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INTRODUCTION



Picard-Vessiot theory of ordinary differential equation

(k, ∂) differential ring. Const(k) = {c ∈ k|∂c = 0} is supposed to be a field.

(ODE ) (an∂
n + an−1∂

n−1 + . . .+ a0)y = 0, a0, . . . , an−1, an ∈ k.
a−1
n is supposed to exist.

Definition
1. Let y1, . . . , yn be Const(k)-linearly independent solutions of (ODE ).

Then {y1, . . . , yn} is called a fundamental set of solutions of (ODE )
and it generates a Const(k)-module of dimension at most n.

2. If 1 M = k{y1, . . . , yn} and Const(M) = Const(k) then M is called
a Picard-Vessiot extension related to (ODE )

3. Let k ⊂ K1 and k ⊂ K2 be differential rings. An isomorphism of
rings σ : K1 → K2 is a differential k-isomorphism if

∀a ∈ K1, ∂(σ(a)) = σ(∂a) and, if a ∈ k, σ(a) = a.
If K1 = K2 = K, the differential galois group of K over k is by

Galk(K) = {σ|σ is a differential k-automorphism of K}.

1. Let R1,R2 be differential rings s.t. R1 ⊂ R2. Let S be a subset of R2.
R1{S} denotes the smallest differential subring of R2 containing R1.
R1{S} is the ring (over R1) generated by S and their derivatives of all orders.



ALGEBRAIC COMBINATORIAL ASPECTS



Notations

◮ Let (X ∗, 1X∗) (resp. (Y ∗, 1Y ∗)) be the free monoid generated by
X := {x0, . . . , xm} (resp. Y := {yk}k≥1). X will denote X or Y .
Let A〈X 〉 (resp. A〈〈X 〉〉) be the set of polynomials (resp. formal series)
over X and with coefficients in the commutative ring A.

◮ For x , y ∈ X , yi , yj ∈ Y and u, v ∈ X ∗ (resp. Y ∗), one defines on
◮ H ⊔⊔ (X ) := (A〈X 〉, conc, 1X∗ ,∆ ⊔⊔ , e), ∆ ⊔⊔ x = x ⊗ 1X∗ +

1X∗ ⊗ x , or equivalently u ⊔⊔ 1X∗ = 1X∗ ⊔⊔ u = u and
xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v),

◮ H (Y ) := (A〈Y 〉, conc, 1Y ∗ ,∆ , e), ∆ yi = yi ⊗ 1Y ∗ +
1Y ∗ ⊗ yi +

∑

k+l=i yk ⊗ yl , or equivalently
u 1Y ∗ = 1Y ∗ u = u and
xiu yjv = yi (u yjv) + yj(yiu v) + yi+j(u v).

◮ Considering A as the differential ring of holomorphic functions on a
simply connected domain Ω, denoted by (H(Ω), ∂) and equipped 1Ω
as the neutral element, the differential ring (H(Ω)〈〈X 〉〉,d) is
defined as follows

∀S ∈ H(Ω)〈〈X 〉〉, dS =
∑

w∈X∗

(∂〈S |w〉)w ∈ H(Ω)〈〈X 〉〉.

Const(H(Ω)) = C.1Ω and Const(H(Ω)〈〈X 〉〉) = C.1Ω〈〈X 〉〉.



Representative series and Sweedler’s dual
Theorem (rational series 2)
Let S ∈ A〈〈X 〉〉. The following assertions are equivalent

1. The series S belongs to 3 Arat〈〈X 〉〉.

2. There exists a linear representation (ν, µ, η) (of rank n) for S with
ν ∈ M1,n(A), η ∈ Mn,1(A) and a morphism of monoids
µ : X ∗ → Mn,n(A) s.t. S =

∑

w∈X∗(νµ(w)η)w.

3. The shifts 4 {S ⊳ w}w∈X∗ (resp. {w ⊲ S}w∈X∗) lie within a finitely
generated shift-invariant A-module.

Moreover, if A is a field K, previous assertions are equivalent to

4. There exists (Gi ,Di )i∈Ffinite s.t. ∆conc(S) =
∑

i∈Ffinite
Gi ⊗ Di .

Hence,
H◦

⊔⊔
(X ) = (K rat〈〈X 〉〉, ⊔⊔ , 1X∗ ,∆conc, e),

(resp. H◦ (Y ) = (K rat〈〈Y 〉〉, , 1X∗ ,∆conc, e)).

2. This form is a version over a ring of the form presented at CAP’2018.

3. Arat〈〈X 〉〉 is the (algebraic) closure by {conc,+, ∗} of Â.X in A〈〈X 〉〉. It is
closed under ⊔⊔ . Arat〈〈Y 〉〉 is also closed under .
4. The left (resp. right) shift of S by P is P ⊲ S (resp. S ⊳ P) defined by, for

w ∈ X ∗, 〈P ⊲ S |w〉 = 〈S |wP〉 (resp. 〈S ⊳ P|w〉 = 〈S |Pw〉).



