Tropical Jacobian Conjecture

Dima Grigoriev (Lille) (jointly with D. Radchenko)

CNRS

07/11/2019, Bures-sur-Yvette

1/9

Polynomial map $f := (f_1, \dots, f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, ..., f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_i)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, \dots, f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, \dots, f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, \dots, f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, \dots, f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, ..., f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Polynomial map $f := (f_1, ..., f_n) : F^n \to F^n$ where the field F has characteristic 0. Its Jacobian $J(f) := \det(\partial f_i/\partial x_j)_{1 \le i,j \le n}$.

Jacobian conjecture, Keller, 1939: if J(f) = 1 then f is an isomorphism and its inverse is also a polynomial map.

Theorem

(Ax, 1968; Grothendieck, 1966). For an algebraically closed field F if f is injective then f is bijective.

Model-theoretic proof: reduction to finite fields using Nullstellensatz.

Jacobian conjecture: a local isomorphism (due to the Implicit Function Theorem) implies a global isomorphism.

Example

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If T is an ordered (resp. abelian) group then T is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- ullet $\mathbb{Z},\,\mathbb{Z}_\infty$ are semi-fields:
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring:
- $(a_{ij})\otimes(b_{kl}):=(\oplus_{1\leq j\leq n}a_{ij}\otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least two different values of f.

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations \oplus := min, \otimes := +.

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\Diamond := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1 • \mathbb{Z} . \mathbb{Z}_{∞} are semi-fields:

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \leq j \leq n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least two different values of i.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1 • \mathbb{Z} , \mathbb{Z}_{∞} are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring $(a_{i}) \otimes (b_{i}) := (\bigoplus_{1 \leq i \leq n} a_{i} \otimes b_{i})$

 $(a_{ij})\otimes(b_{kl}):=(\oplus_{1\leq j\leq n}a_{ij}\otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least transition of f.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \ \otimes := +.$

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- \mathbb{Z} , \mathbb{Z}_{∞} are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \ldots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \ \otimes := +.$

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- ullet $\mathbb{Z},\,\mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \leq j \leq n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least two different values of f.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- ullet $\mathbb{Z},\,\mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \leq j \leq n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree $\operatorname{trdeg} = i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least two different values of f.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \, \otimes := +.$

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- $\bullet \ \mathbb{Z}, \ \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \leq j \leq n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$.

Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least two different values of f.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If T is an ordered (resp. abelian) group then T is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- $\bullet \ \mathbb{Z}, \ \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \leq j \leq n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree $\text{trdeg} = i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\}$;

 $x=(x_1,\ldots,x_n)$ is a **tropical zero** of f if minimum $\min_j\{Q_j\}$ is attained for at least two different values of j.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\emptyset := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \ \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

- $\bullet \ \mathbb{Z}, \ \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \leq j \leq n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree $\operatorname{trdeg} = i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\}$; $x = (x_1, \ldots, x_n)$ is a **tropical zero** of f if minimum $\min_j \{Q_j\}$ is attained for at least two different values of f.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\,Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\,Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\ Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\ Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\ Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\ Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

 $\min\{P_1,\ldots,P_k\}-\min\{Q_1,\ldots,Q_l\}$ is a tropical algebraic rational function where $P_1,\ldots,P_k,\ Q_1,\ldots,Q_l$ are linear functions with rational coefficients. It is a piece-wise linear function, so one can partition \mathbb{R}^n into a finite number of n-dimensional polyhedra on each of which this function is linear. Conversely, any piece-wise linear function can be represented in this form (up to rationality of the coefficients). More generally, one can assume the coefficients to be real.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f = (f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ and a point $p \in \mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n \times n$ matrices (=Jacobian matrices) of these linear maps denote

by A_1, \ldots, A_k , then $J_i = \det(A_i)$, $1 \le i \le k$ are their Jacobians. The convex hull of A_1, \ldots, A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i)$, $1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_0(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

For a tropical map $f=(f_1,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ and a point $p\in\mathbb{R}^n$ consider all n-dimensional polyhedra containing p on which f is linear, the $n\times n$ matrices (=Jacobian matrices) of these linear maps denote by A_1,\ldots,A_k , then $J_i=\det(A_i),\ 1\leq i\leq k$ are their Jacobians. The convex hull of A_1,\ldots,A_k denote by $\partial_p(f)$.

Proposition

If $\partial_p(f)$ does not contain a singular matrix for any $p \in \mathbb{R}^n$ then f is an isomorphism.

