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What is an operad ? [May, Boardman-Vogt, 70s]

Let V be a vector space. Consider the space of multilinear endomorphisms:

pEndqpV qpnq “ HompVbn,V q

k
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endowed with the composition of endomorphisms.
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What is an operad ?

Definition (May, Boardman-Vogt, 70s)

A (symmetric) operad P is a pair formed by:

a family tPpnquně1 of finite dimensional Sn-modules (=vector spaces
endowed with an action of the symmetric group),

associative partial composition maps, compatible with the action of
the symmetric group, given by:

oi : Ppkq b Pplq Ñ Ppk ` l ´ 1q

What is an operad for ?

It encodes products in an algebra.



1

What is an operad ?

Definition (May, Boardman-Vogt, 70s)

A (symmetric) operad P is a pair formed by:

a family tPpnquně1 of finite dimensional Sn-modules (=vector spaces
endowed with an action of the symmetric group),

associative partial composition maps, compatible with the action of
the symmetric group, given by:

oi : Ppkq b Pplq Ñ Ppk ` l ´ 1q

What is an operad for ?

It encodes products in an algebra.



1

What is an operad ?

Definition (May, Boardman-Vogt, 70s)

A (symmetric) operad P is a pair formed by:

a family tPpnquně1 of finite dimensional Sn-modules (=vector spaces
endowed with an action of the symmetric group),

associative partial composition maps, compatible with the action of
the symmetric group, given by:

oi : Ppkq b Pplq Ñ Ppk ` l ´ 1q

What is an operad for ?

It encodes products in an algebra.



1

Examples of operads

First example: Magmatic algebras and operads

Ppnq “ PBTn with PBTn the vector space of planar binary trees on n
leaves labelled by t1, . . . , nu and γ the grafting on leaves (magmatic
operad Mag)

¨
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Example :

Ppnq “ K.t
σp1q . . . σpnq

. . . |σ P Snu with composition given by

concatenation

(Associative operad List :

x y z

=

x y z

=:

x y z

)
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Example :

Ppnq “ K.
1 . . . n

. . .

with oi :
1 . . . k

. . . b
1 . . . l

. . . Ñ
1 . . .k ` l ´ 1

. . .

(Commutative operad Set` = =: and
1 2

=
2 1

)
¨
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˝
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‹
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o3
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Presentation of an operad

For any operad P,

Ppnq “ PTG
n {(relations),

where PTG
n is the vector space of planar trees with inner nodes decorated

by the generating operations of the operad.

Especially, if G “ ,

Ppnq “ PBTn {(relations).
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Algebra over an operad

Definition

A P-algebra is a vector space V endowed with

µn : Ppnq bSn V
bn Ñ V .

Definition

The P-free algebra over V is

PpV q “ ‘ně1Ppnq bSn V
bn.
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Last example: Pre-Lie operad [Chapoton-Livernet, 2001]

Ppnq “ RTn the vector spaces of rooted trees with γ the composition
of trees inside nodes (Pre-Lie operad PreLie :

a b c
-
a b c

=
a c b

-
a c b

˙

˜

2 1 o2
1 2

¸

o1

2 1 3
“

4 5 2 1 3
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Pre-Lie algebras

Definition (Gerstenhaber, 1963 ; Vinberg, 1963 ; Matsushima, 1968)

A pre-Lie algebra is a vector space V endowed with a product ð satisfying
for any u, v and w in V :

pu ð vq ð w ´ u ð pv ð wq “ pu ð wq ð v ´ u ð pw ð vq

u v w
´

u v w
“

u w v
´

u w v

Example :

Hypertrees

Fat trees

Algebra of derivations

Ppx1, . . . , xnqBxi ð Qpx1, . . . , xnqBxj “ Ppx1, . . . , xnq pBxiQq px1, . . . , xnqBxj
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Pre-Lie products on operads

Given an operad P,
pre-Lie product ð on ‘ně2Ppnq, defined on any µ P Ppnq, ν P Ppmq by:

µ ð ν “
n
ÿ

i“1

µoiν.
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Pre-Lie products on operads

Given an operad P,
the vector space ‘ně2Ppnq is endowed with the following pre-Lie product
ð defined on any µ P Ppnq, ν P Ppmq by:

µ ð ν “
n
ÿ
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µoiν.

Example on Mag operad :
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Main problem

Are operads free as pre-Lie algebras ?

