On the (non)-freeness of operads considered as pre-Lie algebras

Bérénice Delcroix-Oger work in progress with Emily Burgunder (IMT) and Dominique Manchon (CNRS-LMBP)

6 Novembre 2019

2 A bi-Pre-Lie algebra on planar trees

Pre-Lie algebras on operads

Outline

Pre-Lie algebras on operads

- Operads
- Pre-Lie algebras
- Pre-Lie product on operads

2) A bi-Pre-Lie algebra on planar trees

What is an operad ? [May, Boardman-Vogt, 70s]

Let V be a vector space. Consider the space of multilinear endomorphisms:

$$(\mathsf{End})(V)(n) = \mathsf{Hom}(V^{\otimes n}, V)$$

endowed with the composition of endomorphisms.

1) ()

Definition (May, Boardman-Vogt, 70s)

A (symmetric) operad \mathcal{P} is a pair formed by:

 a family {P(n)}_{n≥1} of finite dimensional S_n-modules (=vector spaces endowed with an action of the symmetric group),

Definition (May, Boardman-Vogt, 70s)

A (symmetric) operad \mathcal{P} is a pair formed by:

- a family {P(n)}_{n≥1} of finite dimensional S_n-modules (=vector spaces endowed with an action of the symmetric group),
- associative partial composition maps, compatible with the action of the symmetric group, given by:

 $o_i: \mathcal{P}(k) \otimes \mathcal{P}(l) \to \mathcal{P}(k+l-1)$

Definition (May, Boardman-Vogt, 70s)

A (symmetric) operad \mathcal{P} is a pair formed by:

- a family {P(n)}_{n≥1} of finite dimensional S_n-modules (=vector spaces endowed with an action of the symmetric group),
- associative partial composition maps, compatible with the action of the symmetric group, given by:

 $o_i: \mathcal{P}(k) \otimes \mathcal{P}(l) \to \mathcal{P}(k+l-1)$

What is an operad for ?

It encodes products in an algebra.

1

Examples of operads

First example: Magmatic algebras and operads

P(*n*) = PBT_n with PBT_n the vector space of planar binary trees on n leaves labelled by {1,..., n} and γ the grafting on leaves (magmatic operad Mag)

Examples of operads

First example: Magmatic algebras and operads

P(*n*) = PBT_n with PBT_n the vector space of planar binary trees on n leaves labelled by {1,..., n} and γ the grafting on leaves (magmatic operad Mag)

Example :

Presentation of an operad

For any operad \mathcal{P} ,

$$\mathcal{P}(n) = \mathsf{PT}_n^G / (\mathsf{relations}),$$

where PT_n^G is the vector space of planar trees with inner nodes decorated by the generating operations of the operad. Especially, if $G = \bigvee$,

 $\mathcal{P}(n) = \mathsf{PBT}_n / (\mathsf{relations}).$

Algebra over an operad

Definition

A \mathcal{P} -algebra is a vector space V endowed with

$$\mu_n: \mathcal{P}(n) \otimes_{\mathfrak{S}_n} V^{\otimes n} \to V.$$

Definition

The \mathcal{P} -free algebra over V is

$$\mathcal{P}(V) = \bigoplus_{n \ge 1} \mathcal{P}(n) \otimes_{\mathfrak{S}_n} V^{\otimes n}.$$

1) (

Last example: Pre-Lie operad [Chapoton-Livernet, 2001]

P(*n*) = RT_n the vector spaces of rooted trees with *γ* the composition of trees inside nodes (Pre-Lie operad PreLie :

1) (

Last example: Pre-Lie operad [Chapoton-Livernet, 2001]

P(*n*) = RT_n the vector spaces of rooted trees with *γ* the composition of trees inside nodes (Pre-Lie operad PreLie :

1

Pre-Lie algebras

Definition (Gerstenhaber, 1963 ; Vinberg, 1963 ; Matsushima, 1968) A pre-Lie algebra is a vector space V endowed with a product racksing for any u, v and w in V:

$$(u \backsim v) \backsim w - u \backsim (v \backsim w) = (u \backsim w) \backsim v - u \backsim (w \backsim v)$$

 $\left[1\right)$ (

Pre-Lie algebras

Definition (Gerstenhaber, 1963; Vinberg, 1963; Matsushima, 1968) A pre-Lie algebra is a vector space V endowed with a product racksing for any u, v and w in V:

$$(u \backsim v) \backsim w - u \backsim (v \backsim w) = (u \backsim w) \backsim v - u \backsim (w \backsim v)$$

Example :