Kleene stars of the plane and conc-characters
Theorem (rational exchangeable series 5)
Let Aexc〈〈X 〉〉 be the set of (syntactically) exchangeable 6 series and
Arat

exc
〈〈X 〉〉 the set of series admitting a linear representation with

commuting matrices (hence, exchangeable). Then 7

1. Arat

exc
〈〈X 〉〉 ⊂ Arat〈〈X 〉〉 ∩ Aexc〈〈X 〉〉. The equality holds when A is a

field and, if X is finite then Arat

exc
〈〈X 〉〉 = ⊔⊔ {Arat〈〈x〉〉}x∈X .

2. If A is a Q-algebra without zero divisors, {x∗}x∈X (resp. {y∗}y∈Y )
are algebraically independent over (A〈X 〉, ⊔⊔ , 1X∗) (resp.
(A〈Y 〉, , 1Y ∗)) within (Arat〈〈X 〉〉, ⊔⊔ , 1X∗) (resp.
(Arat〈〈Y 〉〉, , 1Y ∗)). Moreover, x∗ is a conc-character.

3. For any x ∈ X , one has Arat〈〈x〉〉 = {P(1− xQ)−1}P,Q∈A[x] and if
A = K is an algebraically closed field then one also has
K rat〈〈x〉〉 = spanK{(ax)

∗
⊔⊔ K 〈x〉|a ∈ K}.

4. ∀S ∈ K 〈〈X 〉〉, K being a field,

∆conc(S) = S ⊗ S , 〈S |1X∗〉 = 1 ⇐⇒ S =

(
∑

x∈X

cxx

)∗

with cx ∈ K .

5. This form is a version over a ring of the form presented at CAP’2018.
6. i.e. if S ∈ Aexc〈〈X 〉〉 then (∀u, v ∈ X ∗)((∀x ∈ X )(|u|x = |v |x) ⇒ 〈S |u〉 = 〈S |v〉).
7. Let S ∈ A〈〈X 〉〉 s.t. 〈S |1X∗〉 = 0. Then S∗ =

∑
n≥0 S

n, so called Kleene star of S .



Triangular sub bialgebras of (Arat〈〈X 〉〉, ⊔⊔ , 1X ∗,∆conc, e)
Let (ν, µ, η) be a linear representation of R ∈ Arat〈〈X 〉〉 and L be
the Lie algebra generated by {µ(x)}x∈X .
Let M(x) := µ(x)x , for x ∈ X . Then R = νM(X ∗)η. If {µ(x)}x∈X
are triangular then let D(X ) (resp. N(X )) be the diagonal (resp.
nilpotent) letter matrix s.t. M(X ) = D(X ) + N(X ) then
M(X ∗) = ((D(X ∗)T (X ))∗D(X ∗)). Moreover, if X = {x0, x1} then
M(X ∗) = (M(x∗1 )M(x0))

∗M(x∗1 ) = (M(x∗0 )M(x1))
∗M(x∗0 ).

If A is an algabraically closed field, the modules generated by the
following families are closed by conc, ⊔⊔ and coproducts :
(F0) E1x1 . . .Ejx1Ej+1, where Ek ∈ Arat〈〈x0〉〉,
(F1) E1x0 . . .Ejx0Ej+1, where Ek ∈ Arat〈〈x1〉〉,
(F2) E1xi1 . . .EjxijEj+1, where Ek ∈ Arat

exc
〈〈X 〉〉, xik ∈ X .

It follows then that

1. R is a linear combination of expressions in the form (F0)
(resp. (F1)) iff M(x∗1 )M(x0) (resp. M(x∗0 )M(x1)) is nilpotent,

2. R is a linear combination of expressions in the form (F2) iff L
is solvable. Thus, if R ∈ Arat

exc
〈〈X 〉〉 ⊔⊔ A〈X 〉 then L is nilpotent.



NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS



Iterated integrals and Chen series
Let A := H(Ω) and C0 be a differential subring of A (∂(C0) ⊂ C0) which
is an integral domain containing C.
C{{(gi )i∈I}} denotes the differential subalgebra of A generated by (gi )i∈I ,
i.e. the C-algebra generated by gi ’s and their derivatives

{ux}x∈X : elements in C0 ∩ A
−1 in correspondence with {θx}x∈X (θx = u−1

x ∂).

