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INTRODUCTION



Picard-Vessiot theory of ordinary differential equation

(k, 9) differential ring. Const(k) = {c € k|@c = 0} is supposed to be a field.

(ODE) (a,,a" + a,,,la”’l + ...+ ao)y =0, ag,...,an_1,an €k.
a1 is supposed to exist.
Definition
1. Let y1,...,y, be Const(k)-linearly independent solutions of (ODE).
Then {y1,...,¥n} is called a fundamental set of solutions of (ODE)
and it generates a Const(k)-module of dimension at most n.

2. If' M =k{y1,...,yn} and Const(M) = Const(k) then M is called
a Picard-Vessiot extension related to (ODE)

3. Let k C K and k C K; be differential rings. An isomorphism of
rings o : K; — Koy is a differential k-isomorphism if
VaeK;, 0(o(a))=o0(da)and, if ack, o(a) =a.
If K; = K, =K, the differential galois group of K over k is by
Galk(K) = {olo is a differential k-automorphism of K}.

1. Let Ri, R be differential rings s.t. Ry C R». Let S be a subset of R;.
R1{S} denotes the smallest differential subring of R, containing R;.
R1{S} is the ring (over Ri) generated by S and their derivatives of all orders.



ALGEBRAIC COMBINATORIAL ASPECTS



Notations

> Let (X*,1x+) (resp. (Y*,1y+)) be the free monoid generated by
X ={xo,.--sXm} (resp. Y := {yk}x>1). X will denote X or Y.
Let A(X) (resp. A{(X))) be the set of polynomials (resp. formal series)
over X' and with coefficients in the commutative ring A.

» Forx,y € X,yi,yj € Y and u,v € X* (resp. Y*), one defines on

» H o (X):=(A(X),conc,ly«, A, ,e), A, x=xQ 1y +
ly+ ® x, or equivalently v w 1y« =1y« w u= v and
xuw yv =x(uw yv)+y(xuwv),

> Hw (Y) = (A<Y>, conc, ly«, A 4y, e), ALy =yi®1lys +
Ly« ®@Yi+ D =i Yk @ y1, or equivalently
Ut lys =1y« = u=uand
xiuw yiv = yi(uw yiv) + yi(yiv e v) + yigj(uw v).

» Considering A as the differential ring of holomorphic functions on a
simply connected domain 2, denoted by (#(2), 0) and equipped 1q
as the neutral element, the differential ring (H(Q)({(X)),d) is
defined as follows

VS e H(Q)(X), dS= Z (0(S|w))w € H(Q)(X)).

weX*

Const(H(Q2)) = C.1q and Const(H(Q)(X)) = C.1q(X).



Representative series and Sweedler's dual

Theorem (rational series ?)
Let S € A{(X)). The following assertions are equivalent

1. The series S belongs to® A" ((X)).

2. There exists a linear representation (v, u,n) (of rank n) for S with
v € My ,(A),n € M,1(A) and a morphism of monoids
prX* = My a(A) sit. S=32 cx-(vp(w)n)w.

3. The shifts* {S<aw}yex (resp. {w> S}, ecx~) lie within a finitely
generated shift-invariant A-module.

Moreover, if A is a field K, previous assertions are equivalent to

4. There exists (Gj, D;)icFfinite S-t. Deonc(S) = D icpsimie Gi @ Di.

Hence, .
Houu (X) = (Kra <<X>>7 o le*vAconcve)a
(resp. Houy (Y) = (K™ (Y)), &, 1x+, Aconc, €)).

2. This form is a version over a ring of the form presented at CAP'2018.

3. A™'((X)) is the (algebraic) closure by {conc, +,} of A.X in A(X). It is
closed under w . A ((Y)) is also closed under it .

4. The left (resp. right) shift of S by P is P> S (resp. S < P) defined by, for
w € X", (P> S|w) = (S|wP) (resp. (S < Plw) = (S5|Pw)).



Kleene stars of the plane and conc-characters

Theorem (rational exchangeable series®)
Let Ao (X)) be the set of (syntactically) exchangeable® series and
At (X)) the set of series admitting a linear representation with

commuting matrices (hence, exchangeable). Then”
1 ARLIX) C AN N Acxe (X). The equality holds when A is a

exc

field and, if X is finite then A2 (X)) = w {A{(x)) }xex-

exc

2. If A'is a Q-algebra without zero divisors, {x*}ccx (resp. {y*}yev)
are algebraically independent over (A(X), w ,1x-) (resp.
(A(Y), wi, 1ys)) within (A™H{(X), w ,1x-) (resp.
(A™((Y)), 1, 1y«)). Moreover, x* is a conc-character.

