My research field is complexity theory.
More precisely, I have studied syntactic characterizations of
complexity classes in the BSS model of computation over arbitrary
structures. I have also been interested in the BSS computation over
real numbers with addition and order (additive case), and I have
obtained new completeness results for natural geometrical and
topological problems.
Paulin Jacobé de Naurois: Coverability in a NonFunctional Extension of BVASS. 2014. (download
.pdf)
Journals:
Paulin Jacobé de Naurois, Virgile Mogbil: Correctness of linear logic proof structures is NL-complete. Theor. Comput. Sci. 412(20): 1941-1957 (2011)
Felipe Cucker, Paulin Jacobé de Naurois: Parallel Time and Quantifier Prefixes. Computational Complexity 18(4): 527-550 (2009)
Peter Bürgisser, Felipe Cucker, Paulin Jacobé de Naurois: The complexity of semilinear problems in succinct representation. Computational Complexity 15(3): 197-235 (2006) (download
.pdf)
O. Bournez, F. Cucker, P. Jacobé de Naurois and
J.-Y.Marion, Implicit Complexity over an Arbitrary Structure:
Quantifier Alternations. Information
and Computation, Volume 204, Issue 2,
February 2006,
Pages 210-230. (download
.pdf)
O. Bournez, F. Cucker, P. Jacobé de Naurois and J. -Y.
Marion, Implicit Complexity over an Arbitrary Structure: Sequential and
Parallel Polynomial Time, Journal
of Logic and Computations, Volume
15, February 2005, Pages 41 - 58. (download
.pdf)
Conferences:
Paulin Jacobé de Naurois, Virgile Mogbil: Rewriting Systems for Reachability in Vector Addition Systems with Pairs. RP 2010: 133-145
P. Jacobé de Naurois and V. Mogbil, Correctness of
Multiplicative Additive Proof Structures is NL-Complete. LICS, pages 476–485. IEEE Computer Society, 2008. (télécharger
.pdf)
P. Jacobé de Naurois and V. Mogbil, Correctness of
Multiplicative (and Exponential) Proof Structures is NL-Complete. CSL,volume 4646 of Lecture Notes in Computer Science, pages 435–450. Springer, 2007. (télécharger
.pdf)
P. Jacobé de Naurois, A Measure of Space for Computing
over the Reals. In A. Beckmann, U.
Berger, B. Löwe and J.V. Tucker, editors, CIE 2006: Logical
Approaches to Computational Barriers, volume 3988
of Lecture Notes in Computer
Science,
pages 231-240,
Springer.(download .pdf)
P. Bürgisser, F. Cucker and P. Jacobé de Naurois, The
complexity of semilinear sets in succinct representation (Extended
Abstract). In Maciej Liskiewicz and Rüdiger Reischuk,
editors 15th International Symposium
on
Fundamentals of Computation Theory (FCT) 2005, volume 3623 of Lecture Notes in Computer Science,
pages 479-490, Springer. (download
.pdf)
O. Bournez, F. Cucker, P. Jacobé de Naurois and J.
-Y. Marion, Logical Characterizations of Pk and NPk over an Arbitrary
Structure K. CIE 2005: New
Computational Paradigms. (download
.pdf)
O. Bournez, F. Cucker, P. Jacobé de Naurois and J.
-Y. Marion, Tailoring Recursion to Characterize Non-Deterministic
Complexity Classes over Arbitrary Structures. In J-J. Levy, E. W. Mayr
and J. C. Mitchell, editors, "Exploring
new Frontiers of Theoretical Informatics", proceedings of the
3rd International Conference on Theoretical Computer Science (TCS'04),
Kluwer Academic Publishers, 2004. (download
.pdf)
O. Bournez, F. Cucker, P. Jacobé de Naurois and J. -Y.
Marion, Computability over an Arbitrary Structure. Sequential and
Parallel Polynomial Time. In Andrew D. Gordon, editor, Foundations of Software Science and
Computational Structures, 6th International Conference (FOSSACS'2003),
volume 2620 of Lecture Notes in
Computer Science, pages 185--199, Springer. (download
.pdf)