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Free commutative monoid on N
The free commutative monoid on N is formal finite sums of natural
numbers. For example, an element of this monoid is

2⊕ 3⊕ 1⊕ 10⊕ 5.

Since these formal sums are commutative, we can order their
summands in increasing order, or in decreasing order. In order to
consider Young diagrams or partitions, we choose decreasing order
like 10⊕ 5⊕ 3⊕ 2⊕ 1. Such a sum can be drwn as a Young diagram:
in this case, boxes with a left-justified shape of 10 boxes in the first
row, 5 in the second row and so on.
Sum of two Young diagrams Y1 = n1 ⊕ · · · ⊕ nk , ni ≥ ni+1, i = 1, . . . , k ,
and Y2 = n′1 ⊕ · · · ⊕ n′l , n′i ≥ n′i+1, i = 1, . . . , k ′, is defined as sum of
elents of the monoid

Y1 + Y2 = n1 ⊕ · · · ⊕ nk ⊕ n′1 ⊕ · · · ⊕ n′l .
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We consider another operation, the lexicographical minimum of two
Young diagram as diagram

min(Y1,Y2) = Y1, if ni = n′i , i = 1, . . . , s,ns+1 < n′s+1

and Y2 otherwise.
These two operations endow this monoid with a tropical semiring
structure, one has to think multiplication as the sum and sum as the
minimum.
We also consider a partial subtraction, Y1 − Y2 = Y if

Y2 + Y = Y1.
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We have duality on the free commutative monoid. Namely, since we
regard elements of the monoid as Young diagram, we can transpose
Young diagrams. For example, dual to 10⊕ 5⊕ 3⊕ 2⊕ 1 is

5⊕ 4⊕ 3⊕ 2⊕ 2⊕ 1⊕ 1⊕ 1⊕ 1⊕ 1.

Duality allows us to endow Young diagrams with another structure of
the semiring

Y1 +t Y2 = (Y t
1 + Y t

2)t = (n1 + n′1)⊕ (n2 + n′2)⊕ · · · .

and
max(Y1,Y2) = (min(Y t

1,Y
t
2))t .

For the dual monoid, we have a dual partial subtraction,

Y1 −t Y2 = Y = (n1 − n′1)⊕ · · · ,

if Y +t Y2 = Y1. This means that n1 − n′1 ≥ n2 − n′2 ≥ . . ..
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Young diagrams and polynomial irreps of GL
Young diagrams with at most n rows (elements of the monoid with at
most k summands) classify polynomial irreducible representations
(irreps) of GL(n,C). Namely character of V ((k1)⊕ ·(kn)) is the Schur
function s(k1,...,kn).
For (k), the Schur function s(k)(x1, . . .) =

∑
i1≤...≤ik xi1 · · · xik is called a

full symmetric functions. These functions can be defined from∑
k

hk tk =
∏

n

(1− xnt)−1.

The Jacobi-Trudy matrix is of the form

(hi−j)i,j≥1.

The Jacobi-Trudy identities express Schur functions as minors of
above matrices with columns set (kn, kn−1 + 1 . . . , k1 + n − 1), .
Namely, we have

s(k1,...,kn) = det(hki−i+j)
n
i,j=1.

We consider Schur functions as functions on the product space
Y × {x1, . . .}, where Y is the set of the Young diagrams.
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The Littlewood-Richardson rule

Schur polynomials form a vector space basis (over Z) of the ring of
symmetric polynomials in the variables x1, . . . xN . Since a product of
symmetric polynomials is symmetric, we can expand the result in
terms of Schur polynomials. In particular, define the
Littlewood-Richardson coefficients cλµ,ν by

sµ(x1, . . . xN)sν(x1, . . . xN) =
∑
λ

cλµ,νsλ(x1, . . . xN). (1)

The LR-rule is a combinatorial description of the coefficients cλµ,ν ,
namely it counts the number of semistandard Young tableaux of skew
shape λ \ µ and of weight ν.
The rule was first stated by D.E.Littlewood and A.R. Richardson (1934,
theorem III p.119), and the first rigorious proofs of the rule were given
byM.-P. Sch’́utzenberger (1976) (using some of ideas A. Lascoux and
G.P. Thomas) and G.P.Thomas (1974).
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For Young diagrams µ and ν, and N bigger than sum of part of µ and
ν, there holds

cµ⊕νµ,ν = 1 and c(µt⊕ν t )t

µ,ν .