First answer :

No !
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Relations on operads

Definition

The brace products are defined on t of arity (=nb of inputs of the box) l
by:

t ð ps1, . . . , snq “
ÿ

m1,...,mn

p. . . ppt ˝m1 s1q ˝m2 s2q . . .q ˝mn sn,

“ pt ð ps1, . . . , sn´1qq ð sn

´

n´1
ÿ

i“1

t ð p. . . , si´1, si ð sn, si`1, . . .q,

where the sum runs over any n-tuples pm1, . . . ,mnq of elements in
t1, . . . , lu.
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Relations on operads

Definition

The brace products are defined on t of arity (=nb of inputs of the box) l
by:

t ð ps1, . . . , snq “ pt ð ps1, . . . , sn´1qq ð sn

´

n´1
ÿ

i“1

t ð p. . . , si´1, si ð sn, si`1, . . .q,

where the sum runs over any n-tuples m1 ą . . . ą mn of elements in
t1, . . . , lu.

t ð ps1, . . . , snq “
t

s1 sn
. . .
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Example on Mag operad :

_ ð p_,_q = 2

_ ð p_,_,_q “ p_ ð p_,_qq ð _´_ ð p_ ð _,_q

´ _ ð p_,_ ð _q

“

´

2
¯

ð _´_ ð p ` ,_q

´ _ ð p_, ` q

“ 0

Proposition (Burgunder - D.O. - Manchon)

For any operad P, if t P Ppiq, t ð ps1, . . . , snq “ 0 for any si and n ą i .
(Hence the pre-Lie algebra ‘ně2Ppnq is not free).
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New problem

Are brace relations the only relations of these pre-Lie algebras ?
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[Recall] Presentation of an operad

For any operad P,

Ppnq “ PTG
n {(relations),

where PTG
n is the vector space of planar trees with inner nodes decorated

by the generating operations of the operad.

Especially, if G “ ,

Ppnq “ PBTn {(relations).
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Bijection between planar binary trees and planar trees :
Knuth’s rotation correspondence

Planar trees on n nodes and planar binary trees on n leaves are both
counted by Catalan numbers and linked by the following recursively
defined bijection φ:

φp_q “
‚

‚

φ

¨

˚

˝

Fg Fd

˛

‹

‚

“
‚

‚φpFg q

φpFdq
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φ

¨

˚

˝

Fg Fd

˛

‹

‚

“
‚

‚φpFg q

φpFdq

Examples :
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Bijection between planar binary trees and planar trees :
Knuth’s rotation correspondance

Planar trees on n nodes and planar binary trees on n leaves are both
counted by Catalan numbers and linked by the following recursively
defined bijection φ̃:

φ̃p_q “
‚

‚

φ̃

¨

˚

˝

Fg Fd

˛

‹

‚

“
‚

‚ φ̃pFdq

φ̃pFg q

“:
‚

‚

φ̃pFg q

Ö̋
R
φ̃pFdq



2

Each bijection gives a different pre-Lie product on planar trees :

t ðL s which is the sum over all the way to graft the root of s on the
left of the root of t

and t ðR s which is the sum over all the way to graft the root of s
on the right of the root of t.

New problem :

What happens if we consider at the same time both products ?
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Bi-pre-Lie algebras

Definition

A bi-pre-Lie algebra is a vector space V endowed with two pre-Lie
products ðL and ðR satisfying:

pu ðL vq ðL w ´ u ðL pv ðL wq “ pu ðL wq ðL v ´ u ðL pw ðL vq

pu ðR vq ðR w ´ u ðR pv ðR wq “ pu ðR wq ðR v ´ u ðR pw ðR vq

pu ðL vq ðR w ´ u ðL pv ðR wq “ pu ðR wq ðL v ´ u ðR pw ðL vq

Proposition (Burgunder-D.O.-Manchon)

The vector space of planar trees PT, with pre-Lie products ðL and ðR , is
a bi-pre-Lie algebra.
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New problem :

What happens if we consider at the same time both products ?

Theorem (Burgunder-D.O.-Manchon)

The bi-pre-Lie algebra (PT,ðL, ðR) is generated by
‚

‚
and

‚

‚

‚
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Sketch of the proof of the theorem

Theorem (Burgunder-D.O.-Manchon)

The bi-pre-Lie algebra (PT,ðL, ðR) is generated by
‚

‚
and

‚

‚

‚

Proof.

By induction on the following well-founded partial order on trees : S ď T
if

either |S | ă |T |,

or |S | “ |T | and heightpSq ą heightpT q,

or
`

|S |, heightpSq
˘

“
`

|T |, heightpT q
˘

and
ř

vPV pSq heightpvq ă
ř

v 1PV pT q heightpv 1q,

or S “ T .
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Proof.

Initialization : E2

Induction step :
Goal : rewrite t as a product of smaller terms
Two cases : t planted or not

Thank you for your attention !
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