Exploiting Redundant Computation
in Communication-Avoiding Algorithms
for Algorithm-Based Fault Tolerance
SIAM PP16

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13

April 15th, 2016

1/32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Performance
Conclusion

Roadmap

© Introduction
o Large-scale systems
o Reliability

© CAQR

© FT-CAQR
e FT-TSQR
e FT-CAQR

© Performance

© Conclusion

2 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR
FT- R Large-scale systems

Reliability

Performance
Conclusion

Scalability

BIG machines
@ How do we program them?

@ Need for scalable algorithms

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Large-scale systems
Reliability

Conclusion

Scalability

BIG machines
@ How do we program them?

@ Need for scalable algorithms

What is scalability?

@ How does the algorithm evolve when we add cores
@ Two dimensions

o Operations
o Communications

32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR
Large-scale systems

FT-CAQR Reliability

Performa
Conclusion

Scalability

BIG machines
@ How do we program them?

@ Need for scalable algorithms

What is scalability?

@ How does the algorithm evolve when we add cores
@ Two dimensions

o Operations
o Communications

Computations vs communications

@ Nodes are fast

@ Communication speed is limited by physical constraints

32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
(

Large-scale systems
Reliability

Conclusion

Reliability of components

Life expectancy of an electronic component: the famous bathtub curve

The Bathiub Curve

hit)

insic

Period

ure

[} Lime

32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction

Large-scale systems
Reliability

Reliability of a distributed system

Mean Time Between Failures

n—1

MTBFiosa = (3
=0

MTBF, " @

— The more components a system is made of, the more likely it is to have a

failure.
3 5000 — — —
& \‘10 000H ——
E 4000 - 100 000 H n
S 1 0“(\)0 000 H ——
g 3000 10 000 000 H iy
2000 - \\ -
¥ 1000 - \\ -
§ 0 L P - h = — h B = S
E 1 10 100 1000 10000 100000 1e+06
§ Number of components in the system

5 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction

CAQR

FT-CAQR

Performance
Conclusion

Requirements for algorithms

Therefore, algorithms must be:
@ Scalable
e Scale with the number of processes
o Fault tolerant
e Able to survive beyond failures

— communication-avoiding algorithms

Large-scale systems
Reliability

— User-Level Failure Mitigation for algorithm-based fault tolerance

32 Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Performance
Conclusion

© CAQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
[(TR Rt

Conclusion

Communication-Avoiding QR

R
Works by panels : -
A A12) (Ru R12)
A = = N
(A21 Az Ql 0 A%Q 9 ° trailing
. 1 3 matrix
Then, recursively, work on A3,...

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQ

FT-TSQR
FT-CAQR

Ye)
FT-CAQR
P nce

Communication-Avoiding QR

R
Works by panels :
A A12) (Ru R12)
A= =
(A21 Az Ql 0 A%Q 9 ° trailing
3 matrix
Then, recursively, work on A%Q...
CAQR algorithm
@ Panel factorization:

An _ R
Aoy =@y

@ Compact representation:
Ql =1- Y1T1Y1T
© Update the trailing matrix:

(1 - Ty (i;z) _ (3;2) —Yi(TT (Y (Am))) - (ng)

Azz Ao
@ Continue recursively on the trailing matrix A3,

@w
bs}

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introdu
CAQR
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Tall-and-Skinny QR

Panel factorization: cornerstone of the CAQR algorithm

An R
() o (%)

The matrix (A“) is tall and skinny :
A21

@ number of lines > number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix:

TSQR

9 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

Performance
Conclusior

TSQR algorithm

Goal: compute the QR factorization of a matrix A:

e A=QR
e A is tall and skinny

To compute it in parallel on P processes:
@ M = number of lines, N = number of columns

e M >NP

— at least square matrices on each process

Ay R:
A | 0
As | — Qul g
Ay 0

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

R
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Update of the trailing matrix

Trailing matrix: denoted C, each C; being on process i.

- (8)- (i)

11 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

FT-CAQR
P nce

Update of the trailing matrix

Trailing matrix: denoted C, each C; being on process i.
t\el) Ci[N]

Operation to perform:

Ro C{)iQRC(]iQRCi‘()
R C1) Co) C

11 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

FT-CAQR

Update of the trailing matrix

Trailing matrix: denoted C, each C; being on process i.
t\el) Ci[N]
Operation to perform:
Ry C§\ _ (QR C} 7QRC‘()
R Ci) o) (¢4

The compact representation becomes:

()= 0-(2) () (@)

11 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introd

IR
FT-CAQR

FT-TSQR
Performanc [PUEAER

Update of the trailing matrix: tree

Step 0

Py

P,

Cij

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

FT-CAQR

Performance
Conclusion

Update of the trailing matrix: tree

Step 0
Step 1

N N

Py

Py

P,

P

Cij

12 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introdu
CAQR
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Update of the trailing matrix: tree

Step 0

Step 1 Step 2

N—N— NN .