The iterated integral associated to xi1 . . . xik ∈ X
∗, over the differential forms

ωi (z) = uxi (z)dz , and along a path z0  z on Ω, is defined by
αz
z0
(1X∗) = 1Ω,

αz
z0
(xi1 . . . xik ) =

∫ z

z0

ωi1(z1) . . .

∫ zk−1

z0

ωik (zk).

∂αz
z0
(xi1 . . . xik ) = uxi1 (z)

∫ z

z0

ωi2(z2) . . .

∫ zk−1

z0

ωik (zk).

spanC{∂
lαz

z0
(w)}w∈X∗,l≥0 ⊂ spanC{{(ux )x∈X }}{α

z
z0
(w)}w∈X∗

⊂ span
C{{(u±1

x )x∈X}}
{αz

z0
(w)}w∈X∗

∼= C{{(u±1
x )x∈X }} ⊗C spanC{α

z
z0
(w)}w∈X∗?

The Chen series, over {ωi}i∈I and along z0  z on Ω, is defined by

Cz0 z := 1Ω1X∗ +
∑

w∈X∗X

αz
z0
(w)w .



Noncommutative differential equations
The Chen series, over {ωi}i∈I and along z0  z on Ω, satisfies

(NCDE ) dS = MS , with M =
∑

x∈X

uxx (M is ⊔⊔ −primitive).

More generally, Cz0 z satisfies dkS = QkS , with Qk ∈ C{{(u±1
x )x∈X }}〈X 〉

satisfying the recursion 8 Q0 = 1 and Qk = Qk−1M + dQk−1 (k ≥ 0).

1. The space of solutions of (NCDE ) is a right free C〈〈X 〉〉-module of
rank 1.

2. By a theorem of Ree, Cz0 z is a ⊔⊔ −group-like solution of (NCDE )
and it can be obtained as the limit of a convergent Picard iteration,
initialized at 〈Cz0 z |1X∗〉 = 1Ω1X∗ , for ultrametric distance.

3. If G and H are ⊔⊔ −group-like solutions (NCDE ) there is a
constant Lie series C such that G = HeC (and conversely).

8. More explicitly, Qk can be computed as follows (summing over words
w = xi1 . . . xik and derivation multiindices r = (r1, . . . , rk) of degree
deg r =|w |= k and of weight wgt r = k + r1 + . . .+ rk)

Qk =
∑

wgt r=k

w∈Xdeg r

deg r∏

j=1

(∑j

j=1 rj + j − 1

rk

)
τr(w), where

τr(w) = τr1(xi1) . . . τrk (xik ) = (∂r1uxi1 )xi1 . . . (∂
rkuxik )xik ∈ C{{(u±1

x )x∈X }}〈X〉.



First step of noncommutative PV theory
From this, it follows that

◮ the differential Galois group of (NCDE ) + ⊔⊔ −group-like is the
group 9 {eC}C∈LieC.1Ω 〈〈X〉〉.

Which leads us to the following definition

◮ the PV extension related to (NCDE ) is Ĉ0.X{Cz0 z}.

It, of course, is such that Const(C0〈〈X 〉〉) = ker d = C.1Ω〈〈X 〉〉.

On the other hand, the iterated integrals 10 satisfy
∀u, v ∈ X ∗, αz

z0
(u ⊔⊔ v) = αz

z0
(u)αz

z0
(v),

or equivalently, the Chen series satisfies

Cz0 z0 = 1Ω and Cz0 z =
∑

w∈X∗

αz
z0
(Sw )Pw =

ց
∏

l∈LynX

eα
z
z0
(Sl )Pl ,

where LynX denotes the set of Lyndon words related to X , the linear
basis {Pw}w∈X∗ (expanded after the basis {Pl}l∈LynX of LieC.1Ω〈X 〉)
and its graded dual basis {Sw}w∈X∗ (which contains the pure
transcendence basis {Sl}l∈LynX of the C− ⊔⊔ algebra).

9. In fact, the Hausdorff group (group of characters) of H ⊔⊔ (X ).
10. Due to the fact that Ω is simply connected, the value of these iterated
integrals only depend on the endpoints, (z0, z), and not on the path.



Linear and algebraic independences over a differential field
Theorem (Basic triangular theorem over a differential field 11)
Let C0 a differential subfield of A. Let S ∈ A〈〈X 〉〉 be a ⊔⊔ −group-like

solution of dS = MS, with M =
∑

x∈X

uxx and ux ∈ C0 ⊂ A. The following

assertions are equivalent

1. the family {〈S |w〉}w∈X∗ is C0-linearly independent,

2. the family {〈S |l〉}l∈LynX is C0-algebraically independent,

3. the family {〈S |x〉}x∈X is C0-algebraically independent,

4. the family {〈S |x〉}x∈X∪{1X∗} is C0-linearly independent,

5. the family {ui}i∈I of C0 is s.t., for f ∈ C0 and {ci}i∈I in C, one has
∑

i∈I

ciui = ∂f =⇒ (∀i ∈ I )(ci = 0),

6. ∂C0 ∩ spanC{ui}i=0,...,m = {0}.
Remarque
In case A = H(Ω) with ∅ 6= Ω connex, this theorem holds when C0 is
only a differential ring.
11. This form is a group-like version of the abstract form of (Deneufchâtel,
Duchamp, HNM & Solomon, 2011).



