Thomas Fernique Laboratoire d'Informatique de Paris Nord

Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

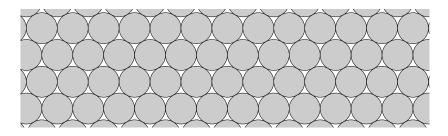
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Thue, 1910)

The densest packing in \mathbb{R}^2 is the hexagonal compact packing.

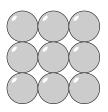


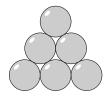
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)



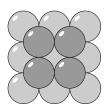


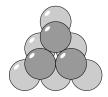
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)



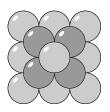


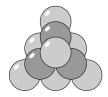
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)



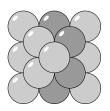


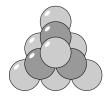
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

Question: densest packings?

Theorem (Hales, 1998)





Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.

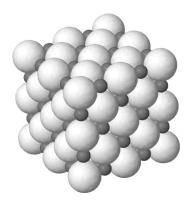
Question: densest packings?

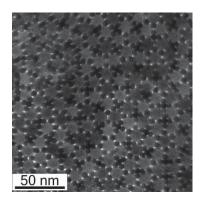
Theorem (Vyazovska et al., 2017)

The densest packings are known in \mathbb{R}^8 and \mathbb{R}^{24} .

Unequal sphere packings

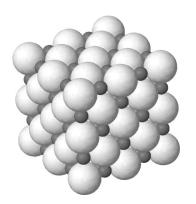
The density becomes parametrized by the ratios of sphere sizes. Natural problem in materials science!

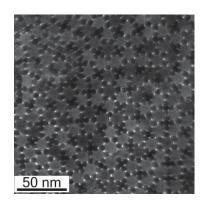




Unequal sphere packings

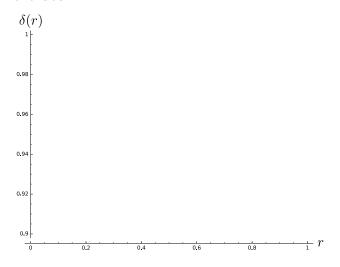
The density becomes parametrized by the ratios of sphere sizes. Natural problem in materials science!



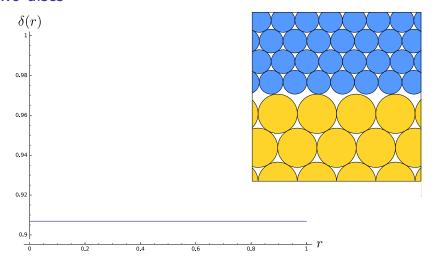


Theorem (Heppes-Kennedy, 2004–2006)

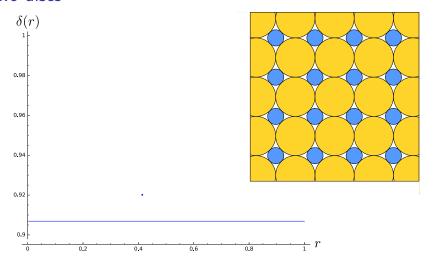
The densest packings with two discs are known for seven ratios.



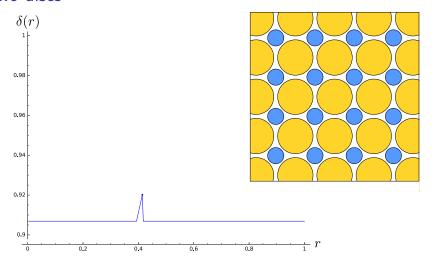
The maximal density is a function $\delta(r)$ of the ratio $r \in [0,1]$.



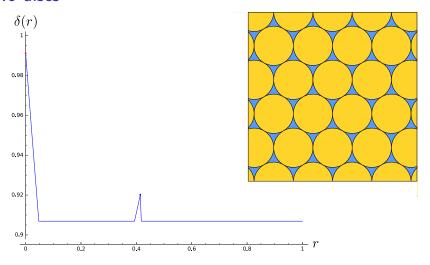
The hexagonal compact packing yields a uniform lower bound.



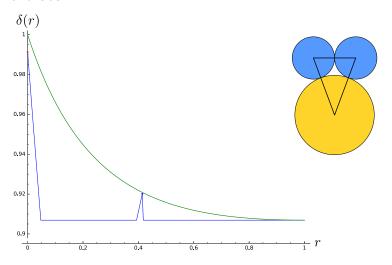
Any given packing yields a lower bound for a specific r.