A NN - N —
P X X X

b Py

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Intrc duct
. FT-TSQR
FT-CAQR

FT-CAQR

Performance
Conclusion

© FT-CAQR
o FT-TSQR
o FT-CAQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introd

IR
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusior

Fault tolerant TSQR

Let's look at TSQR in details

QR

Py Ay | N

Vo
Py A | N

Vi
P, Ay | N

Vs
P3 Ay | N

V3

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduc

R
FT-TSQR
| FTEAGR R
Conclusion
Fault tolerant TSQR
Let's look at TSQR in details
QR Send/Recv QR
Po Ao | el Bl R
Vi B vy
Py Av | . \‘\1‘?‘
Vi
P, Ay | N
P; As | N
Vs

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduc

R
FT-TSQR
(RO - T-CAoR
Conclusion
Fault tolerant TSQR
Let's look at TSQR in details
QR Send/Recv QR Send/Recv QR
Py Ao | S N . N R S N . S I N
Vo I 173 Vv
P, Al , *\1~f‘
1
Pyo| A | ,
P; As | N
Vi

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introdu
CAQR
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Fault tolerant TSQR

Let's look at TSQR in details
@ Py works beginning — end
@ P> works during the first two steps, then stops

@ P and Ps work during the first step, then stops

Let's put these lazy dudes to work!

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

Performance
Conclusion

What do we expect from fault tolerance?

Have one result at the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Intrc duction
CAQK FT-TSQR
FT-CAQR

FT-CAQR

Performance
Conclusion

What do we expect from fault tolerance?

Have one result at the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Have the result on a given process at the end

@ No matter how many processes survive, the one we want has the final
answer

o Here: Replace TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR

FT-TSQR
FT-CAQR

FT-CAQR

Performance
Conclusion

What do we expect from fault tolerance?

Have one result at the end
@ No matter how many processes survive, one of them has the final answer
o Here: Redundant TSQR

Have the result on a given process at the end

@ No matter how many processes survive, the one we want has the final
answer

o Here: Replace TSQR

Have the result on the expected process and all the processes are alive
@ Finish with a system that looks as if nothing bad happened
o Here: Self-Healing TSQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-CAQR

Performance
Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR
A0 Ry
Vo
A f
Vi
A Ry
Ay
Vi
Ay Rs

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

R
FT-CAQR

Performance
Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

n

Ry

Ay

Ry

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

R
FT-CAQR

Performance
Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

QR

n

Ry

Ry

Ry

Ay

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introd

FT-CAQR

Performance
Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

QR Send/Recv

n

Ry

Ry

, /
R() R[Y

Ay

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introd

FT-CAQR

Performance
Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

Py

P,

P,

QR

Send/Recv

QR Send/Recv QR

n

Ry

Ry

Ry Ry R

Ay

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Redundant TSQR: failure

R
FT-CAQR

Performance
Conclusion

FT-TSQR
FT-CAQR

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.

Py

Py

Py

Ps

17 Camille Coti

QR Send/Recv QR Send/Recv QR
A Ro Ry R)
STOP

Vo
A R

Vi
Ay Ry

Va
Ay Ry

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introd

FT-TSQR
FT-CAQR

FT-CAQR

Performance
Conclusion

Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P; acts as P».

QR Send/Recv QR Send/Recv QR

Po Ao Ry Ry Ry Ry R

Py Ay
Py Ay
Py Az

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introd

IR
FT-CAQR

FT-TSQR

o FT-CAQR
rformance
Conclusior

Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process

QR S/R QR S/R QR

Po Ao Ry Ry Ry Ry R

Py Ay
Py Ay
Py Az

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Intrc duct
. FT-TSQR
FT-CAQR

FT-CAQR

Performance
Conclusion

© FT-CAQR
o FT-TSQR
o FT-CAQR

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

Performance
Conclusion

Update of the trailing matrix: algorithm

Po
Co
P —
T

@ P, sends its C} to P, while P, computes T'

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

Performance
Conclusion

Update of the trailing matrix: algorithm

Po

Co

CE |

T W =T"(C; - Yi"C1)

@ P, sends its C) to P; while P, computes T'
@ P computes W

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

FT-CAQR

Update of the trailing matrix: algorithm

Po

Py

T W =T7(C, - Y{''CY)

@ P, sends its C}) to P; while P; computes T'
@ P, computes W
© P sends W to Py

21 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

FT-CAQR

Update of the trailing matrix: algorithm

Co=ChH—W
Py

Co w

Py
T W =TT(Cy—Y{CY) C=CL—-viW

@ P, sends its C)) to P; while P, computes T'
@ P computes W

© P sends W to Py

@ P, computes Cé and P, computes C’{

Continue... by pairs of processes.