Linear & algebraic independences over a differential ring
Theorem (Basic triangular theorem over a differential ring 12)
Let S ∈ A〈〈X〉〉 be a group-like solution of

dS = MS , with M =
∑

x∈X

uxx and ux ∈ C0 ⊂ A,

where the commutative associative ring A, equipped with the differential
operator ∂, is supposed to contain Q. Then we have

(1) If H ∈ A〈〈X〉〉 is an other group-like solution then there exists
C ∈ LieA〈〈X 〉〉 such that S = HeC (and conversely).

(2) If C0 is a differential C-subalgebra of A, the following assertions are
equivalent

(a) {〈S |w〉}w∈X∗ is C0-linearly independent.
(b) (〈S |Sl 〉)l∈LynX is C0-algebraically independent.
(c) (〈S |x〉)x∈X∪{1X∗} is C0-algebraically independent.
(d) {〈S |x〉}x∈X∪{1X∗} is C0-linearly independent.
(e) Let W (f1, f2) = d(f1)f2 − f1d(f2) (wronskian). For all

(f1, f2) ∈ C0 × C
×
0 and c = (cx)x∈X ∈ C(X ), one has

W (f1, f2) = f 22
∑

x∈X

cxux =⇒ (∀x ∈ X )(cx = 0).

12. see also in the talk by G.H.E. Duchamp



Examples of positive cases over X = {x},A = (H(Ω), ∂)

1. Ω = C, ux(z) = 1Ω, C0 = C{{u±1
x }} = C.

αz
0(x

n) = αz
0(x

⊔⊔ n/n!) = zn/n!, for n ≥ 1. Thus, dS = xS and

S =
∑

n≥0

αz
0(x

n)xn =
∑

n≥0

zn

n!
xn = ezx .

Moreover, αz
0(x) = z which is transcendent over C0

and the family {αz
0(x

n)}n≥0 is C0-free. Let f ∈ C0 then ∂f = 0. Thus,
if ∂f = cux then c = 0.

2. Ω = C\]−∞, 0], ux (z) = z−1, C0 = C{{z±1}} = C[z±1] ⊂ C(z).

αz
1(x

n) = αz
1(x

⊔⊔ n/n!) = logn(z)/n!, for n ≥ 1. Thus dS = z−1xS
and

S =
∑

n≥0

αz
1(x

n)xn =
∑

n≥0

logn(z)

n!
xn = zx .

Moreover, αz
1(x) = log(z) which is transcendent over C(z) then

over C[z±1]. The family the family {αz
1(x

n)}n≥0 is C(z)-free and
then C0-free. Let f ∈ C0 then ∂f ∈ spanC{z

±n}n 6=1. Thus,
if ∂f = cux then c = 0.



Examples of negative cases over X = {x},A = (H(Ω), ∂)

1. Ω = C, ux(z) = ez , C0 = C{{e±z}} = C[e±z ].

αz
0(x

n) = αz
0(x

⊔⊔ n/n!) = (ez − 1)n/n!, for n ≥ 1. Thus, dS = ezxS
and

S =
∑

n≥0

αz
0(x

n)xn =
∑

n≥0

(ez − 1)n

n!
xn = e(e

z−1)x .

Moreover, αz
0(x) = ez − 1 which is not transcendent over C0 and

{αz
0(x

n)}n≥0 is not C0-free. If f (z) = cez ∈ C0 (c 6= 0) then
W (f , 1Ω) = ∂f (z) = cez = cux(z).

2. Ω = C\]−∞, 0], ux (z)= za(a /∈ Q),
C0 = C{{z , z±a}} = spanC{z

ka+l}k,l∈Z.

αz
0(x

n) = αz
0(x

⊔⊔ n/n!) = (a + 1)−nzn(a+1)/n!, for n ≥ 1. Thus,
dS = zaxS and

S =
∑

n≥0

αz
0(x

n)xn =
∑

n≥0

zn(a+1)

(a + 1)nn!
xn = e(a+1)−1z (a+1)x .

Moreover, αz
0(x) = (a+ 1)−1za+1 which is not transcendent over C0

and {αz
0(x

n)}n≥0 is not C0-free. If f (z) = c(a+ 1)−1za+1 ∈ C0
(c 6= 0) then W (f , 1Ω) = ∂f (z) = cza = cux(z).



