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+ c o n t i n u o u s - t i m e 
Markov chain (CTMC) 
semantics for transitions 

 CHEMISTRY⇒

+ CTMC o r d iscre te- t ime 
M a r k o v c h a i n ( D T M C ) 
semantics for transitions 

 DYNAMICAL NETWORKS, 
AUTOMATA, RANDOM GRAPHS, …
⇒

+ pattern counting  
+ generating function theory 

 COMBINATORICS⇒

find occurrence  
of input pattern I…

… replace with occurrence  
of output pattern O

⇀ ⇀
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Plan

I. Categorical rewriting theory 
II. Rule algebra formalism 
III. Experimental combinatorics



I. Categorical rewriting theory
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Set union
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Set intersection (of two sets within another set)
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Set complement
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Van Kampen property (Lack & Sobocinski 2003)

If the bottom square is a pushout  
and the front squares are pullbacks…

… then the bottom square is a 
van Kampen square, i.e. the 
following property holds:

The back squares are 
pullbacks if and only if the 
top square is a pushout.
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The basic prerequisites for category-theoretical rewriting theories

A category C possesses a strict initial object |C| (the “empty object”) if 
1. ob(C) mono(C) 
2. ob(C) 

∅ ∈
∀X ∈ : ∃!(ιX : ∅ ↪ X) ∈
∀X ∈ : ∃(X → ∅) ⇒ X ≅ ∅

A category C is adhesive if 
1. C has all pullbacks 
2. C has pushouts along monomorphisms 
3. Pushouts along monomorphisms are van Kampen squares.

S. Lack & P. Sobociński (2005). Adhesive and quasiadhesive categories. RAIRO-Theoretical Informatics and Applications, 39(3), 511-545.

A category C is finitary if every object ob(C) has only finitely many subobjects (up to isomorphism).X ∈

K. Gabriel, B. Braatz, H. Ehrig & U. Golas (2014). Finitary M-adhesive categories. Mathematical Structures in Computer Science, 24(4).
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Example: presheaves
Definition: For  a (small) category, the category  of presheaves over  has 

• objects of  are functors  
• morphisms of  are natural transformations 

𝕊 𝕊̂ 𝕊
𝕊̂ F : 𝕊op → 𝕊𝔼𝕋

𝕊̂ ϕ : F . G

Special case: (directed) multigraphs as , where 𝔾̂ 𝔾 : V
s

⇉
t

E

 a graph  is given by the data  (set of vertices),  (set of edges) 
and two morphisms  (source/target maps)
⇒ G G(V) G(E)

G(s), G(t) : G(E) → G(V)

 a graph homomorphism  is a natural transformation, i.e. 
 
 
 
                                                                                             commute

⇒ ϕ = (ϕV, ϕE) : G1 → G2

G1(E) G1(s) G1(V)

G2(E)
G2(s)

G2(V)

ϕ
V

ϕ
E

G1(E) G1(t) G1(V)

G2(E)
G2(t)

G2(V)
ϕ

V

ϕ
E
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Brief comments on abstract category-theoretical operations:

• pushout (PO) along monomorphisms in the category Set:

A

B C

D

PO Interpretation:
A ´ intersection of B and C in D
D ´ union of B and C along A

• pushout complement (POC) of D –â B –â A: a set C and monomorphisms
D –â C –â A such that the square ˝pABDCq is a pushout

• pullback (PB) along monomorphisms in the category Set:

A

B C

D

PB Interpretation: A ´ intersection of B and C in D

Set union is a special case of pushouts
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Brief comments on abstract category-theoretical operations:

• pushout (PO) along monomorphisms in the category Set:

A

B C

D

PO Interpretation:
A ´ intersection of B and C in D
D ´ union of B and C along A

• pushout complement (POC) of D –â B –â A: a set C and monomorphisms
D –â C –â A such that the square ˝pABDCq is a pushout

• pullback (PB) along monomorphisms in the category Set:

A

B C

D

PB Interpretation: A ´ intersection of B and C in D

Set complements are a special case of pushout complements

POC
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Sources of constructions of adhesive categories

• Every topos (elementary or Grothendiek) is an adhesive category. 
 
 

• Categorical constructions that yield new adhesive categories: 
• cartesian product 
• slice and coslice 
• comma categories (and other functor category constructions) 
• …

S. Lack & P. Sobociński (2006). Toposes are adhesive. In Proceedings of the Third 
international conference on Graph Transformations (pp. 184-198). Springer-Verlag.

ANALYTIC COMBINATORICS

PHILIPPE FLAJOLET

Algorithms Project
INRIA Rocquencourt
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France

&

ROBERT SEDGEWICK
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Constraints on adhesive categories
Definition: For an adhesive, extensive and finitary category C, constraints are recursively 
defined as follows: let  be a monomorphism. 

•  
• for  a constraint, 

 
• for  constraints,  

•  
•

(m : X ↪ Y) ∈ mono(C)
m ⊨ true

c′ 

m ⊨ ∃( f : X ↪ X′ , c′ ) :⇔ ∃(m′ : X′ ↪ Y) : m′ ∘ f = m ∧ m′ ⊨ c′ 

c, c′ , c′ ′ 

m ⊨ ¬c :⇔ ¬(m ⊨ c)
m ⊨ (c′ ∧ c′ ′ ) :⇔ (m ⊨ c′ ) ∧ (m ⊨ c′ ′ )

Definition: an object  is defined to satisfy a condition  if  .X c (ιX : ∅ ↪ X) ⊨ c
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Intuition

Fix an adhesive finitary category C.

