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Reliability of components

Life expectancy of an electronic component: the famous bathtub curve
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Large-scale systems
Reliability

Reliability of a distributed system

Mean Time Between Failures

MTBFtotal = (

n−1∑
i=0

1

MTBFi
)−1 (1)

→ The more components a system is made of, the more likely it is to have a
failure.
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Large-scale systems
Reliability

Requirements for algorithms

Therefore, algorithms must be:

Scalable
Scale with the number of processes

Fault tolerant
Able to survive beyond failures

→ communication-avoiding algorithms

→ User-Level Failure Mitigation for algorithm-based fault tolerance
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Communication-Avoiding QR

Works by panels :

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

0 A1
22

)
Then, recursively, work on A1

22...

R

Q

p
an

el trailing
matrix

CAQR algorithm

1 Panel factorization:(
A11

A21

)
= Q1

(
R11

0

)
2 Compact representation:

Q1 = I − Y1T1Y
T
1

3 Update the trailing matrix:(
I − Y1T1Y

T
1

)(A12

A22

)
=

(
A12

A22

)
− Y1(T

T
1 (Y T

1

(
A12

A22

)
)) =

(
R12

A1
22
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4 Continue recursively on the trailing matrix A1

22
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Tall-and-Skinny QR

Panel factorization: cornerstone of the CAQR algorithm(
A11

A21

)
= Q1

(
R11

0

)

The matrix

(
A11

A21

)
is tall and skinny :

number of lines � number of columns

Specific algorithm to compute the QR factorization of a tall and skinny matrix:
TSQR
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TSQR algorithm

Goal: compute the QR factorization of a matrix A:

A = QR

A is tall and skinny

To compute it in parallel on P processes:

M = number of lines, N = number of columns

M ≥ NP
→ at least square matrices on each process


A1

A2

A3

A4

 = Q1


R1

0
0
0
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Update of the trailing matrix

Trailing matrix: denoted C, each Ci being on process i.

Ci =

(
C′i
C′′i

)
=

(
Ci[: N − 1]
Ci[N :]

)

Operation to perform:(
R0 C′0
R1 C′1

)
=

(
QR C′0

C′0

)
= Q

(
R Ĉ′0

Ĉ′1

)

The compact representation becomes:(
Ĉ′0
Ĉ1

)
=
(
I −

(
I
Y0

)
TT

(
I
Y1

)T )(C′0
C′1

)
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Ĉ′1

)

The compact representation becomes:(
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Update of the trailing matrix: tree

P0

P1

P2

P3

Cij

Step 0

P0

P1

P2

P3

Step 1

P0

P1

P2

P3

Step 2
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Fault tolerant TSQR

Let’s look at TSQR in details
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Fault tolerant TSQR

Let’s look at TSQR in details

P0 works beginning → end

P2 works during the first two steps, then stops

P1 and P3 work during the first step, then stops

Let’s put these lazy dudes to work!
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What do we expect from fault tolerance?

Have one result at the end

No matter how many processes survive, one of them has the final answer

Here: Redundant TSQR

Have the result on a given process at the end

No matter how many processes survive, the one we want has the final
answer

Here: Replace TSQR

Have the result on the expected process and all the processes are alive

Finish with a system that looks as if nothing bad happened

Here: Self-Healing TSQR
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Fault Tolerant TSQR: redundant TSQR

Introduce redundancy between processes: exchange between pairs.
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Redundant TSQR: failure

If a process fails: the other ones can continue, except those who need to
communicate with the failed process.
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Fault Tolerant TSQR: Replace TSQR

When a process fails, another one takes its place: P1 acts as P2.
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Fault Tolerant TSQR: Self-healing TSQR

Spawn a new process that recovers the data from a twin process

P0 A0

P1 A1

P2 A2

P3 A3

R0

V0

R1

V1

R2

V2

R3

V3

QR

R0

R1

R2

R3

R0

R1

R2

R3

S/R

CRASH

R′
0

V0
′

R′
0

V0
′

R′
2

V2
′

QR

re
sp
aw

n

co
py

R′
2

V2
′

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

R′
0

R′
2

S/R

R

V

R

V

R

V

R

V

QR

19 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

1 Introduction
Large-scale systems
Reliability

2 CAQR

3 FT-CAQR
FT-TSQR
FT-CAQR

4 Performance

5 Conclusion

20 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Update of the trailing matrix: algorithm

