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Context: cloud computing

Cloud computing is using the Internet to interconnect resources

Connecting together HUGE amounts of computing and storage resources

Designed to be resilient

Resilient?

In March 2011 Armenia was
disconnected from the Internet by a
75yo Georgian woman who stole a wire
for copper (”the hacker with the
shovel”)

In August Wikipedia was disconnected
from the Internet because a data
center in Florida was disconnected by
an accidental cable cut

2 / 11 C. Cérin, C. Coti, M. Koskas Fault Tolerance Logical Network Properties of Irregular Graphs



Context: cloud computing

Cloud computing is using the Internet to interconnect resources

Connecting together HUGE amounts of computing and storage resources

Designed to be resilient

Resilient?

In March 2011 Armenia was
disconnected from the Internet by a
75yo Georgian woman who stole a wire
for copper (”the hacker with the
shovel”)

In August Wikipedia was disconnected
from the Internet because a data
center in Florida was disconnected by
an accidental cable cut
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Characteristics of networks

How can we characterize a netwrk topology wrt expectations for parallel
applications?

Diameter : longest shortest path between any two vertices from the grah.
In other words: maximum number of hops made by a message to reach its
destination.

Node connectivity : minimum number of vertices that must be removed
to disconnect the graph.
In other words: how many nodes can fail before we can expect
connectivity to be lost.

Link connectivity : minimum number of links that must be removed to
disconnect the graph.
In other words: how many links (cables...) can be broken before we can
expect connectivity to be lost.

Fault diameter : diameter of the graph, given the maximum number of
failure before the graph becomes bipartite (κ− 1, if κ is the node
connectivity)
In other words: how the diameter evolves in degraded conditions.
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3 / 11 C. Cérin, C. Coti, M. Koskas Fault Tolerance Logical Network Properties of Irregular Graphs



Large-scale, irregular networks

Regular graphs have some symmetries

Some properties can be extracted to simplify the computation of these
metrics

e.g.,to compute the diameter

Here we are talking about irregular graphs

No such propertie to simplify the computation

Large-scale graphs

Large number of nodes!

The complexity of the algorithms matters a lot
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Computing the number of connected components

This algorithm answers two major questions:

Is our set of vertices/nodes connected or disconnected?

How many connected components do we have?

Algorithm: based of the Breadth First Search (BFS) algorithm.

1: Start with the first non visited vertex
2: Visit its connected component
3: Restart until there is no more vertex to visit (i.e.,all vertices have been

visited)
4: The number of times we do step 3 = number of connected components

If all the vertices are visited during the first pass of the algorithm: the graph is
connected.
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Node connectivity and link connectivity

Naive approach:

1: for i = 1 to n do
2: for for NumChoice = 1 to MaxChoiceVertices do
3: choose i vertices among n;
4: cancel the vertices;
5: if graph is not connected then
6: return i
7: end if
8: end for
9: end for

Problem: exponential complexity!
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Node connectivity and link connectivity

Dichotomous approach:

Remove n/2 vertices

Check if the graph is still
connected

Remove more or less
vertices depending on the
previous try

Require: Low = 1 ; Up = MAX.
Require: (MAX = NbVertices or MinDegree).

1: set K = logn
2: while Up− Low > 1 do
3: m = (Low + Up) / 2
4: repeat
5: Remove m vertices (or edges)

randomly
6: if graph not connected then
7: Up = m
8: end if
9: until K times

10: if all graphs are connected then
11: Low = m
12: end if
13: end while
14: return Low + 1
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Diamater of the graph

Doing an extensive enumeration of all the vertices of the graph would be too
expensive

Randomized algorithm

1: set Diameter = 0
2: repeat
3: Select randomly a vertex, name it ’current vertex’
4: and mark it as visited. Set ’Current diameter’ to 0
5: while current vertices have non visited neighbors do
6: a) Compute the non visited neighbors of current vertices
7: b) Replace the current vertices by their non visited vertices
8: c) Add 1 to ’Current diameter’
9: end while

10: if ’Current diameter’ > ’Diameter’ then
11: ’Diameter’ = ’Current diameter’
12: end if
13: until ’some’ vertices have been visited
14: return ’Diameter’
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Experiments on the Internet

Several benchmark files (see our paper for all 4 of them)
Topology of the Internet: obtained from a campaign of traceroute calls and
dedicated tooks (WebGraph, eDonkey, MetroSec).

web: 1 719 037 vertices and 11 095 298 edges

p2p: 5 792 297 vertices and 142 038 401 edges

web: 39 459 925 web pages (vertices) and 783 027 125 links (edges)

ip: 2 250 498 vertices and 19 394 216 edges

Characteristic of the Internet: end-users have a degree of 1.
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Experiments on the Internet

Comparison with bounds given by Magnien et al

Table: Comparison between estimated diameters

Magnien et al’s results Our results
tlb - dslb - hdtub - rtub - tub

inet 29-31-34-34-38 25 (24)
p2p 8-9-10-10-10 8 (7)
web 26-32-33-33-34 22 (23)
ip 9-9-9-9-10 8 (7)

Table: Metrics for Fault Tolerance (δmin > 1)

Link co. Node co. Fault diameter
inet 2 18 24
p2p 2 1054 7
web 2 36 23
ip 2 391 7
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Conclusion

Computing metrics such as diameter and node connectivity of large-scale,
irregular graphs is too expensive to be done extensively

Probabilistic algorithms to approach these values

Our tool can be used for any graph, no assumption on the topology

Conclusions on the resilience of the Internet

Quite resilient (was the initial goal)

End users are still subjet to disconnections
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