Scalable, Robust, Fault-Tolerant Parallel QR Factorization

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13, France

DCABES August 24th, 2016

Roadmap

- Introduction
 - Failures
 - QR Factorization
- Communication-avoiding QR
 - Panel factorization
 - Trailing matrix update
- Fault-tolerant QR
 - Panel factorization
 - Trailing matrix update
 - Resilience to soft errors
- Conclusion

Large-scale systems are volatile

Life expectancy of an electronic component: the famous bathtub curve

Reliability of a distributed system

Mean Time Between Failures

$$MTBF_{total} = (\sum_{i=0}^{n-1} \frac{1}{MTBF_i})^{-1}$$
 (1)

→ The more components a system is made of, the more likely it is to have a failure.

Matrix A: A = QR

- ullet R is upper-triangular
- ullet Q is orthogonal

Unicity:

- ullet Yes, if the diagonal elements of R are positive
- No otherwise

Several algorithms:

- Dense linear algebra: algorithms based on unitary transformations.
- (Modified) Gram-Schmidt, Givens rotation, Householder projection...

Panel-update approach

- Factorize a panel
 ...
- Update the trailing matrix
- Repeat recursively on the trailing matrix

Panel-update approach

- Factorize a panel
- Update the trailing matrix
- Repeat recursively on the trailing matrix

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
$$= Q_1 \begin{pmatrix} R_{11} & R_{12} \\ 0 & A_{22}^1 \end{pmatrix}$$

Panel-update approach

- Factorize a panel
- Update the trailing matrix
- Repeat recursively on the trailing matrix

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
$$= Q_1 \begin{pmatrix} R_{11} & R_{12} \\ 0 & A_{22}^1 \end{pmatrix}$$

- Introduction
 - Failures
 - QR Factorization
- 2 Communication-avoiding QR
 - Panel factorization
 - Trailing matrix update
- Fault-tolerant QR
 - Panel factorization
 - Trailing matrix update
 - Resilience to soft errors
- Conclusion

QR factorization of a panel: particular shape

- ullet M>>N: the matrix is tall-and-skinny
- Specific algorithm: TSQR

 P_1

 P_2

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} \\ 0 \end{pmatrix}$$

8 / 21

QR factorization of a panel: particular shape

- ullet M>>N: the matrix is tall-and-skinny
- Specific algorithm: TSQR

 $\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} \\ 0 \end{pmatrix}$

- ullet M>>N: the matrix is tall-and-skinny
- Specific algorithm: TSQR

- ullet M>>N: the matrix is **tall-and-skinny**
- Specific algorithm: TSQR

- ullet M>>N: the matrix is tall-and-skinny
- Specific algorithm: TSQR

- ullet M>>N: the matrix is tall-and-skinny
- Specific algorithm: TSQR

After the panel factorization:

- Compute the compact representation of Q_1 : $Q_1 = I Y_1 T_1 Y_1^T$
- ullet Use the Y_1 and T_1 matrices to update the trailing matrix:

$$(I - Y_1 T_1 Y_1^T) \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} = \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} - Y_1 (T_1^T (Y_1^T \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix}))$$

$$= \begin{pmatrix} R_{12} \\ A_{22} \end{pmatrix}$$

- ullet R_{12} : upper part of the R
- A_{22}^1 : new trailing matrix.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
$$= Q_1 \begin{pmatrix} R_{11} & R_{12} \\ 0 & A_{22}^1 \end{pmatrix}$$

Step 0

- Introduction
 - Failures
 - QR Factorization
- Communication-avoiding QR
 - Panel factorization
 - Trailing matrix update
- Fault-tolerant QR
 - Panel factorization
 - Trailing matrix update
 - Resilience to soft errors
- Conclusion

Let's look at TSQR in details

QR

Let's look at TSQR in details

QR Send/Recv

- P_0 works beginning \rightarrow end
- ullet P_2 works during the first two steps, then stops
- P_1 and P_3 work during the first step, then stops

Let's put these lazy dudes to work!

Fault-tolerant TSQR

Fault-tolerant TSQR

Fault-tolerant TSQR

Update of the trailing matrix

- Triggered by the tree of the panel factorization
- ullet Uses the intermediate Y and T matrices
- Pairwise operation → tree

$$A = Q \begin{pmatrix} R & \hat{C}_0' \\ & \hat{C}_1' \end{pmatrix}$$

Decompose the blocks of the trailing matrix:

$$C_i = \begin{pmatrix} C_i' \\ C_i'' \end{pmatrix} = \begin{pmatrix} C_i[: N-1] \\ C_i[N:] \end{pmatrix}$$

Compute the update :

$$\begin{pmatrix} R_0 & C_0' \\ R_1 & C_1' \end{pmatrix} = \begin{pmatrix} QR & C_0' \\ & C_1' \end{pmatrix}$$

Fault-tolerant update

Change the order of the operations

Fault-tolerant update

Change the order of the operations

If a process fails

- ullet Both process have the W matrix
- \bullet Computation recovered from the W matrix and the initial submatrix

Communication scheme

Soft errors:

- Bit flips causing numerical errors
- Caused by radiations, cosmic rays, various electric disturbances...

Approaches to tackle soft errors:

- Triple modular redundancy
- ECC memory
- Multiple executions
- ...
- At several levels: hardware, system, application

Idea here:

- Take advantage of partial redundancy to detect errors
- Recompute only the erroneous step

- Introduction
 - Failures
 - QR Factorization
- 2 Communication-avoiding QR
 - Panel factorization
 - Trailing matrix update
- Fault-tolerant QR
 - Panel factorization
 - Trailing matrix update
 - Resilience to soft errors
- Conclusion

Conclusion

Algorithm-based fault-tolerance

- Failure recovery is handled by the application
- Behavior upon failures: defined in the algorithm
- Goal:
 - Minimal overhead during failure-free executions
 - · As few recomputations as possible after failures

Fault-tolerant algorithms for QR factorization

- Use intrinsic redundancy or idle processes
- Operation reordering based on algebraic properties

Small modifications in the critical path

- No additional computations
- Data exchange instead of send/recv
- Partial results already ready for recovery

Appendix: performance