- Hypertrees
- Fat trees
- Algebra of derivations

 $P(x_1,\ldots,x_n)\partial_{x_i} \leftarrow Q(x_1,\ldots,x_n)\partial_{x_j} = P(x_1,\ldots,x_n)(\partial_{x_i}Q)(x_1,\ldots,x_n)\partial_{x_j}$

Pre-Lie products on operads

Given an operad \mathcal{P} , pre-Lie product \smile on $\bigoplus_{n \ge 2} \mathcal{P}(n)$, defined on any $\mu \in \mathcal{P}(n)$, $\nu \in \mathcal{P}(m)$ by:

$$\mu \backsim \nu = \sum_{i=1}^n \mu o_i \nu.$$

Examples of operads

First example:

P(*n*) = PBT_n with PBT_n the vector space of planar binary trees on n leaves labelled by {1,..., n} and γ the grafting on leaves (magmatic operad Mag)

1 0

Pre-Lie products on operads

Given an operad \mathcal{P} ,

the vector space $\bigoplus_{n \ge 2} \mathcal{P}(n)$ is endowed with the following pre-Lie product \leftarrow defined on any $\mu \in \mathcal{P}(n)$, $\nu \in \mathcal{P}(m)$ by:

$$\mu \backsim \nu = \sum_{i=1}^n \mu o_i \nu.$$

Example on Mag operad :

1

Pre-Lie products on operads

Given an operad ${\mathcal P}$,

the vector space $\bigoplus_{n \ge 2} \mathcal{P}(n)$ is endowed with the following pre-Lie product \leftarrow defined on any $\mu \in \mathcal{P}(n)$, $\nu \in \mathcal{P}(m)$ by:

$$\mu \succ \nu = \sum_{i=1}^n \mu o_i \nu.$$

Example on Mag operad :

1 0

Pre-Lie products on operads

Given an operad \mathcal{P} , the vector space $\bigoplus_{n \ge 2} \mathcal{P}(n)$ is endowed with the following pre-Lie product \leftarrow defined on any $\mu \in \mathcal{P}(n)$, $\nu \in \mathcal{P}(m)$ by:

$$\mu \succ \nu = \sum_{i=1}^{n} \mu o_i \nu.$$

Example on Mag operad :

Main problem

Are operads free as pre-Lie algebras ?

Main problem

Are operads free as pre-Lie algebras ?

First answer :

No !

Relations on operads

Definition

The brace products are defined on t of arity (=nb of inputs of the box) l by:

$$t \succ (s_1, \ldots, s_n) = \sum_{m_1, \ldots, m_n} (\ldots ((t \circ_{m_1} s_1) \circ_{m_2} s_2) \ldots) \circ_{m_n} s_n$$
$$= (t \leftarrow (s_1, \ldots, s_{n-1})) \succ s_n$$
$$- \sum_{i=1}^{n-1} t \leftarrow (\ldots, s_{i-1}, s_i \leftarrow s_n, s_{i+1}, \ldots),$$

where the sum runs over any n-tuples (m_1, \ldots, m_n) of elements in $\{1, \ldots, l\}$.

1) (

Relations on operads

Definition

The brace products are defined on t of arity (=nb of inputs of the box) l by:

$$t \succ (s_1, \ldots, s_n) = (t \succ (s_1, \ldots, s_{n-1})) \succ s_n$$
$$-\sum_{i=1}^{n-1} t \succ (\ldots, s_{i-1}, s_i \succ s_n, s_{i+1}, \ldots),$$

where the sum runs over any n-tuples $m_1 > \ldots > m_n$ of elements in $\{1, \ldots, l\}$.

$$t \leftarrow (s_1, \ldots, s_n) = t$$

1) (

Example on Mag operad :

$$\vee \backsim (\vee, \vee) = 2$$

Example on Mag operad :

$$\vee \vdash (\vee, \vee) = 2$$

$$\vee \backsim (\lor, \lor, \lor) = (\lor \backsim (\lor, \lor)) \backsim \lor - \lor \backsim (\lor \backsim \lor, \lor)$$
$$- \lor \backsim (\lor, \lor \backsim \lor)$$
$$= (2 \checkmark) \backsim \lor - \lor \backsim (\lor + \checkmark, \lor)$$
$$- \lor \backsim (\lor, \checkmark + \checkmark)$$
$$= 0$$

Proposition (Burgunder - D.O. - Manchon)

For any operad \mathcal{P} , if $t \in \mathcal{P}(i)$, $t \leftarrow (s_1, \ldots, s_n) = 0$ for any s_i and n > i. (Hence the pre-Lie algebra $\bigoplus_{n \ge 2} \mathcal{P}(n)$ is not free). New problem

Are brace relations the only relations of these pre-Lie algebras ?