EXTENDED REGULARIZATION OF DIVERGENT
POLYZETAS BY NEWTON-GIRARD FORMULA



Families of eulerian functions
∀r ≥ 1, Γyr (1 + z) := e−fr (z) and Byr (a, b) := Γyr (a)Γyr (b)/Γyr (a+ b),
where, for any z ∈ C such that |z |< 1,

f1(z) := γz −
∑

k≥2

ζ(k)(−z)k/k and fr (z) := −
∑

k≥1

ζ(kr)(−z r )k/k , r ≥ 2.

For r ≥ 1, let ϑ = e2iπ/r . We have, for |z | < 1,

fr (z) = −
∑

k≥1

ζ(kr)(−z r )k/k =
r−1∑

j=0

f1(ϑ
jz) = −

r−1∑

j=0

log(Γ(1 + ϑjz)).

Taking the exponential and using Weierstrass factorization, we also have

e fr (z) =
r−1∏

j=0

1

Γ(1 + ϑjz)
=

r−1∏

j=0

eγϑ
jz
∏

n≥1

(

1 +
ϑjz

n

)

e−
ϑj z
n .

Proposition
{fr}r≥1 and {e fr }r≥1 ∪ {1Ω} are

13 C-linearly independent.
Moreover, fr is holomorphic 14 on the open unit disc and e fr (resp. e−fr )
is entire (resp. meromorphic) admitting a countable set of isolated zeros

(resp. poles) on the complex plan which is
⋃r−1

j=0 ϑ
jN≤−1, for r ≥ 1.

13. Since (fr )r≥1 is triangular then (fr )r≥1 is C-linearly free. So is (e fr − 1)r≥1,
being triangular, then (e fr )r≥1 is C-linearly free and free from 1.
14. ∀r ≥ 2, ζ(2) ≥ ζ(r) ≥ 1 : this proves that the radius of convergence of any
the fr is exactly one. In other words fr is holomorphic on the open unit disc.



Independences by BTT (work in progress, 1/2)

M =
∑

yr∈Y

uyr yr , with

{
uyr = e fr∂fr

ωr (z) = uyr (z)dz

}

←→ C0 z =

ց
∏

l∈LynY

eα
z
0(Sl )Pl .

Let F := spanC{fr}r≥1, E := spanC{e
fr }r≥1 and let C[F ],C[E ] denote

their respective algebras. Let F := C{{(f ±1
r )r≥1}}, E := C{{(e±fr )r≥1}}.

Since, for any i , l , k ≥ 1, there exists qi,l,k ∈ ∂F \ C.1Ω such that
(∂ ie±fk )l = qi,l,ke

±lfk /∈ E then ∂E ⊂ C0 where 15

C0 := spanC{qi1,l1,r1 . . . qik ,lk ,rk e
l1fr1+...+lk frk }(i1,l1,r1),...,(lk ,rk )∈N+×Z+×N+,k≥1

⊂ span∂F{e
φr1,...,rk }r1,...,rk∈N+,k≥1 with φr1,...,rk := l1fr1 + . . .+ lk frk .

Let 0 6= g ∈ C0 ⊂ Fr(C0) and let {cr}r≥1 be a sequence, in C, such that

∂g =
∑

r≥1

crur =
∑

r≥1

cr∂e
fr =

∑

r≥1

cr (∂fr )e
fr .

∂g 6= 0 is impossible because Fr(C0) ∩ E = {0}.
Hence, ∂g = 0 and then ∀r ≥ 1, cr = 0. . . .

15. As linear combination of triangular holomorphic functions vanishing at
zero, φr1,...,rk is triangular and holomorphic satisfying φr1,...,rk (0) = 0 and
eφr1,...,rk is then entire. They are C-algebraically independent.
Moreover, similarly to {fr}r≥1 and {e fr }r≥1, the families (φr1,...,rk )k≥1 and
(eφr1,...,rk )k≥1 are C-linearly independent.



Independences by BTT (work in progress, 2/2)

Theorem
(e fr )r≥1 (resp. (fr )r≥1) is algebraically independent over ∂E (resp. ∂F).
Hence, C[E ] and ∂E are algebraically disjoint. So are C[F ] and ∂F .

Next, we have firstly the algebraic independence of {y∗}y∈Y over
(C〈Y 〉, ⊔⊔ , 1Y ∗) and then over (C.Y , ⊔⊔ , 1Y ∗).
Secondly, with ūr = ∂fr , r ≥ 1, taking iterated integrals, we get on the
one hand, αz

0(y
∗
r ) = e fr (z) and αz

0(y
n
r ) = αz

0(y
⊔⊔ n
r /n!) = f nr (z)/n!, n ≥ 0.