Moreover the maximal Young diagram of (1) is (µt ⊕ ν t )t and the
minimal one is µ⊕ ν.
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Schur positivity
A symmetric function is Schur positive if its expansion on the basis of
the Schur functions involves non-negative coefficients only.
For example, for a quadruple of partitions µ, ν, µ′, ν ′, we have

sµsν − sµ′sν′ =
∑
λ

(cλµ,ν − cλµ′,ν′)sλ(x1, . . . xN). (2)

Then the LHS is Schur positive iff for any λ,

cλµ,ν − cλµ′,ν′ ≥ 0.

For example, for a set X and a tuple {i1, . . . , i2k+1} outside X , we have
bilinear relations

sX∪{i1,i3,...,i2k+1}sX∪{i2,i4,...,i2k} − sX∪{i2,i3,...,i2k+1}sX∪{i1,i4,...,i2k}

and

sX∪{i1,i3,...,i2k+1}sX∪{i2,i4,...,i2k} − sX∪{i2,i3,...,i2k−1,i2k}sX∪{i1,i4,...,i2k−2,i2k+1}.

These polynomials are Schur positive.
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Questions on Schur positivity of several types of expressions
sµsν − sµ′sν′ have been posed and studied in series of works, see
[2, 7, 3, 6].
Lam, Postnikov, and Pyaljavskii [6] proved Schur positivity of

sµ∨νsµ∧ν − sµsν , (3)

and affirmatively answer to open problems in [2, 7, 3, 6].
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Base affine space
The coordinate ring of affine cone of the full flag variety, base affine
space SLn is a subalgebra of C[xij , i ≤ j ≤ n] span by flag minors ∆I ,
I ⊂ [n], of the upper-triangular matrices
X = (xij , i ≤ j ≤ n, 0, otherwise). Moreover it is the invariant
subalgebra of C[xij , i ≤ j ≤ n] under the action of the group of
unitriangular matrices U,

C[SLn//N] = C[X ]N .

We say that a function on the base affine space, that is a polynomial in
flag minors, is Scgur positive, if its evaluation at the Jacobi-Trudy
matrix is Schur positive.
The bi-linear expressions considered in LPP can be put in such a form
of Schur positivity functions on the base affine space. This is one of
reasons for us interested in such form of Schur positivity.
LPP results follows from Schur positivity of following functions: for a
subsets I = {i1, i2, . . . , ik} and J = {j1, . . . , jk} and
I ∨ J = {max(i1, j1), . . . ,max(ik , jk )}, I ∧ J = {min(i1, j1), . . . ,min(ik , jk )},
then the polynomial are Schur positive

∆I∨J∆I∧J −∆I∆J .
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Cluster algebra

S.Fomin and A.Zelevinsky invented cluster algebras in 2001 in their
study of positivity of dual canonical basis. Let us briefly recall the
formalism of cluster algebras: For a positive integer r , an r -regular
tree, denoted by Tr , whose edges are labeled by 1, . . . , r , so that the r
edges emanating from each vertex receive different labels. We denote
by t0 the root of Tr . Then an edge of Tr is denoted by t→|k t ′,
indicating that vertices t , t ′ ∈ Tr form an edge (t , t ′) of Tr and k ∈ [r ] is
the color of this edge.
For a case of geometric cluster algebras, a cluster seed is a pair: an
ice quiver, Q = (V ,E), and a tuple of variables x = (xj , j ∈ V ), such
that the collection {xj , j ∈ V} generates a field
C[xk , k ∈ Vf ](xj , j ∈ Vm).
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Let us assign a cluster seed to a root t0 of the tree Tr with r = |Vm|,
and denote by (xt0 ,Qt0) this seed. A seed pattern is an assignment of
a cluster seed (xt = (xj;t )j∈V (Qt ),Qt ) to every vertex t ∈ Tm, such that
the seeds assigned to the endpoints of any edge t →k t ′ are obtained
from each other by the seed mutation µk , k ∈ Vm. The mutation µk
transforms the quiver and variables. Namely the mutation sends Qt
into a new quiver Qt ′ = µk (Qt ) via a sequence of three steps. Firstly,
for each oriented two-arrow path u → k → w , u, w ∈ V (Qt ), add a new
arrow u → w . Secondly, reverse the direction of all arrows incident to
the vertex v . Finally, repeatedly remove oriented 2-cycles until unable
to do so.
The mutation µk assigns the variables to the vertices of µk (Qt ) by the
following mutation rule: µk (xj;t ) = xj;t if j 6= k , and

