
Introduction
CAQR

FT-CAQR
Performance

Conclusion

Exploiting Redundant Computation
in Communication-Avoiding Algorithms
for Algorithm-Based Fault Tolerance

SIAM PP16

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13

April 15th, 2016

1 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Roadmap

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

2 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Large-scale systems
Reliability

Scalability

BIG machines

How do we program them?

Need for scalable algorithms

What is scalability?

How does the algorithm evolve when we add cores

Two dimensions
Operations
Communications

Computations vs communications

Nodes are fast

Communication speed is limited by physical constraints

3 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Large-scale systems
Reliability

Scalability

BIG machines

How do we program them?

Need for scalable algorithms

What is scalability?

How does the algorithm evolve when we add cores

Two dimensions
Operations
Communications

Computations vs communications

Nodes are fast

Communication speed is limited by physical constraints

3 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Large-scale systems
Reliability

Scalability

BIG machines

How do we program them?

Need for scalable algorithms

What is scalability?

How does the algorithm evolve when we add cores

Two dimensions
Operations
Communications

Computations vs communications

Nodes are fast

Communication speed is limited by physical constraints

3 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Large-scale systems
Reliability

Reliability of components

Life expectancy of an electronic component: the famous bathtub curve

4 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Large-scale systems
Reliability

Reliability of a distributed system

Mean Time Between Failures

MTBFtotal = (

n−1∑
i=0

1

MTBFi
)−1 (1)

→ The more components a system is made of, the more likely it is to have a
failure.

 0

 1000

 2000

 3000

 4000

 5000

 1 10 100 1000 10000 100000 1e+06

M
ea

n
Ti

m
e

B
et

w
ee

n
F

ai
lu

re
s

of
 th

e
sy

st
em

 (h
ou

rs
)

Number of components in the system

10 000 H
100 000 H

1 000 000 H
10 000 000 H

5 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Large-scale systems
Reliability

Requirements for algorithms

Therefore, algorithms must be:

Scalable
Scale with the number of processes

Fault tolerant
Able to survive beyond failures

→ communication-avoiding algorithms

→ User-Level Failure Mitigation for algorithm-based fault tolerance

6 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

7 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Communication-Avoiding QR

Works by panels :

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

0 A1
22

)
Then, recursively, work on A1

22...

R

Q

p
an

el trailing
matrix

CAQR algorithm

1 Panel factorization:(
A11

A21

)
= Q1

(
R11

0

)
2 Compact representation:

Q1 = I − Y1T1Y
T
1

3 Update the trailing matrix:(
I − Y1T1Y

T
1

)(A12

A22

)
=

(
A12

A22

)
− Y1(T

T
1 (Y T

1

(
A12

A22

)
)) =

(
R12

A1
22

)
4 Continue recursively on the trailing matrix A1

22

8 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Communication-Avoiding QR

Works by panels :

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

0 A1
22

)
Then, recursively, work on A1

22...

R

Q

p
an

el trailing
matrix

CAQR algorithm

1 Panel factorization:(
A11

A21

)
= Q1

(
R11

0

)
2 Compact representation:

Q1 = I − Y1T1Y
T
1

3 Update the trailing matrix:(
I − Y1T1Y

T
1

)(A12

A22

)
=

(
A12

A22

)
− Y1(T

T
1 (Y T

1

(
A12

A22

)
)) =

(
R12

A1
22

)
4 Continue recursively on the trailing matrix A1

22

8 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Tall-and-Skinny QR

Panel factorization: cornerstone of the CAQR algorithm(
A11

A21

)
= Q1

(
R11

0

)

The matrix

(
A11

A21

)
is tall and skinny :

number of lines � number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix:
TSQR

9 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

TSQR algorithm

Goal: compute the QR factorization of a matrix A:

A = QR

A is tall and skinny

To compute it in parallel on P processes:

M = number of lines, N = number of columns

M ≥ NP
→ at least square matrices on each process

A1

A2

A3

A4

 = Q1

R1

0
0
0

10 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix

Trailing matrix: denoted C, each Ci being on process i.

Ci =

(
C′i
C′′i

)
=

(
Ci[: N − 1]
Ci[N :]

)

Operation to perform:(
R0 C′0
R1 C′1

)
=

(
QR C′0

C′0

)
= Q

(
R Ĉ′0

Ĉ′1

)

The compact representation becomes:(
Ĉ′0
Ĉ1

)
=
(
I −

(
I
Y0

)
TT

(
I
Y1

)T)(C′0
C′1

)

11 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix

Trailing matrix: denoted C, each Ci being on process i.