On the other hand, since (e fr )r≥1 and (fr )r≥1 are algebraically free
families, respectively, of C[E ] and C[F ] then, using the first fact and the
injectivity of αz

0 (restricted in this case), it follows that

Corollary
1. (e fr )r≥1 is algebraically independent over C[F ].

2. C[F ] and C[E ] are algebraically disjoint.

3. (fr )r≥1 is algebraically independent over C[E ].

4. (φr1,...,rk )k≥1 and (eφr1,...,rk )k≥1 are algebraically independent,
respectively, over C[F ] and C[E ].



Back to polylogarithms : u0(z) = z
−1, u1(z) = (1− z)−1

Here, Ω = ˜C \ {0, 1}, C = C{{u±1
0 , u±1 }} = C[z , z−1, (1− z)−1] ⊂ C(z) and

Cz0 z = L(z)(L(z0))
−1, where 16 L =

∑

w∈X∗

Liw w =

ց
∏

l∈LynX

eLiSl Pl ,

Lix0(z) = αz
1(x0) = log(z) and, for n1, . . . nr ∈ N+ and z ∈ C, |z |< 1,

Li
x
n1−1
0 x1...x

nr−1
0 x1

(z) = αz
0(x

n1−1
0 x1 . . . x

nr−1
0 x1) =

∑

k1>...>kr>0

zk1

kn1
1 . . . knr

1

.

The coefficients {Hys1 ...ysr
(n)}n≥1 are defined by the following Taylor expansion

1

1− z
Li

x
n1−1
0 x1...x

nr−1
0 x1

(z) =
∑

n≥0

Hys1 ...ysr
(n)zn.

The following morphisms of algebras are injective
Li• : (Q〈X 〉, ⊔⊔ , 1X∗) −→ (Q{Liw}w∈X∗ , ., 1) , w 7−→ Hw ,
H• : (Q〈Y 〉, , 1Y ∗) −→ (Q{Hw}w∈Y ∗ , ., 1) , w 7−→ Liw .

Hence 17, {Lil}l∈LynX and {Hl}l∈LynY are algebraically independent.

16. ∀k ≥ 1, ∃Qk ∈ C, dkCz0 z = (dkL(z))(L(z0))
−1 = QkL(z)(L(z0))

−1.
Moreover, the PV extension related to (NCDE ) is C〈〈X 〉〉{Cz0 z} = C〈〈X 〉〉{L}.
17. ∀l ∈ LynX \ {x0}, then l , Sl ∈ C+〈X 〉x1 and πY (l) ∈ LynY .
∀l ∈ LynY then πX (l) ∈ LynX \ {x0}.



Polyzetas and 3 characters of regularization

By a Abel’s theorem, for n1 > 1, one has
ζ(n1, . . . , nr ) := lim

z→1
Li

x
n1−1
0 x1...x

nr−1
0 x1

(z) = lim
n→+∞

Hyn1 ...ynr
(n),

Z := spanQ{Liw (1)}w∈x0X∗x1 = spanQ{Hw (+∞)}w∈Y ∗\y1Y ∗ .
We use then the one-to-one correspondences

(s1, . . . , sr ) ∈ Nr
+ ↔ ys1 . . . ysr ∈ Y ∗

πX

⇋
πY

x s1−1
0 x1 . . . x

sr−1
0 x1 ∈ X ∗x1.

The following poly-morphism is surjective

ζ :
(Q1X∗ ⊕ x0Q〈X 〉x1, ⊔⊔ , 1X∗)

(Q1Y ∗ ⊕ (Y − {y1})Q〈Y 〉, , 1Y ∗)
−։ (Z, ., 1),

mapping, both, x s1−1
0 x1 . . . x

sr−1
0 x1 and ys1 . . . ysr to ζ(s1, . . . , sr ).

It can be extended as characters as follows
ζ ⊔⊔ : (R〈X 〉, ⊔⊔ , 1X∗) −→ (R, ., 1),

ζ , γ• : (R〈Y 〉, , 1Y ∗) −→ (R, ., 1),
s.t. ζ ⊔⊔ (x0) = log(1) = 0, ζ (l) = ζ (πY l) = γπY l = ζ(l), for
l ∈ LynX − X , and
ζ ⊔⊔ (x1) = 0 = f.p.z→1 log(1− z), {(1− z)a logb(1− z)}a∈Z,b∈N,
ζ (y1) = 0 = f.p.n→+∞H1(n), {naHb

1(n)}a∈Z,b∈N,

γy1 = γ = f.p.n→+∞H1(n), {na logb(n)}a∈Z,b∈N.