µk (xk ;t ) =

∏
(i,k)∈E(Qt )

xi;t +
∏

(k ,j)∈E(Qt )
xj;t

xk ;t
. (4)
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The ring C[SLn/N] of regular functions on SLn invariant under left
multiplication by N is a A-cluster algebra. We are interested in cluster
variables of this algebra, special polynomials in flag minors. (One of
our conjectures is that they are Schur positive.)
Custer variables are Laurent polynomials on variables of an initial
seed. A seed is a pair of a quiver (a directed graph) and variables of a
ring being assigned to the quiver vertices.
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For a reduced decomposition i = i1 . . . il(w0) of the longest element w0
of the Weyl group (the group of permutations of [n] for SLn),
Berenstein, Fomin and Zelevinsky defined a seed Σ(i) by the rule. The
vertices of the quiver Γi are vk , k = 1, . . . ,N and v−i ,
−i ∈ [−n] := {−1, . . . ,−n − 1}.
The edges are defined as follows. For k ∈ [−n] we set ik = −k . For
k ∈ [l(w0)] we denote by k+ = k+

i the smallest ` such that k < ` and
i` = ik . If no such ` exists, we set k+ = l(w0) + 1. For k ∈ [l(w0)], we
further let k− be the largest index ` with that ` < k and i` = ik .
There is an edge connecting vk and v` with k < ` if at least one of the
two vertices is mutable and one of the following conditions is satisfied:

1 ` = k+,
2 ` < k+ < `+, ck ,` < 0 and k , ` ∈ [N].

Edges of type (1) are called horizontal and are directed from k to `.
Edges of type (2) are called inclined and are directed from ` to k .
The frozen vertices constitute the set v−i , −i ∈ [−n] union vk such that
k+ > N.
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The cluster variables of S(i) are the flag minors ∆i|≤kωik
,ωik

, k ∈ [N],
where i|≤k denotes the subword i of the first k letters, and ∆ωi ,ωi

attached to vertices vk and v−i respectively.
We can mutate at any unfrozen vertex vk . This changes the quiver and
the variables. The new variables is obtained by the A-cluster mutation
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We consider an initial seed corresponding to the reduced
decomposition 121321 · · · n− 1n− 2 · 21. The quiver Γ is the triangular
graph embedded in the plane with the vertex set {i , j}, 1 ≤ i ≤ j ≤ n,
and the edges ((i , j), (i + 1, j + 1)), ((i , j)→ (i − 1, j), ((i , j)→ (i , j − 1),
1 ≤ i ≤ j ≤ n.
The variable attached to the vertex v = (i , j) is the flag minor
∆{i,i+1,...,i+j−1}. We call such minors as interval minors.
The cluster algebra with the such an initial seed contains all flag minors
and the Laurent polynomials in the interval flag minors are polynomials
in the set of all flag ∆I , I ⊂ [n]. In the coordinate ring C[SLn/N], these
Laurent polynomials are polynomials in the flag minors indeed.
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The free commutative monoid and subsets of N
The map

(k1)⊕ . . .⊕ (kn)→ {kn, kn−1 + 1, . . . , k1 + n − 1},

a bijection between Young diagrams and subsets of N.
The inverse image under this map of an interval [i , i + 1, . . . , i + j − 1]
is j − 1 sums of (i),

(i)⊕ (i)⊕ . . .⊕ (i) =: (i)j .