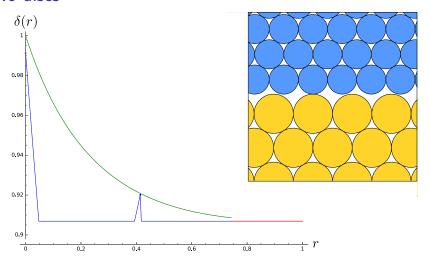
It actually yields a lower bound in a neighborhood of r.



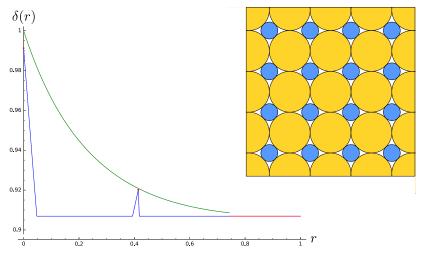
$$\lim_{r \to 0} \delta(r) = \delta(1) + (1 - \delta(1))\delta(1) \simeq 0.99133.$$



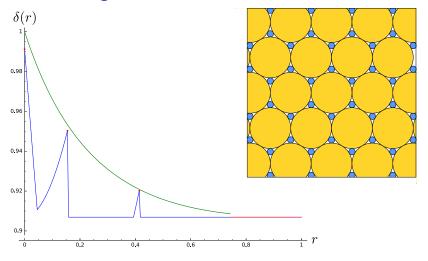
The density in the r1r triangle is an upper bound (Florian, 1960).



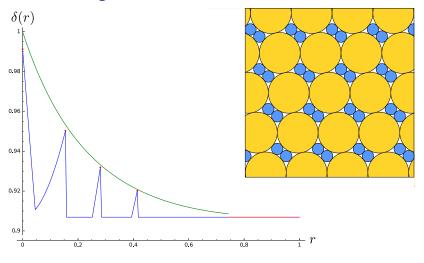
For $r \ge 0.74$, two discs do not pack better than one (Blind, 1969).



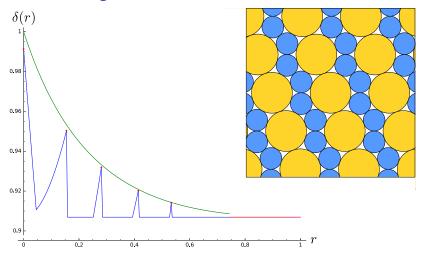
0.41, root of $X^2 + 2X - 1$.



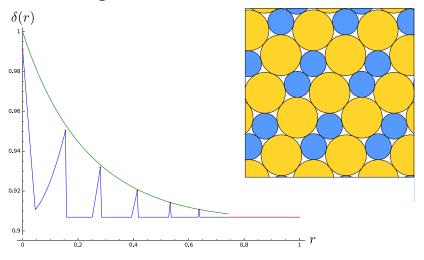
0.15, root of $3X^2 + 6X - 1$.



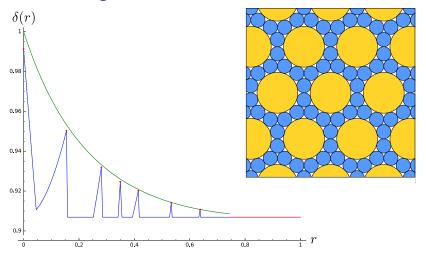
0.28, root of $2X^2 + 3X - 1$.



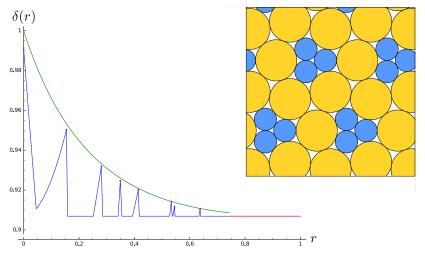
0.53, root of $8X^3 + 3X^2 - 2X - 1$.



0.64, root of $X^4 - 10X^2 - 8X + 9$.



0.35, root of $X^4 - 28X^3 - 10X^2 + 4X + 1$.



0.55, root of $X^8-8X^7-44X^6-232X^5-482X^4-24X^3+388X^2-120X+9$.

The contact graphs of the 7 previous packings are triangulated.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of discs is *compact* if its contact graph is triangulated.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

The densest packings of unit spheres in \mathbb{R}^8 and \mathbb{R}^{24} are compact!

The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

The densest packings of unit spheres in \mathbb{R}^8 and \mathbb{R}^{24} are compact! Not in \mathbb{R}^3 ...where no compact packing of unit spheres does exist!

