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Theorem (Thue, 1910)

The densest packing in R? is the hexagonal compact packing.
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Sphere packings
Sphere packing: interior disjoint unit spheres.

Density: limsup of the proportion of B(0, r) covered.
Question: densest packings?

Theorem (Vyazovska et al., 2017)
The densest packings are known in R® and R?*.
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Unequal sphere packings

The density becomes parametrized by the ratios of sphere sizes.
Natural problem in materials science!
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Unequal sphere packings

The density becomes parametrized by the ratios of sphere sizes.
Natural problem in materials science!

Theorem (Heppes-Kennedy, 2004-2006)
The densest packings with two discs are known for seven ratios.
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Two discs
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The maximal density is a function §(r) of the ratio r € [0, 1].
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The hexagonal compact packing yields a uniform lower bound.
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Any given packing yields a lower bound for a specific r.
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It actually yields a lower bound in a neighborhood of r.
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Two discs
(r)
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lim 3(r) = (1) + (1 — 5(1))5(1) =~ 0.99133.
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Two discs
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The density in the rlr triangle is an upper bound (Florian, 1960).
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Two discs
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For r > 0.74, two discs do not pack better than one (Blind, 1969).
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The seven "magic” ratios

0.96

092

0.9

L L L L L L
0 0.2 0.4 0.6 0.8 1

0.41, root of X2 +2X — 1.
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The seven "magic” ratios
5(r)
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0.15, root of 3X2 +6X — 1.
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magic” ratios
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The seven "magic” ratios
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0.64, root of X* —10X2 —8X + 0.
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The seven "magic” ratios
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0.35, root of X* —28X3 —10X2 +4X + 1.
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The seven "magic” ratios
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0.55, root of X8-8X7-44X%-232X5-482X*-24X3+388X2-120X+9.
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Compact packings

The contact graphs of the 7 previous packings are triangulated.
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Compact packings

The contact graphs of the 7 previous packings are triangulated.
The one of the hexagonal compact packing of unit spheres also.

Definition
A packing of spheres is compact if its contact graph is simplicial.

The densest packings of unit spheres in R and R?* are compact!
Not in R3...where no compact packing of unit spheres does exist!

Compact packings are candidates to provably maximize the density.
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Compact packings with two discs
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Theorem (Kennedy, 2006)

There are nine ratios allowing a compact packing with two discs.
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Compact packings with two discs

Theorem (Kennedy, 2006)

There are nine ratios allowing a compact packing with two discs.

Remark: two have (still?) not been proven to maximize the density.

6/12



Compact packings with three discs

Theorem (F.-Hashemi-Sizova)

There are 164 ratios allowing a compact packing with three discs.
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Theorem (F.-Hashemi-Sizova)
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There are 164 ratios allowing a compact packing with three discs.
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Theorem (F.-Hashemi-Sizova)
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There are 164 ratios allowing a compact packing with three discs.
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There are 164 ratios allowing a compact packing with three discs.
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Compact packings with three discs
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Theorem (F.-Hashemi-Sizova)
There are 164 ratios allowing a compact packing with three discs.



Proof sketch
Let s < r < 1 be the three sizes of discs.

Definition
An x-corona is a sequence of sizes of discs around a disc of size x.
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Proof sketch
Let s < r < 1 be the three sizes of discs.

Definition
An x-corona is a sequence of sizes of discs around a disc of size x.

Claim
There are finitely many different s-coronas.

Lemma
There are finitely many different r-coronas in a compact packing.

Proposition
Each pair of s- and r-coronas yields a polynomial system in r and s.

Strategy

For each pair of s- and r-coronas, solve the polynomial system,
then find all the possible coronas and finally find the packings.
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Compact packing with spheres in R3

With two spheres, it is boring:
Theorem (Fernique, 2019)

The compact packings by two sizes of spheres are exactly those
obtained by filling the octahedral holes of a close-packing.
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Compact packing with spheres in R3

With two spheres, it is boring:
Theorem (Fernique, 2019)

The compact packings by two sizes of spheres are exactly those
obtained by filling the octahedral holes of a close-packing.

With three spheres, it is still boring:
Theorem (Fernique, expected 2019)

The compact packing by three sizes of spheres are exactly those
obtained by filling one of the two types of tetrahedral holes of a
compact packing by two sizes of spheres.
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Back to material science
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T. Paik, B. Diroll, C. Kagan, Ch. Murray J. Am. Chem. Soc., 2015, 137
Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods
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Quasicompact packings

Hard Core

(nanocrystal)
Soft Shoulder

(ligand)

More realistic model: Hard Core + Soft Shoulder (HCSS).
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Quasicompact packings

Which quantity has to be minimized or maximized (formally)?
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Quasicompact packings

Some compact packings with three sizes of discs. ..

11/12



Quasicompact packings

can be seen as a quasicompact packings with two sizes of discs.
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ASAP

Project 80-PRIME CNRS 2019-2021

» INS2I: LIPN (Thomas Fernique)
» INC/INP: LPCNO (Simon Tricard)

Goals:

» experimental nanosynthesis of " compact supercrystals”;

> new theoretical questions raised by experiences.
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