P0

P1

T

C′0

1 P0 sends its C′0 to P1 while P1 computes T
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FT-TSQR
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Update of the trailing matrix: algorithm

P0

P1

T

C′0

W = TT (C′0 − Y T
1 C′1)

W

1 P0 sends its C′0 to P1 while P1 computes T

2 P1 computes W

3 P1 sends W to P0
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Update of the trailing matrix: algorithm

P0

P1

T

C′0

W = TT (C′0 − Y T
1 C′1)

W

Ĉ1 = C′1 − Y1W

Ĉ0 = C′0 −W

1 P0 sends its C′0 to P1 while P1 computes T

2 P1 computes W

3 P1 sends W to P0

4 P0 computes Ĉ′0 and P1 computes Ĉ′1

Continue... by pairs of processes.
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Update of the trailing matrix: tree

P0

P1

P2

P3
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Doing the pairwise computation on both processes

P0

P1

T

T

C′0

C′1, Y1

1 P0 and P1 exchange their C′i, P1 sends its Y1

23 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Doing the pairwise computation on both processes

P0

P1

T

T

C′0

C′1, Y1

W = TT (C′0 − Y T
1 C′1)

W = TT (C′0 − Y T
1 C′1)

1 P0 and P1 exchange their C′i, P1 sends its Y1

2 P0 and P1 both compute W

23 / 32 Camille Coti Exploiting Redundant Computation in Communication-Avoiding Algorithms for Algorithm-Based Fault Tolerance



Introduction
CAQR

FT-CAQR
Performance

Conclusion

FT-TSQR
FT-CAQR

Doing the pairwise computation on both processes

P0

P1

T

T

C′0

C′1, Y1

W = TT (C′0 − Y T
1 C′1)

W = TT (C′0 − Y T
1 C′1)

Ĉ1 = C′1 − Y1W

Ĉ0 = C′0 −W

1 P0 and P1 exchange their C′i, P1 sends its Y1

2 P0 and P1 both compute W

3 P0 computes Ĉ′0 and P1 computes Ĉ′1

Continue... by pairs of processes.
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Failure recovery

At the end of a given step, between Pi and Pj :

Pi has W , T , C′i, C
′
j , and Ĉ′i;

if Pj fails, Pi can send sufficient data for any process that has Yj to

recalculate Ĉ′j = C′j − YjW

Pj has W , T , C′j , C′i, Yi and Ĉ′j ;

if Pi fails, Pj can recalculate Ĉ′i = C′i − YiW

Variant: Exchange C′x and Yx → symmetric
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Performance evaluation

Performance evaluation: what do we measure?

Overhead during fault-free execution
Very important!
Cost of the mechanisms put in place to make the FT possible
Here: additional communications
Same for the three algorithms

Recovery time
Depends on a lot of factors!
Failure detection (impossible with asynchronous communications)
Recovery made by the RTE (spawn and reconnect a new process)
Recovery protocol of the algorithm ← only interesting thing here, but hard
to measure independently
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Performance overhead on TSQR

64 processes, 64 columns (P = 64, N = 64)
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Performance overhead on TSQR

256 processes, 64 columns (P = 256, N = 64)
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Performance overhead on TSQR

16 processes, 128 columns (P = 16, N = 128)
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Conclusion

Three protocols for fault-tolerant QR factorization of tall-and-skinny matrices

Cornerstone for general QR factorization

Three recovery algorithms, one for each semantics

Algorithm for FT update of the trailing matrix

Fault-tolerant QR for general matrices (R)

Scalable FT protocol based on scalable algorithms

Makes use of new features provided by the MPI-3 standard

FT API now provided by MPI-3

User-Level Failure Mitigation

Next step:

Apply this to LU, Cholesky (the other amigos)

Reconstruction of the Householder vectors (Q)

Full performance analysis
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