Thus the specification of variables of the initial seed to the Jacob-Trudy
matrix yields the seed with variables being Schur functions of
rectangular shapes (i)j .

Theorem

Any cluster polynomial is Schur positive.
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This theorem is due to joint work with D.Mironov and H.Oja. Here is an
outline of the proof: we use results of D. Hernandes and B. Leckerc [4]
on that the coordinate ring of the base affine space, C[SLn/N], is
isomorphic to the (complexified) Grothendieck ring of a monoidal
subcategory of the finite-dimensional module category of the quantum
affine algebra Uq(ŝln). Specifically, this isomorphism sends the dual
canonical basis to the class of simple modules. Recently,
Kang-Kashiwara-Kim-Oh [?] proved that cluster monomials of C[N] are
contained in the dual canonical basis via categorification by quiver
Hecke algebra. Thus, using above isomorhism due to
Hernandes-Leclerc, we get that cluster monomials correspond to the
class of simple modules. Since Uq(sln) is a Hopf subalgebra of
Uq(ŝln), we get a decomposition of simple modules of Uq(ŝln) into
simple modules Uq(sln). We show that such a decomposition
corresponds to the decomposition in Schur functions. This implies the
desired positivity.
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Some examples to this theorem:
Mutations at four valency vertices produce Schur functions and any
Scur function is obtained by a sequence of mutations.
A simplest cluster variable, which is not a flag minor, is a quadratic
polynomial in flag minors. Here are examples of such a variable

∆i−1,[i+1,i+j+1]∆[i,i+j−1] −∆i−1,[i+1,i+j−1]∆[i,i+j+1].

The specialization of such a polynomial to the Schur functions gives us
a quadraic polynomial in Schur functions

s(i j+1,i−1)si j − si j+2s(i j−1,i−1). (5)

Such functions are Schur positive. Some examples of calculations:

s(22)s(4)s(333) + s(44)s(3)s(222)

s(33)
= s(4322) + s(5321) + s(632)
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s(5)s(444)s(22) + s(55)

(
s(22)s(4)s(333)+s(44)s(3)s(222)

s(33)

)
s(44)

= s(5422)+s(6421)+s(742)

(
s(3333)s(4322) + s(5321) + s(632)

)
+ s(2222)s(444)s(3)

s(333)
= s(43322) + s(53321) + s(6332)

These cluster variables fit into the following case. Scandera
established the sufficient condition of Schur positivity for

∆I∆J −∆I′∆J′ (6)

is Schur positive if, for any interval K ⊂ N, there holds

max(|I ∩ K |, |J ∩ K |) ≤ max(|I′ ∩ K |, |J ′ ∩ K |). (7)

All cluster variables of the form (6) satisfy (7), and thus are Schur
positive. However, in contrast to Lam and al.[6] , this methods is not
helpful for higher order mutations.
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s(33)s(5)(s(443111) + s(54311) + s(5531)) + (s(332111) + s(43211) + s(4421))s(4)s(55)

s(44)
= s(5333111) + s(5432111) + s(543311) + s(544211) + s(54431) + s(553211)

+ s(55421) + s(6332111) + 2s(633311) + s(6422111) + s(6431111) + 3s(643211)
+ 2s(64331) + s(644111) + 2s(64421) + s(6443) + s(652211) + s(653111)
+ 2s(65321) + s(65411) + s(6542) + s(7331111) + 2s(733211) + s(73331)
+ s(7421111) + 2s(742211) + 3s(743111) + 3s(74321) + s(7433) + 2s(74411)
+s(7442)+s(752111)+2s(75221)+2s(75311)+s(7532)+s(7541)+2s(833111)
+ s(83321) + 2s(842111) + s(84221) + 3s(84311) + s(8432) + s(8441)
+ 2s(852,11) + s(8522) + s(8531) + s(93311) + s(94211) + s(9431) + s(9521)
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Theorem