21 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

Update of the trailing matrix: tree

Po

Py

P

Py

N

N—N—EHEE N\ I

AN

N—N— B N I

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

R
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Doing the pairwise computation on both processes

T
P —]
Co

L
P — |
T

@ P, and P, exchange their C., P, sends its Y}

23 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

FT-CAQR

Doing the pairwise computation on both processes

r_ W=T7(C—YTCh
P

)
Co

L

Py
T W =T7(C) - Y C))

@ Py and Py exchange their C., P sends its Y3
@ P and P; both compute W

23 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR FT-CAQR

Doing the pairwise computation on both processes

T W =T"(Cy — Yi"C1) Co=Co—W
Py

T W =TT (Cy—Y{"CY) Ci=Cf —nW

@ P and P; exchange their C!, Py sends its Y}
@ P, and P; both compute W
© P, computes % and P, computes C

Continue... by pairs of processes.

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

R
FT-CAQR

FT-TSQR

Performance FT-CAQR

Conclusion

Failure recovery

At the end of a given step, between P; and P;:
e Py has W, T, Cj, C}, and Cl

o if P; fails, P; can send sufficient data for any process that has Y; to
recalculate C’; = Cj/v -Y;,W

Variant: Exchange C.and Y, — symmetric

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

FT-TSQR
FT-CAQR

Performance
Conclusion

Failure recovery

At the end of a given step, between P; and P;:
e Py has W, T, Cj, C}, and Cl

o if P; fails, P; can send sufficient data for any process that has Y; to
recalculate C’; = Cj/v -Y;,W

o Pjhas W, T, C}, C},Y; and C};
o if P; fails, P; can recalculate C! = C! — ;W

Variant: Exchange C.and Y, — symmetric

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Performance
Conclusion

@ Performance

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

du

FT-CAQR

Performance
Conclusion

Performance evaluation

Performance evaluation: what do we measure?

@ Overhead during fault-free execution
o Very important!
o Cost of the mechanisms put in place to make the FT possible
o Here: additional communications
o Same for the three algorithms

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR

FT-CAQR

Performance
Conclusion

Performance evaluation

Performance evaluation: what do we measure?

@ Overhead during fault-free execution
o Very important!
o Cost of the mechanisms put in place to make the FT possible
o Here: additional communications
o Same for the three algorithms

@ Recovery time
o Depends on a lot of factors!
o Failure detection (impossible with asynchronous communications)
o Recovery made by the RTE (spawn and reconnect a new process)
o Recovery protocol of the algorithm < only interesting thing here, but hard
to measure independently

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR
FT-CAQR

Performance
Conclusion

Performance overhead on TSQR

64 processes, 64 columns (P = 64, N = 64)

14000 T T T T T
TSQR —+—
TSQR FT sk
12000) B
10000 - B
g 8000 |- B
[e]
r
= 6000 |- B
4000 B
2000 - B
0 bpgek -:/\ L L L L
0 50000 100000 150000 200000 250000 30000C

Number of lines

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR
FT-CAQR

Performance
Conclusion

Performance overhead on TSQR

256 processes, 64 columns (P = 256, N = 64)

14000 T T T T T
TSOR ———
TSQR FT
12000 q
10000 q
g 8000 - ~q
[e]
2
= 6000 - ~q
4000 q
2000 - q
o Ly ‘ ‘ ‘ ‘
0 50000 100000 150000 200000 250000 30000C

Number of lines

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Introduction
CAQR
FT-CAQR

Performance
Conclusion

Performance overhead on TSQR

16 processes, 128 columns (P = 16, N = 128)

MFLOP/s

900

800

700

600

500

400

300

200

100

TSQRW T T T T
I TSQR FT 4
] Sk T 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000

Number of lines

Camille Coti

Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Conclusion

© Conclusion

Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Performance
Conclusion

Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices
@ Cornerstone for general QR factorization
@ Three recovery algorithms, one for each semantics

Algorithm for FT update of the trailing matrix
o Fault-tolerant QR for general matrices (R)

Scalable FT protocol based on scalable algorithms
Makes use of new features provided by the MPI-3 standard
@ FT API now provided by MPI-3

o User-Level Failure Mitigation

Next step:
o Apply this to LU, Cholesky (the other amigos)
@ Reconstruction of the Householder vectors (Q)

o Full performance analysis

31 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

Intr

F
Perf
Conclusion

References

J. Demmel, . Grigori, M. Hoemmen, & J. Langou:
Communication-avoiding parallel and sequential QR factorizations, CoRR
abs/0806.2159, 2008.

o J. Demmel, L. Grigori, M. Hoemmen & J. Langou:
Communication-optimal parallel and sequential QR and LU factorizations,
SIAM Journal on Scientific Computing 34 (1), 206-239, 2012.

o C. Coti: Exploiting Redundant Computation in Communication-Avoiding
Algorithms for Algorithm-Based Fault Tolerance, IEEE HPSC 2016, New
York, USA, April 2016.

o C. Coti: Exploiting Redundant Computation in Communication-Avoiding
Algorithms for Algorithm-Based Fault Tolerance, CoRR abs/1511.00212,
2015.

o C. Coti: Fault Tolerant QR Factorization for General Matrices, CoRR
abs/1604.02504, 2016.

32 /32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms fo

	Introduction
	Large-scale systems
	Reliability

	CAQR
	FT-CAQR
	FT-TSQR
	FT-CAQR

	Performance
	Conclusion