3. For any x € X, one has A" ((x)) = {P(1 — xQ) ™'} p qeapq and if
A = K is an algebraically closed field then one also has
K2t ({(x)) = spany {(ax)* w K{(x)|a € K}.

4. VS € K{X)), K being a field, *
Dconc(S) =S ®S,(S[1y+) =1 = S= (Z cxx> with ¢, € K.
xeX
5. This form is a version over a ring of the form presented at CAP’2018.
6. ie. if S € Acxc (X)) then (Vu,v € X7)((Vx € X)(Julx = |v]x) = (S|u) = (5]v)).
7. Let S € A(X)) sit. (S|1x+) =0. Then S* =3 ;S", so called Kleene star of.S.




Triangular sub bialgebras of (A™'(X)), w , 1x+, Aconc; €)

Let (v, u,n) be a linear representation of R € A (X)) and L be
the Lie algebra generated by {1i(x)}.ex-

Let M(x) := p(x)x, for x € X. Then R = vM(X*)n. If {u(x)}xex
are triangular then let D(X) (resp. N(X)) be the diagonal (resp.
nilpotent) letter matrix s.t. M(X) = D(X) + N(X) then

M(X*) = ((D(X*)T(X))"D(X*)). Moreover, if X = {xg,x1} then
M(X*) = (M(x{)M(x0))" M(x{) = (M(x§)M(x))* M(xE).

If Ais an algabraically closed field, the modules generated by the
following families are closed by conc, w and coproducts :
(Fo) Eixi...EjxiEjy1, where E, € A™ ((xo)),
(Fl) Eixo. .. EonEj+1, where Ej € Arat<<X1>>,
(F2) Eixiy...EjxjEjy1, where E, € ARL(X), X, € X.
It follows then that
1. R is a linear combination of expressions in the form (Fp)
(resp. (F1)) iff M(x;)M(xo) (resp. M(xz)M(x1)) is nilpotent,
2. R is a linear combination of expressions in the form (F,) iff £
is solvable. Thus, if R € A% (X)) w A(X) then L is nilpotent.



NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS



Iterated integrals and Chen series
Let A := H(Q) and Cy be a differential subring of A (9(Cy) C Cy) which
is an integral domain containing C.
C{{(g)ies}} denotes the differential subalgebra of A generated by (g;)ic/,
i.e. the C-algebra generated by g;'s and their derivatives

{u}xex : elements in CoN AL

in correspondence with {0, }xex (0. = u, 19).

The iterated integral associated to x; ...x; € X', over the differential forms
wi(z) = uy(z)dz, and along a path zy ~» z on Q, is defined by

az (lx«) =

a§0 (X,'1 . X,'k) =

00z (X, - - - Xi,)

spanc{0'aZ (W)}wex+ >0 C
C

1Qa

z Zk—1
[ [ e
k—1
Uy, z)/ wi,(22) / wi (zk)-
20

Spanc{{(ux xex}}{azl;( )}WEX*
Spancg (uF)ex 1} {a (W)}WEX*
CH{(uf )xex }} ®c Span(c{aZO( W) bwex-?

The Chen series, over {w;};c; and along zy ~~ z on , is defined by
Czowz = 1gly + Z a;O(W)W.

weX*X



Noncommutative differential equations
The Chen series, over {w;};e; and along zg ~» z on Q, satisfies
(NCDE) dS=MS, with M= ux (Mis « —primitive).
xeX
More generally, C,,..., satisfies d*S = Q, S, with Q, € C{(uF)xex J}(X)
satisfying the recursion® Qy =1 and Q, = Q. 1M +dQ,_; (k > 0).

1. The space of solutions of (NCDE) is a right free C({(X))-module of
rank 1.

2. By a theorem of Ree, (.., is a w —group-like solution of (NCDE)
and it can be obtained as the limit of a convergent Picard iteration,
initialized at (Cpyauz|1x+) = 1oly~, for ultrametric distance.