Let Qin be the initial seed of the cluster algebra C[SLw0,e
N ].Let P be a

cluster polynomial in flag minors. Then the expansion of the Schur
specialization of P on the basis of Schur functions has terms labeled
by lexmin and lexmax partitions with coefficients 1. Moreover these
lexmin and lexmax partitions can be obtained by following the same
sequence of mutations from Qin as for a cluster variables
corresponding to P but with respect to the two tropical semirings on
the partitions.
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For example,(
s(5,3,2,2,2) + s(6,3,2,2,1) + s(7,3,2,2)

)
s(4,4,3)s(3,3) + s(3)s(3,3,3,3)s(2,2,2)s(5,5)

s(4,3,3,2,2,2)+s(4,4,2,2,2,2)+s(4,4,3,2,2,1)+s(5,3,3,2,2,1)+s(5,4,2,2,2,1)+s(5,4,3,2,1,1)
+s(5,4,3,2,2)+s(5,5,2,2,1,1)+s(5,5,3,2,1)+s(6,3,3,2,2)+s(6,4,2,2,2)

+s(6,4,3,2,1)+s(6,5,2,2,1)+s(6,5,3,2)+s(6,6,2,2)
= s(5,4,3,3) + s(6,4,3,2) + s(7,4,3,1) + s(8,4,3)

the lexmin of concatenations of the numerator is
(5,4,4,3,3,3,3,2,2,2), and subtracting lexmin of denominator
(4,3,3,2,2,2) yields (5,4,3,3) of RHS; lexmax sums, the nominator
yields (14,10,5,2), the denominator (6,6,2,2), and we get (8,4,3) of
RHS. Note that the support here is the segment [(5,4,3,3), (8,4,3)].

Conjecture

Any such a polynomial as a linear combination of Schur function has
the full support. Namely, for a cluster polynomial, all integer points of
the convex hull of vectors corresponding to partitions which support
the Schur functions of the corresponding linear combination
correspond to summands with positive coefficients.
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Conjecture
If, for a cluster variable, the convex hull of the support of the Young
diagrams is not a segment and a triangle, then this convex hull has no
interior integer points.
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Computation experiments which lead us to conjectures 1.2 and 1.3
were preformed using SageMath open source computer algebra
system and polymake software for polyhedral geometry research.
Note that identity check for cluster seeds actually can be done by
checking that sets of arrays (footprint of the seed), associated with
non-frozen subset of the seed, are identical(if this would occur not true,
than the problem of comparing cluster seeds would involve
NP-complete graph isomorphism problem). Each seed is encoded by
it’s exchange matrix (in the form of graph dictionary - mapping of pairs
of vertices to number of edges connecting them), mapping of vertices
to arrays, an mapping of vertices to Schur polynomials. We don’t store
or compute cluster variables.
To do mutation of cluster seed one needs to rearrange graph
dictionary around mutating vertex and calculate new array using array
multiplication and sum, that is done in [Koshevoy, 2014] by
identification of cluster seeds with patterns of Young tableaux.
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As identical seeds should have same associated Schur polynomials,
our algorithm can start costly procedure of Schul polynomial
computation when we get new seed. Moreover, we can identify Schur
polynomials with arrays and compute new polynomial only when we
encounter new array (as you can see, number of arrays grows much
slower than number of seeds). For Schur polynomial computations we
used SageMath. This computer algebra system already had efficient
algorithm for Schur polynomial multiplication in infinite-dimensional
algebra of symmetric functions over Q.
On other hand division of symmetric functions in Schur polynomial
basis is not presented in SageMath toolkit. One method of dividing
Schur polynomials is to make set of liniar equations corresponding to
equation

∑
λ aλsλ = (

∑
µ bµsµ)(

∑
ν cνxν), which involves huge linear

equations systems with coefficients computed from
Littlewood-Richardson rule.
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However, in our case we know that mutation of vertex should always
yeild some sum of Schur polynomials, so division will be always
successful. In this case we can change basis of algebra of symmetric
functions to some algebraically independent basis (basis of
elementary symmetric polynomials eλ) and do multivariative
polynomial division there with respect to any monomial order. Lastly
one needs to convert result polynomial in elementary symmetric basis
into Schur polynomial basis. This provides efficient way to compute
mutation of Schur polynomials, yet it still takes significant time to
complete, especially when some of components involved consist of
thousand elementary Schur polynomials.
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