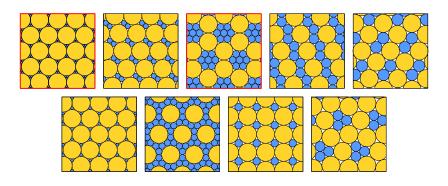
The *contact graphs* of the 7 previous packings are triangulated. The one of the hexagonal compact packing of unit spheres also.

Definition

A packing of spheres is *compact* if its contact graph is simplicial.

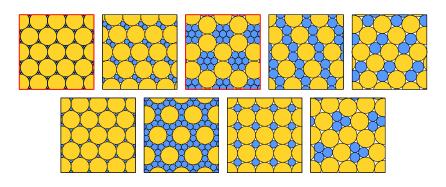
The densest packings of unit spheres in \mathbb{R}^8 and \mathbb{R}^{24} are compact! Not in \mathbb{R}^3 ...where no compact packing of unit spheres does exist!

Compact packings are candidates to provably maximize the density.



Theorem (Kennedy, 2006)

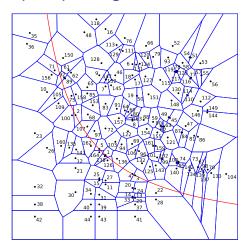
There are <u>nine</u> ratios allowing a compact packing with two discs.



Theorem (Kennedy, 2006)

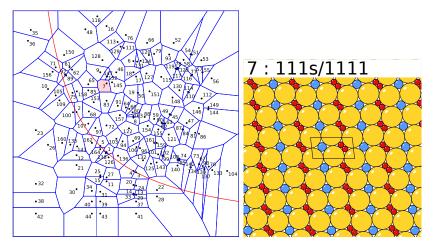
There are <u>nine</u> ratios allowing a compact packing with two discs.

Remark: two have (still?) not been proven to maximize the density.



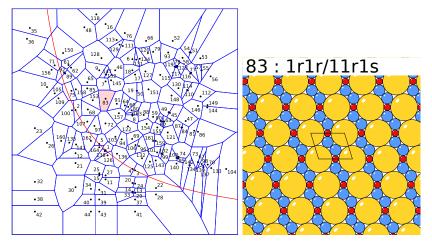
Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.



Theorem (F.-Hashemi-Sizova)

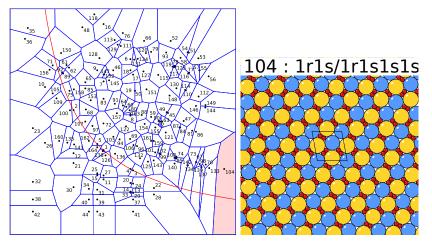
There are 164 ratios allowing a compact packing with three discs.



Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.

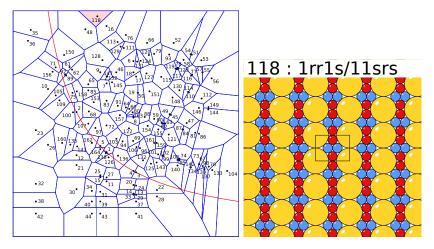
Compact packings with three discs



Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.

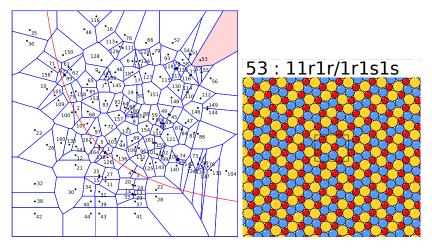
Compact packings with three discs



Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.

Compact packings with three discs



Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different *s*-coronas.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different *s*-coronas.

Lemma

There are finitely many different r-coronas in a compact packing.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different *s*-coronas.

Lemma

There are finitely many different r-coronas in a compact packing.

Proposition

Each pair of s- and r-coronas yields a polynomial system in r and s.

Let s < r < 1 be the three sizes of discs.

Definition

An x-corona is a sequence of sizes of discs around a disc of size x.

Claim

There are finitely many different s-coronas.

Lemma

There are finitely many different r-coronas in a compact packing.

Proposition

Each pair of s- and r-coronas yields a polynomial system in r and s.

Strategy

For each pair of s- and r-coronas, solve the polynomial system, then find all the possible coronas and finally find the packings.

Compact packing with spheres in \mathbb{R}^3

With two spheres, it is boring:

Theorem (Fernique, 2019)

The compact packings by two sizes of spheres are exactly those obtained by filling the octahedral holes of a close-packing.