A bi-Pre-Lie algebra on planar trees

Pre-Lie algebras on operads

2 A bi-Pre-Lie algebra on planar trees

[Recall] Presentation of an operad

For any operad \mathcal{P} ,

$$\mathcal{P}(n) = \mathsf{PT}_n^G / (\mathsf{relations}),$$

where PT_n^G is the vector space of planar trees with inner nodes decorated by the generating operations of the operad. Especially, if $G = \bigvee$,

 $\mathcal{P}(n) = \mathsf{PBT}_n / (\mathsf{relations}).$

Bijection between planar binary trees and planar trees : Knuth's rotation correspondence

Planar trees on *n* nodes and planar binary trees on *n* leaves are both counted by Catalan numbers and linked by the following recursively defined bijection ϕ :

$$\phi(\vee) = \ \big|$$

2

Examples :

Bijection between planar binary trees and planar trees : Knuth's rotation correspondance

Planar trees on *n* nodes and planar binary trees on *n* leaves are both counted by Catalan numbers and linked by the following recursively defined bijection ϕ :

11

$$\phi(\lor) =$$

Bijection between planar binary trees and planar trees : Knuth's rotation correspondance

Planar trees on *n* nodes and planar binary trees on *n* leaves are both counted by Catalan numbers and linked by the following recursively defined bijection $\tilde{\phi}$:

$$\tilde{\phi}\left(\begin{array}{c} F_{g} \\ F_{d} \\ F_{d} \end{array}\right) = \begin{array}{c} \tilde{\phi}(F_{g}) \\ \tilde{\phi}(F_{d}) = \vdots \\ \tilde{\phi}(F$$

 $\tilde{\phi}(\vee) = \int$

Each bijection gives a different pre-Lie product on planar trees :

- t ⊢^L s which is the sum over all the way to graft the root of s on the left of the root of t
- and t ⊢^R s which is the sum over all the way to graft the root of s on the right of the root of t.

New problem :

What happens if we consider at the same time both products ?

Bi-pre-Lie algebras

Definition

A bi-pre-Lie algebra is a vector space V endowed with two pre-Lie products $rac{L}^{L}$ and $rac{R}^{R}$ satisfying:

$$(u \frown^{L} v) \frown^{L} w - u \frown^{L} (v \frown^{L} w) = (u \frown^{L} w) \frown^{L} v - u \frown^{L} (w \frown^{L} v)$$
$$(u \frown^{R} v) \frown^{R} w - u \frown^{R} (v \frown^{R} w) = (u \frown^{R} w) \frown^{R} v - u \frown^{R} (w \frown^{R} v)$$
$$(u \frown^{L} v) \frown^{R} w - u \frown^{L} (v \frown^{R} w) = (u \frown^{R} w) \frown^{L} v - u \frown^{R} (w \frown^{L} v)$$

) (2

Bi-pre-Lie algebras

Definition

A bi-pre-Lie algebra is a vector space V endowed with two pre-Lie products $rac{L}^{L}$ and $rac{R}^{R}$ satisfying:

$$(u \frown^{L} v) \frown^{L} w - u \frown^{L} (v \frown^{L} w) = (u \frown^{L} w) \frown^{L} v - u \frown^{L} (w \frown^{L} v)$$
$$(u \frown^{R} v) \frown^{R} w - u \frown^{R} (v \frown^{R} w) = (u \frown^{R} w) \frown^{R} v - u \frown^{R} (w \frown^{R} v)$$
$$(u \frown^{L} v) \frown^{R} w - u \frown^{L} (v \frown^{R} w) = (u \frown^{R} w) \frown^{L} v - u \frown^{R} (w \frown^{L} v)$$

Proposition (Burgunder-D.O.-Manchon)

The vector space of planar trees PT, with pre-Lie products $rac{l}{\sim}^{L}$ and $rac{r}{\sim}^{R}$, is a bi-pre-Lie algebra.

) (2

New problem :

What happens if we consider at the same time both products ?

Sketch of the proof of the theorem

Proof.

By induction on the following well-founded partial order on trees : $S \leqslant T$ if

• either
$$|S| < |T|$$
,

• or
$$|S| = |T|$$
 and $\operatorname{height}(S) > \operatorname{height}(T)$,

• or
$$(|S|, \text{height}(S)) = (|T|, \text{height}(T))$$
 and $\sum_{v \in V(S)} \text{height}(v) < \sum_{v' \in V(T)} \text{height}(v')$,

• or
$$S = T$$
.

2

Proof.

- Initialization : E_2
- Induction step :

Goal : rewrite t as a product of smaller terms

Two cases : t planted or not

Proof.

- Initialization : E_2
- Induction step :

Goal : rewrite t as a product of smaller terms

Two cases : t planted or not

Thank you for your attention !