Ci =

(
C′i
C′′i

)
=

(
Ci[: N − 1]
Ci[N :]

)

Operation to perform:(
R0 C′0
R1 C′1

)
=

(
QR C′0

C′0

)
= Q

(
R Ĉ′0

Ĉ′1

)

The compact representation becomes:(
Ĉ′0
Ĉ1

)
=
(
I −

(
I
Y0

)
TT

(
I
Y1

)T)(C′0
C′1

)

11 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix

Trailing matrix: denoted C, each Ci being on process i.

Ci =

(
C′i
C′′i

)
=

(
Ci[: N − 1]
Ci[N :]

)

Operation to perform:(
R0 C′0
R1 C′1

)
=

(
QR C′0

C′0

)
= Q

(
R Ĉ′0

Ĉ′1

)

The compact representation becomes:(
Ĉ′0
Ĉ1

)
=
(
I −

(
I
Y0

)
TT

(
I
Y1

)T)(C′0
C′1

)

11 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: tree

P0

P1

P2

P3

Cij

Step 0

P0

P1

P2

P3

Step 1

P0

P1

P2

P3

Step 2

12 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: tree

P0

P1

P2

P3

Cij

Step 0

P0

P1

P2

P3

Step 1

P0

P1

P2

P3

Step 2

12 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: tree

P0

P1

P2

P3

Cij

Step 0

P0

P1

P2

P3

Step 1

P0

P1

P2

P3

Step 2

12 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

13 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault tolerant TSQR

Let’s look at TSQR in details

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

14 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault tolerant TSQR

Let’s look at TSQR in details

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

14 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault tolerant TSQR

Let’s look at TSQR in details

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

Send/Recv

R

V

QR

14 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault tolerant TSQR

Let’s look at TSQR in details

P0 works beginning → end

P2 works during the first two steps, then stops

P1 and P3 work during the first step, then stops

Let’s put these lazy dudes to work!

14 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

What do we expect from fault tolerance?

Have one result at the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR

15 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

What do we expect from fault tolerance?

Have one result at the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR

15 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

What do we expect from fault tolerance?

Have one result at the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR

15 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

16 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

16 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

16 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

16 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

Send/Recv

R0

R1

R2

R3

R′
0

V0
′

R′
2

V2
′

R′
0

V0
′

R′
2

V2
′

QR

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

R

V

QR

16 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Redundant TSQR: failure

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

CRASH

QR

STOP

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

QR

17 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P1 acts as P2.

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

Send/Recv

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

QR

CRASH

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

Send/Recv

R

V

R

V

R

V

QR

18 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

S/R

CRASH

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

QR

re
sp
aw

n

co
py

R′
2

V2
′

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

S/R

R

V

R

V

R

V

R

V

QR

19 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

20 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: algorithm

P0

P1

T

C′0

1 P0 sends its C′0 to P1 while P1 computes T

21 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: algorithm

P0

P1

T

C′0

W = TT (C′0 − Y T
1 C′1)

1 P0 sends its C′0 to P1 while P1 computes T

2 P1 computes W

21 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: algorithm

P0

P1

T

C′0

W = TT (C′0 − Y T
1 C′1)

W

1 P0 sends its C′0 to P1 while P1 computes T

2 P1 computes W

3 P1 sends W to P0

21 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: algorithm

P0

P1

T

C′0

W = TT (C′0 − Y T
1 C′1)

W

Ĉ1 = C′1 − Y1W

Ĉ0 = C′0 −W

1 P0 sends its C′0 to P1 while P1 computes T

2 P1 computes W

3 P1 sends W to P0

4 P0 computes Ĉ′0 and P1 computes Ĉ′1

Continue... by pairs of processes.

21 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: tree

P0

P1

P2

P3

22 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Doing the pairwise computation on both processes

P0

P1

T

T

C′0

C′1, Y1

1 P0 and P1 exchange their C′i, P1 sends its Y1

23 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Doing the pairwise computation on both processes

P0

P1

T

T

C′0

C′1, Y1

W = TT (C′0 − Y T
1 C′1)

W = TT (C′0 − Y T
1 C′1)

1 P0 and P1 exchange their C′i, P1 sends its Y1

2 P0 and P1 both compute W

23 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Doing the pairwise computation on both processes

P0

P1

T

T

C′0

C′1, Y1

W = TT (C′0 − Y T
1 C′1)

W = TT (C′0 − Y T
1 C′1)

Ĉ1 = C′1 − Y1W

Ĉ0 = C′0 −W

1 P0 and P1 exchange their C′i, P1 sends its Y1

2 P0 and P1 both compute W

3 P0 computes Ĉ′0 and P1 computes Ĉ′1

Continue... by pairs of processes.