Compact packing with spheres in \mathbb{R}^3

With two spheres, it is boring:

Theorem (Fernique, 2019)

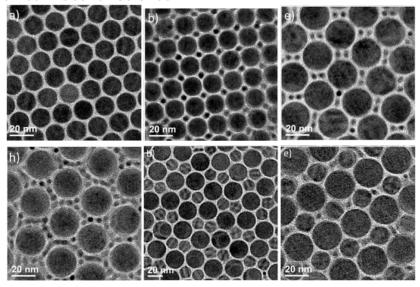
The compact packings by two sizes of spheres are exactly those obtained by filling the octahedral holes of a close-packing.

With three spheres, it is still boring:

Theorem (Fernique, expected 2019)

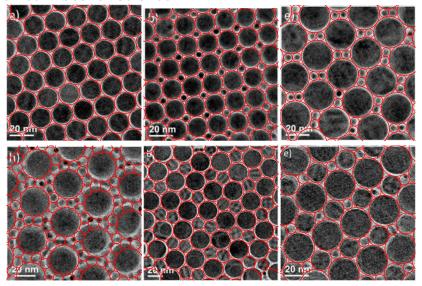
The compact packing by three sizes of spheres are exactly those obtained by filling one of the two types of tetrahedral holes of a compact packing by two sizes of spheres.

Back to material science



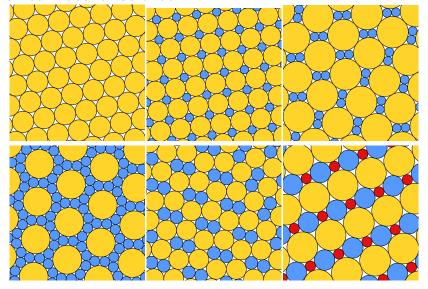
T. Paik, B. Diroll, C. Kagan, Ch. Murray J. Am. Chem. Soc., 2015, 137 Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods

Back to material science

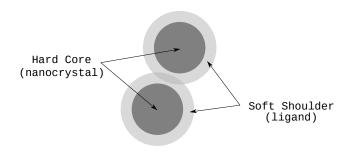


T. Paik, B. Diroll, C. Kagan, Ch. Murray J. Am. Chem. Soc., 2015, 137 Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods

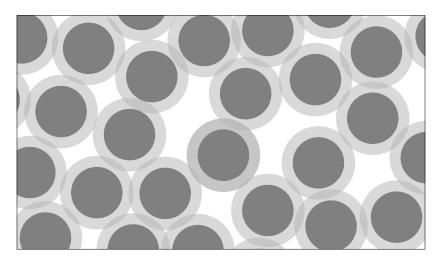
Back to material science



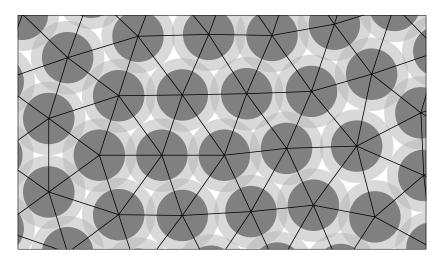
T. Paik, B. Diroll, C. Kagan, Ch. Murray J. Am. Chem. Soc., 2015, 137 Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods



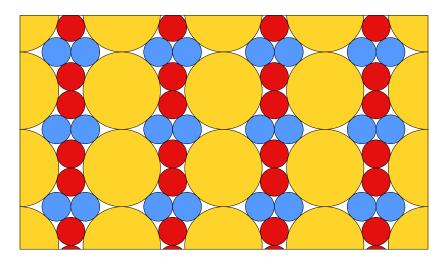
More realistic model: Hard Core + Soft Shoulder (HCSS).



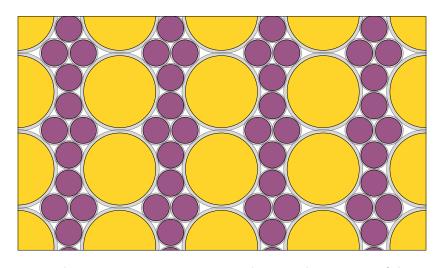
Which quantity has to be minimized or maximized (formally)?



Compact packings naturally extend to *quasicompact* packings.



Some compact packings with three sizes of discs...



...can be seen as a quasicompact packings with two sizes of discs.

ASAP

Project 80-PRIME CNRS 2019-2021

- ► INS2I: LIPN (Thomas Fernique)
- ► INC/INP: LPCNO (Simon Tricard)

Goals:

- experimental nanosynthesis of "compact supercrystals";
- new theoretical questions raised by experiences.