Extensions of Li• and of H• (C = C{za, (1− z)b}a,b∈C)
Theorem (indexing by noncommutative rational series)
1. If R ∈ Crat〈〈X 〉〉 with minimal representation of dimension n then 18

y(z0, z) = αz
z0
(R) =: 〈R‖Cz0 z〉 = 〈R‖L(z)(L(z0))

−1〉.
There exists l = 0, .., n− 1 s.t. {∂ky}0≤k≤l is C-linearly independent
and al , . . . , a1, a0 ∈ C s.t. (al∂

l + al−1∂
l−1 + . . .+ a1∂ + a0)y = 0.

2. {Liw}w∈X∗ is C-linearly independent 19. Moreover, the kernel of the
following map is the ⊔⊔ -ideal is generated by x∗0 ⊔⊔ x∗1 − x∗1 + 1
Li• : (Crat

exc
〈〈X 〉〉 ⊔⊔ C〈X 〉, ⊔⊔ , 1X∗)։ (C{Liw}w∈X∗ , ., 1Ω), R 7→ LiR .

3. The algebra C{Liw}w∈X∗ is closed under the differential operators
θ0 = z∂, θ1 = (1− z)∂, and under their sections 20 ι0, ι1.

Theorem (Kleene stars of the plane)
By Newton-Girard formula, the arithmetic function H(tyr )∗ is given by 21

∀r ≥ 1, ∀t ∈ C, | t |< 1, H(tr yr )∗ =
∑

k≥0

Hyk
r
tkr = exp

(

−
∑

k≥1

Hykr

(−tr )k

k

)

and H(
∑

s≥1 asys )
∗H(

∑
s≥1 bsys )

∗ =H(
∑

s≥1(as+bs )ys+
∑

r,s≥1 asbr ys+r )∗ (|as |, |bs |< 1).

18. αz
z0
: Crat〈〈X 〉〉 → H(Ω) is not injective : αz

z0
(z0x

∗
0 + (1− z0)(−x1)

∗ − 1X∗) = 0.
19. The proof uses BTT (see also in the talk by G.H.E. Duchamp).
20. i.e. θ0ι0 = θ1ι1 = Id. Note also that [θ0, θ1] = θ0 + θ1 = ∂.

21. −
∑

k≥1 Hkr (−tr )k/k is termwise dominated by ‖fr‖∞ and then H(tr yr )∗ is

termwise dominated, in norm, by e fr .



Extended double regularization

Theorem (Regularization by Newton-Girard formula)
The characters ζ ⊔⊔ , γ• can be extended algebraically as follows

ζ ⊔⊔ : (C〈X 〉 ⊔⊔ Crat

exc
〈〈X 〉〉, ⊔⊔ , 1X∗) −→ (C, ., 1),

∀t ∈ C, | t |< 1, (tx0)
∗, (tx1)

∗ 7−→ 1C.
γ• : (C〈Y 〉 {Crat〈〈yr 〉〉}r≥1, , 1Y ∗) −→ (C, ., 1),

∀t ∈ C, | t |< 1, ∀r ≥ 1, (tryr )
∗ 7−→ Γ−1

yr
(1 + t).

Moreover, the morphism (C[{y∗
r }r≥1], , 1Y ∗) −→ (C[{e fr }r≥1],×, 1),

maps y∗
r to Γ−1

yr
, is injective 22 and Γy2r (1− t) = Γyr (1 + t)Γyr (1− t).

Corollary (comparison formula)
For any z , a, b ∈ C such that |z |< 1 and ℜa > 0,ℜb > 0, one has 23

Lix0[(ax0)∗ ⊔⊔ ((1−b)x1)∗](z) = Lix1[((a−1)x0)∗ ⊔⊔ (−bx1)∗](z) = B(z ; a, b),
(partial Beta function) and B(1; a, b) = B(a, b). Hence,

B(a, b) =
γ((a+b−1)y1)∗

γ((a−1)y1)∗ ((b−1)y1)∗
= ζ ⊔⊔ (x0[(ax0)

∗
⊔⊔ ((1− b)x1)

∗])

= ζ ⊔⊔ (x1[((a − 1)x0)
∗

⊔⊔ (−bx1)
∗]).

22. {y∗
r }r≥1 and {e fr }r≥1 are C-algebraically independent.

23. x0[(ax0)
∗

⊔⊔ ((1− b)x1)
∗] and x1[((a − 1)x0)

∗
⊔⊔ (−bx1)

∗] are of the form
(F2) which is closed by conc, ⊔⊔ and co-products.