23 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Failure recovery

At the end of a given step, between Pi and Pj :

Pi has W , T , C′i, C
′
j , and Ĉ′i;

if Pj fails, Pi can send sufficient data for any process that has Yj to

recalculate Ĉ′j = C′j − YjW

Pj has W , T , C′j , C′i, Yi and Ĉ′j ;

if Pi fails, Pj can recalculate Ĉ′i = C′i − YiW

Variant: Exchange C′x and Yx → symmetric

24 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Failure recovery

At the end of a given step, between Pi and Pj :

Pi has W , T , C′i, C
′
j , and Ĉ′i;

if Pj fails, Pi can send sufficient data for any process that has Yj to

recalculate Ĉ′j = C′j − YjW

Pj has W , T , C′j , C′i, Yi and Ĉ′j ;

if Pi fails, Pj can recalculate Ĉ′i = C′i − YiW

Variant: Exchange C′x and Yx → symmetric

24 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

25 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Performance evaluation

Performance evaluation: what do we measure?

Overhead during fault-free execution
Very important!
Cost of the mechanisms put in place to make the FT possible
Here: additional communications
Same for the three algorithms

Recovery time
Depends on a lot of factors!
Failure detection (impossible with asynchronous communications)
Recovery made by the RTE (spawn and reconnect a new process)
Recovery protocol of the algorithm ← only interesting thing here, but hard
to measure independently

26 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Performance evaluation

Performance evaluation: what do we measure?

Overhead during fault-free execution
Very important!
Cost of the mechanisms put in place to make the FT possible
Here: additional communications
Same for the three algorithms

Recovery time
Depends on a lot of factors!
Failure detection (impossible with asynchronous communications)
Recovery made by the RTE (spawn and reconnect a new process)
Recovery protocol of the algorithm ← only interesting thing here, but hard
to measure independently

26 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Performance overhead on TSQR

64 processes, 64 columns (P = 64, N = 64)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50000 100000 150000 200000 250000 300000

M
FL

O
P
/s

Number of lines

TSQR
TSQR FT

27 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Performance overhead on TSQR

256 processes, 64 columns (P = 256, N = 64)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50000 100000 150000 200000 250000 300000

M
FL

O
P
/s

Number of lines

TSQR
TSQR FT

28 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Performance overhead on TSQR

16 processes, 128 columns (P = 16, N = 128)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10000 20000 30000 40000 50000 60000 70000

M
FL

O
P
/s

Number of lines

TSQR
TSQR FT

29 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

30 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices

Cornerstone for general QR factorization

Three recovery algorithms, one for each semantics

Algorithm for FT update of the trailing matrix

Fault-tolerant QR for general matrices (R)

Scalable FT protocol based on scalable algorithms

Makes use of new features provided by the MPI-3 standard

FT API now provided by MPI-3

User-Level Failure Mitigation

Next step:

Apply this to LU, Cholesky (the other amigos)

Reconstruction of the Householder vectors (Q)

Full performance analysis

31 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

Introduction
CAQR

FT-CAQR
Performance

Conclusion

References

J. Demmel, . Grigori, M. Hoemmen, & J. Langou:
Communication-avoiding parallel and sequential QR factorizations, CoRR
abs/0806.2159, 2008.

J. Demmel, L. Grigori, M. Hoemmen & J. Langou:
Communication-optimal parallel and sequential QR and LU factorizations,
SIAM Journal on Scientific Computing 34 (1), 206-239, 2012.

C. Coti: Exploiting Redundant Computation in Communication-Avoiding
Algorithms for Algorithm-Based Fault Tolerance, IEEE HPSC 2016, New
York, USA, April 2016.

C. Coti: Exploiting Redundant Computation in Communication-Avoiding
Algorithms for Algorithm-Based Fault Tolerance, CoRR abs/1511.00212,
2015.

C. Coti: Fault Tolerant QR Factorization for General Matrices, CoRR
abs/1604.02504, 2016.

32 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance

	Introduction
	Large-scale systems
	Reliability

	CAQR
	FT-CAQR
	FT-TSQR
	FT-CAQR

	Performance
	Conclusion

