T7(C—YTCh
P

)
Co

L

Py
T W =T7(C) - Y C))

@ Py and Py exchange their C., P sends its Y3
@ P and P; both compute W
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FT-TSQR
FT-CAQR FT-CAQR

Doing the pairwise computation on both processes

T W =T"(Cy — Yi"C1) Co=Co—W
Py

T W =TT (Cy—Y{"CY) Ci=Cf —nW

@ P and P; exchange their C!, Py sends its Y}
@ P, and P; both compute W
© P, computes % and P, computes C

Continue... by pairs of processes.
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Failure recovery

At the end of a given step, between P; and P;:
e Py has W, T, Cj, C}, and Cl

o if P; fails, P; can send sufficient data for any process that has Y; to
recalculate C’; = Cj/v -Y;,W

Variant: Exchange C.and Y, — symmetric
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Failure recovery

At the end of a given step, between P; and P;:
e Py has W, T, Cj, C}, and Cl

o if P; fails, P; can send sufficient data for any process that has Y; to
recalculate C’; = Cj/v -Y;,W

o Pjhas W, T, C}, C},Y; and C};
o if P; fails, P; can recalculate C! = C! — ;W

Variant: Exchange C.and Y, — symmetric
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@ Performance
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Performance evaluation

Performance evaluation: what do we measure?

@ Overhead during fault-free execution
o Very important!
o Cost of the mechanisms put in place to make the FT possible
o Here: additional communications
o Same for the three algorithms
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Performance evaluation

Performance evaluation: what do we measure?

@ Overhead during fault-free execution
o Very important!
o Cost of the mechanisms put in place to make the FT possible
o Here: additional communications
o Same for the three algorithms

@ Recovery time
o Depends on a lot of factors!
o Failure detection (impossible with asynchronous communications)
o Recovery made by the RTE (spawn and reconnect a new process)
o Recovery protocol of the algorithm < only interesting thing here, but hard
to measure independently
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Performance overhead on TSQR

64 processes, 64 columns (P = 64, N = 64)

14000 T T T T T
TSQR —+—
TSQR FT sk
12000 ) B
10000 - B
g 8000 |- B
[e]
r
= 6000 |- B
4000 B
2000 - B
0 bpgek -:/\ L L L L
0 50000 100000 150000 200000 250000 30000C

Number of lines
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Performance overhead on TSQR

256 processes, 64 columns (P = 256, N = 64)

14000 T T T T T
TSOR ———
TSQR FT
12000 q
10000 q
g 8000 - ~q
[e]
2
= 6000 - ~q
4000 q
2000 - q
o Ly ‘ ‘ ‘ ‘
0 50000 100000 150000 200000 250000 30000C

Number of lines
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Performance overhead on TSQR

16 processes, 128 columns (P = 16, N = 128)

MFLOP/s

900

800

700

600

500

400

300

200

100

TSQRW T T T T
I TSQR FT 4
] Sk T 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000

Number of lines
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© Conclusion
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Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices
@ Cornerstone for general QR factorization
@ Three recovery algorithms, one for each semantics

Algorithm for FT update of the trailing matrix
o Fault-tolerant QR for general matrices (R)

Scalable FT protocol based on scalable algorithms
Makes use of new features provided by the MPI-3 standard
@ FT API now provided by MPI-3

o User-Level Failure Mitigation

Next step:
o Apply this to LU, Cholesky (the other amigos)
@ Reconstruction of the Householder vectors (Q)

o Full performance analysis
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