Non-necessity of the Weak Conjecture

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x) \quad \text{if} \quad x > 0, y + \alpha x > 0$$

$$f = (x + b(y + \alpha x), y + \alpha x) \quad \text{if} \quad x > 0, y + \alpha x < 0$$

$$f = (x + a(y + \beta x), y + \beta x) \quad \text{if} \quad x < 0, y + \beta x > 0$$

$$f = (x + b(y + \beta x), y + \beta x) \quad \text{if} \quad x < 0, y + \beta x < 0$$

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right).$$

The sum of the second and the third matrices is singular when

Non-necessity of the Weak Conjecture

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x) \quad \text{if} \quad x > 0, y + \alpha x > 0;$$

$$f = (x + b(y + \alpha x), y + \alpha x) \quad \text{if} \quad x > 0, y + \alpha x < 0;$$

$$f = (x + a(y + \beta x), y + \beta x) \quad \text{if} \quad x < 0, y + \beta x > 0;$$

$$f = (x + b(y + \beta x), y + \beta x) \quad \text{if} \quad x < 0, y + \beta x < 0.$$

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right).$$

The sum of the second and the third matrices is singular when $(\beta - \alpha)(b - a) = 4$ (in particular, one can put $\beta = b = 2$, $\alpha = 2$, $\alpha = 2$).

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x > 0;$$

$$f = (x + b(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x < 0;$$

$$f = (x + a(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x > 0;$$

$$f = (x + b(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x < 0.$$

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right)$$

The sum of the second and the third matrices is singular when $(\beta - \alpha)(b - a) = 4$ (in particular, one can put $\beta = b = 2$, $\alpha = \beta = 0$).

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x > 0;$$

$$f = (x + b(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x < 0;$$

$$f = (x + a(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x > 0;$$

$$f = (x + b(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x < 0.$$

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right).$$

The sum of the second and the third matrices is singular when $(\beta - \alpha)(b - a) = 4$ (in particular, one can put $\beta = b = 2$, $\alpha = \beta = 0$).

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x > 0;$$

$$f = (x + b(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x < 0;$$

$$f = (x + a(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x > 0;$$

$$f = (x + b(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x < 0.$$

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right).$$

The sum of the second and the third matrices is singular when $(\beta - \alpha)(b - a) = 4$ (in particular, one can put $\beta = b, \beta \neq 2$, $\alpha = \beta = 0$).

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x > 0;$$

$$f = (x + b(y + \alpha x), y + \alpha x) \text{ if } x > 0, y + \alpha x < 0;$$

$$f = (x + a(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x > 0;$$

$$f = (x + b(y + \beta x), y + \beta x) \text{ if } x < 0, y + \beta x < 0.$$

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right).$$

The sum of the second and the third matrices is singular when $(\beta - \alpha)(b - a) = 4$ (in particular, one can put $\beta = b = 2$, $\alpha = 2$).

A tropical polynomial isomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of a lower-triangular and an upper-triangular isomorphisms

$$(x, y) \mapsto (x, y + \min\{\alpha x, \beta x\}), \alpha < \beta,$$

 $(x, y) \mapsto (x + \min\{ay, by\}, y), a < b.$

Then f(x, y) is linear on 4 pieces:

$$f = (x + a(y + \alpha x), y + \alpha x)$$
 if $x > 0, y + \alpha x > 0$;
 $f = (x + b(y + \alpha x), y + \alpha x)$ if $x > 0, y + \alpha x < 0$;
 $f = (x + a(y + \beta x), y + \beta x)$ if $x < 0, y + \beta x > 0$;
 $f = (x + b(y + \beta x), y + \beta x)$ if $x < 0, y + \beta x < 0$.

 $\partial_{(0,0)}(f)$ is the convex hull of the corresponding Jacobian matrices

$$\left(\begin{array}{cc} 1+a\alpha & a \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\alpha & b \\ \alpha & 1 \end{array}\right), \left(\begin{array}{cc} 1+a\beta & a \\ \beta & 1 \end{array}\right), \left(\begin{array}{cc} 1+b\beta & b \\ \beta & 1 \end{array}\right).$$

The sum of the second and the third matrices is singular when $(\beta - \alpha)(b - a) = 4$ (in particular, one can put $\beta = b = 2$, $\alpha = a = 0$).

If a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism then all the Jacobians J_i have the same sign, say $J_i > 0$ for all i.

Theorem

If $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ is a tropical polynomial map and all $J_i > 0$ then f is an isomorphism.

Example

A tropical rational map $g:(x,y) \to (|x|-|y|,|x+y|-|x-y|)$ has all the positive Jacobians $J_i > 0$, but g(x,y) = g(-x,-y) is not an isomorphism. Modifying g one can construct a tropical polynomial map $\mathbb{R}^3 \to \mathbb{R}^3$ with all positive $J_i > 0$ being not an isomorphism.