Polyzetas and extended eulerian functions
For t0, t1 ∈ C, | t0 |< 1, | t1 |< 1, let R := t20 t1x0[(t0x0)

∗
⊔⊔ (t1x1)

∗]x1.
With ω0(z) = z−1dz and ω1(z) = (1− z)−1dz , we get

LiR(1) = t20 t1

∫ 1

0

ds

s

∫ s

0

(
s

r

)t0(1− r

1− s

)t1 dr

1− r

= t20 t1

∫ 1

0

(1− s)t0t1st0−1

∫ s

0

(1− r)t0−1r−t0dsdr .

By changes of variables, r = st and then y = (1− s)/(1− st), we obtain

ζ(R) = t20 t1

∫ 1

0

∫ 1

0

(1− s)t0t1(1− st)t0−1t−t0dtds

= t20 t1

∫ 1

0

∫ 1

0

(1− ty)−1t−t0y t0t1dtdy .

By expending (1− ty)−1 and then by integrating, we get on the one hand

ζ(R) =
∑

n≥1

t0
n − t0

t0t1
n − t20 t1

=
∑

k>l>0

ζ(k)tk0 t
l
1.

Since R = t0x0(t0x0 + t1x1)
∗t0t1x1 then we get also on the other hand

ζ(R) =
∑

k>0

∑

l>0

∑

s1+...+sl=k,s1≥2,s2...,sl≥1

ζ(s1, . . . , sl )t
k
0 t

l
1.

Identifying the coeffients of 〈ζ(R)|tk0 t
l
1〉, we deduce the sum formula

ζ(k) =
∑

s1+...+sl=k,s1≥2,s2...,sl≥1

ζ(s1, . . . , sl ).



Riemann zeta function and eulerian functions
For v = −u (|u |< 1), one gets

1

Γy1(1− u)Γy1(1 + u)
= exp

(

−
∑

k≥1

ζ(2k)
u2k

k

)

=
sin(uπ)

uπ
.

Taking the logarithms and then taking the Taylor expansions, one obtains

−
∑

k≥1

ζ(2k)
u2k

k
= log

(

1 +
∑

n≥1

(uiπ)2n

Γy1(2n)

)

=
∑

l≥1

(−1)l−1

l

∑

k≥1

(uiπ)2k
∑

n1,...,nl≥1
n1+...+nl=k

l∏

i=1

1

Γy1(2ni )

=
∑

k≥1

(uiπ)2k
∑

l≥1

(−1)l−1

l

∑

n1,...,nl≥1
n1+...+nl=k

l∏

i=1

1

Γy1(2ni )
.

One can deduce then the following expression for ζ(2k) :

ζ(2k)

π2k
= k

k∑

l=1

(−1)k+l

l

∑

n1,...,nl≥1
n1+...+nl=k

l∏

i=1

1

Γy1(2ni )
∈ Q.

Euler gave an other explicit formula using Bernoulli numbers {bk}k∈N :
ζ(2k)

(2iπ)2k
= −

b2k
2(2k)!

∈ Q.



More about Riemann zeta function and eulerian functions
γ(−t2y2)∗ = γ(ty1)∗γ(−ty1)∗

⇔ Γ−1
y2

(1− t) = Γ−1
y1

(1 + t)Γ−1
y1

(1− t)

⇔ e−
∑

k≥2 ζ(2k)t
2k/k =

sin(tπ)

tπ
=

∑

k≥1

(tiπ)2k

(2k)!
.

γ(−t4y4)∗ = γ(t2y2)∗γ(−t2y2)∗

⇔ Γ−1
y4

(1− t) = Γ−1
y2

(1 + t)Γ−1
y2

(1− t)

⇔ e−
∑

k≥1 ζ(4k)t
4k/k =

sin(itπ)

itπ

sin(tπ)

tπ
=

∑

k≥1

2(−4tπ)4k

(4k + 2)!
.

Since γ(−t4y4)∗ = ζ((−t4y4)
∗), γ(−t2y2)∗ = ζ((−t2y2)

∗), γ(t2y2)∗ = ζ((t2y2)
∗)

then, using the poly-morphism ζ, one deduces
ζ((−t4y4)

∗) = ζ((−t2y2)
∗)ζ((t2y2)

∗) = ζ((−t2x0x1)
∗)ζ((t2x0x1)

∗))
= ζ((−t2x0x1)

∗
⊔⊔ (t2x0x1)

∗) = ζ((−4t4x20 x
2
1 )

∗).

It follows then, by identification the coeffients of t2k and t4k :

ζ(

ktimes
︷ ︸︸ ︷

2, . . . , 2)/π2k = 1/(2k + 1)! ∈ Q,

ζ(

ktimes
︷ ︸︸ ︷

3, 1, . . . , 3, 1)/π4k = 4kζ(

ktimes
︷ ︸︸ ︷

4, . . . , 4)/π4k = 2/(4k + 2)! ∈ Q.

THANK YOU FOR YOUR ATTENTION