§ Isomorphism classes of objects will model the configurations.

§ Isomorphism classes of spans of monomorphisms will model
the transitions, also referred to as rewriting rules:

r ” pO rà› Iq ” pO o–›â K iã›Ñ Iq

The central “workflow” of categorical rewriting theory
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=̂ delete a vertex

=̂ create a vertex

=̂ delete an edge (keep endpoints)

=̂ delete an edge and its target vertex
(but keep the source vertex)

Examples for rewriting rules:
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Sequential composite of linear rules along a match

Fix an adhesive finitary category C. Let

§ rj ” pOj
oj–›â Kj

ijã›Ñ Ijq (j “ 1,2) be two (linear) rules, and let

§ µ ” pI2
m2–›â M21

m1ã›Ñ O1q be a span of monomorphisms.

µ is called an admissible match, denoted µ P Mr2 pr1q, if and only if the
diagram below (where all arrows are monomorphisms) is constructable:

O2 K2 I2 M21 O1 K1 I1

O21 K 2 N21 K 1 I21

K21

n˚
2

o2 i2

k2PO n2POC

m2 m1

PO n1 POC

o1 i1

k1 PO n˚
1

o1
2 i12 o1

1 i11

PBi22
o21“o1

2˝i22
o2

1
i21“o2

1 ˝i11

Then the rule r2
µ
û r1 ” pO21

o21–›â K21
i21ã›Ñ I21q is referred to as

composite of r2 with r1 along the match µ .

Sequential composition of linear rules along a match

Nicolas Behr, CAP’19, November 7 2019, IHÉS, Bures-sur-Yvette, France



II. Rule algebra formalism



Encoding non-determinism of rule compositions

Encoding non-determinism of rule compositions

§ Given two rules r1, r2 and a match µ P Mr2 pr1q,

let the composition be denoted as r2
µ
û r1.

§ Idea: encode non-determinism (in the choice of match) via

(i) lifting rules r to basis vectors d prq of some vector space RC

(ii) lifting rule composition to a binary operation ˚RC on RC:

d pr2q ˚RC d pr1q :“
ÿ

µPMr2 pr1q
d

´
r2

µ
û r1

¯

Terminology: pRC,˚RCq is called the rule algebra of C.

Key property: compositional associativity r6s, r7s, r8s

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K
Õ
2 N21 K

Õ
1 I21

O321 K3 N3(21) K2 N(32)1 K1 I321

[6] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1–11:21

[7] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

[8] Nicolas Behr and Jean Krivine. “Compositionality of Rewriting Rules with Conditions”. In: arXiv preprint 1904.09322 (2019)
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Theorem (NB et al.): For every adhesive, finitary and extensive category C (possibly 
with constraints), the  rule algebra  is an associative unital algebra,  
with unit element .

(RC, *RC
)

r∅ := δ(∅ ↩ ∅ ↪ ∅)

Key property: compositional associativity r6s, r7s, r8s

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K
Õ
2 N21 K

Õ
1 I21

O321 K3 N3(21) K2 N(32)1 K1 I321

[6] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1–11:21

[7] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

[8] Nicolas Behr and Jean Krivine. “Compositionality of Rewriting Rules with Conditions”. In: arXiv preprint 1904.09322 (2019)



Algebraically encoding non-determinism

input state transition

outcome possibility 1

outcome possibility 2

outcome possibility n

…

input state o1 o2 on+ + … +( )transition

(a vector) (a vector)

A possibility to encode non-determinism:

map multiple possibilities of transitions . . .
. . . into “sum of possibilities”

(via employing the notion of a vector space of states and of transitions as
linear operators on this space)

Encoding non-determinism of rule applications



Encoding non-determinism of rule applications

§ Given an object X P C, a rule r and a match m P Mr pXq,
let the application of r to X along m be denoted as rmpXq.

§ Idea: encode non-determinism (in the choice of match) via
lifting rules r to linear operators rpd prqq
on Ĉ (the vector space of iso-classes of C):

rpd prqq |Xy :“
ÿ

mPMr pXq
|rmpXqy

Theorem

For every choice of rules r1, r2 and states |Xy P Ĉ,

rpd pr2qqrpd pr1qq |Xy “ r
`
d pr2q ˚RC d pr1q

˘
|Xy .

Encoding non-determinism of rule applications



III. Experimental combinatorics
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P2I :=

P3I :=

𝒯0 = { }*

*
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P2I :=

P3I :=

𝒯1 = { }*

*
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P2I :=

P3I :=

*

*

𝒯2 = {

}

,
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P2I :=

P3I :=

*

*

𝒯3 = {

}

,

, , ,
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P2I :=

P3I :=

*

*

𝒯3 = {

}

,

, , ,
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P2I :=

P3I :=

*

*
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|𝒯100 | =
200!
100!

≈ 10217
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P2I :=

P3I :=

*

*
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P2I :=

P3I :=

*

*
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P2I :=

P3I :=

*

*
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Systems

• Christine Tasson (IRIF)
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Perspectives
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Thank 
you!
Further materials


(references, slides and videos):

nicolasbehr.com