If a tropical map $f : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism then all the Jacobians J_i have the same sign, say $J_i > 0$ for all i.

Theorem

If $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ is a tropical polynomial map and all $J_i > 0$ then f is an isomorphism.

Example

A tropical rational map $g:(x,y)\to (|x|-|y|,|x+y|-|x-y|)$ has all the positive Jacobians $J_i>0$, but g(x,y)=g(-x,-y) is not an isomorphism. Modifying g one can construct a tropical polynomial map $\mathbb{R}^3\to\mathbb{R}^3$ with all positive $J_i>0$ being not an isomorphism.

If a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism then all the Jacobians J_i have the same sign, say $J_i > 0$ for all i.

Theorem

If $f=(f_1,f_2):\mathbb{R}^2\to\mathbb{R}^2$ is a tropical polynomial map and all $J_i>0$ then f is an isomorphism.

Example

A tropical rational map $g:(x,y)\to (|x|-|y|,|x+y|-|x-y|)$ has all the positive Jacobians $J_i>0$, but g(x,y)=g(-x,-y) is not an isomorphism. Modifying g one can construct a tropical polynomial map $\mathbb{R}^3\to\mathbb{R}^3$ with all positive $J_i>0$ being not an isomorphism.

If a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism then all the Jacobians J_i have the same sign, say $J_i > 0$ for all i.

Theorem

If $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ is a tropical polynomial map and all $J_i > 0$ then f is an isomorphism.

Example

A tropical rational map $g:(x,y)\to (|x|-|y|,|x+y|-|x-y|)$ has all the positive Jacobians $J_i>0$, but g(x,y)=g(-x,-y) is not an isomorphism. Modifying g one can construct a tropical polynomial map $\mathbb{R}^3\to\mathbb{R}^3$ with all positive $J_i>0$ being not an isomorphism.

If a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism then all the Jacobians J_i have the same sign, say $J_i > 0$ for all i.

Theorem

If $f=(f_1,f_2):\mathbb{R}^2\to\mathbb{R}^2$ is a tropical polynomial map and all $J_i>0$ then f is an isomorphism.

Example

A tropical rational map $g:(x,y) \to (|x|-|y|,\,|x+y|-|x-y|)$ has all the positive Jacobians $J_i>0$, but g(x,y)=g(-x,-y) is not an isomorphism. Modifying g one can construct a tropical polynomial map $\mathbb{R}^3 \to \mathbb{R}^3$ with all positive $J_i>0$ being not an isomorphism.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A point $p \in \mathbb{R}^n$ is *regular* for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ if for any $x \in f^{-1}(p)$ its Jacobian $J_f(x) \neq 0$. By Sard's lemma the set of regular values is dense.

Theorem

A necessary and sufficient condition for a tropical map $f: \mathbb{R}^n \to \mathbb{R}^n$ to be an isomorphism is that all the Jacobians J_i have the same sign and $|f^{-1}(p)| = 1$ for at least one regular value $p \in \mathbb{R}^n$.

A *triangle* tropical rational plane automorphism has a form $(x,y) \to (x,y+\min\{ax,bx\}), \ a,b \in \mathbb{Z}$. A linear tropical rational automorphism has a form $(x,y) \to (ax+by,cx+dy), \ a,b,c,d \in \mathbb{Z}, \ ad-bc=\pm 1$.

Proposition

A *triangle* tropical rational plane automorphism has a form $(x,y) \to (x,y+\min\{ax,bx\}), \ a,b \in \mathbb{Z}$. A linear tropical rational automorphism has a form $(x,y) \to (ax+by,cx+dy), \ a,b,c,d \in \mathbb{Z}, \ ad-bc=\pm 1.$

Proposition

A *triangle* tropical rational plane automorphism has a form $(x,y) \to (x,y+\min\{ax,bx\}), \ a,b \in \mathbb{Z}$. A linear tropical rational automorphism has a form $(x,y) \to (ax+by,cx+dy), \ a,b,c,d \in \mathbb{Z}, \ ad-bc=\pm 1.$

Proposition

A *triangle* tropical rational plane automorphism has a form $(x,y) \to (x,y+\min\{ax,bx\}), \ a,b \in \mathbb{Z}$. A linear tropical rational automorphism has a form $(x,y) \to (ax+by,cx+dy), \ a,b,c,d \in \mathbb{Z}, \ ad-bc=\pm 1.$

Proposition