3. If G and H are w —group-like solutions (NCDE) there is a
constant Lie series C such that G = He® (and conversely).

8. More explicitly, Q« can be computed as follows (summing over words
W = Xj ...X;, and derivation multiindices r = (r1, ..., ri) of degree
degr =|w|= k and of weight wgt r = k+r + ...+ r«)

degr j
r+ 1
E H 2jatiti- T(w), where
wgt r=k  j=1
wexdegr

7-'(W) = Tfl(Xfl) ceTry (ka) = (6’1 Usx;. )Xfl cee (6rk Ux; )ka € C{{(U;H)XEX}}<X>'



First steLo of noncommutative PV theory
From this, it follows that

> the differential Galois group of (NCDE) 4+ w —group-like is the
group? {eC}CELIeC,IQ((X»-

Which leads us to the following definition
> the PV extension related to (NCDE) is C/OTY{CZOWZ}.

It, of course, is such that Const(Co{(X))) = kerd = C.1o({(X)).
On the other hand, the iterated integrals ? satisfy

Vu,v e X*, aZ (uw v) =af (u)ag (v),
or equivalently, the Chen series satisfies

Czowzo =1lg and Cz[)wz = Z a H e® fe%d (5/

weX* IELynX

where LynX denotes the set of Lyndon words related to X, the linear
basis {Py }wex+ (expanded after the basis {P;}/cynx of Lieg.1,(X))
and its graded dual basis {S, }wex~ (which contains the pure
transcendence basis {5, }jeryny of the C — w algebra).

9. In fact, the Hausdorff group (group of characters) of H ,, (&X).

10. Due to the fact that €2 is simply connected, the value of these iterated
integrals only depend on the endpoints, (z,z), and not on the path.




Linear and algebraic independences over a differential field
Theorem (Basic triangular theorem over a differential field 11)
Let Cy a differential subfield of A. Let S € A{(X)) be a w —group-like

solution of dS = MS, with M = Z uxx and u, € Co C A. The following

xXEX
assertions are equivalent

1. the family {(S|w)}wex~ is Co-linearly independent,

2. the family {(S|I)}iecynx is Co-algebraically independent,
3. the family {(S|x)}xex is Co-algebraically independent,
4. the family {(S|x)}xexufi,-} is Co-linearly independent,
5

. the family {u;}ie) of Cy is s.t., for f € Cy and {c;}ic; in C, one has
Z cu=0f — (VI S I)(C,' = 0),
i€l
6. 0Co Nspanc{u;}i=o, .. .m= {0}
Remarque
In case A = H(QQ) with ) # Q connex, this theorem holds when Cy is

only a differential ring.

11. This form is a group-like version of the abstract form of (Deneufchatel,
Duchamp, HNM & Solomon, 2011).




Linear & algebraic independences over a differential ring
Theorem (Basic triangular theorem over a differential ring '?)
Let S € A(X)) be a group-like solution of
dS =MS, with M = Z uyx and uy, € Cy C A,

xeX
where the commutative associative ring A, equipped with the differential

operator 0, is supposed to contain Q. Then we have

(1) If H e A{X)) is an other group-like solution then there exists
C € Liea{(X)) such that S = He® (and conversely).

(2) IfCy is a differential C-subalgebra of A, the following assertions are
equivalent

a) {(S|w)}wex+ is Co-linearly independent.

) ((5151))iccynx is Co-algebraically independent.

) ({SIx))xexufiy-} is Co-algebraically independent.
d) {(S]x)}xexufiy~} is Co-linearly independent.

) Let W(f, ) = d(f)f, — fid(fa) (wronskian). For all
(f, ) € Co x CF and ¢ = (¢ )xex € CX), one has

W(fi,h) = ot = (¥x € X)(c=0).
xeX

12. see also in the talk by G.H.E. Duchamp




Examples of positive cases over X = {x}, A = (H(Q),0)

1. Q=C,u(z) =1q,Co = C{{uf'}} = C.
ag(x™) = ag(xw "/nl) =z"/n!, for n > 1. Thus, dS = xS and

S= Zaz(x”)x" = Z Z—nx” = e
0 n! '

n>0 n>0

Moreover, a(x) = z which is transcendent over Cy
and the family {a§(x")}n>0 is Co-free. Let f € Cy then Of = 0. Thus,
if Of = cu, then ¢ = 0.

2. Q=C\] - 00,0],ux(2) = z71,Co = C{z*}} = C[z*!] C C(2).
aZ(x") = aZ(x ™ "/nl) = log"(z)/n!, for n > 1. Thus dS = z71xS
and

S= Zaf(x")x” = Z log’(2) |(Z)x” =z~
n>0 n>0 n

Moreover, af(x) = log(z) which is transcendent over C(z) then
over C[z*!]. The family the family {af(x")}n>0 is C(z)-free and
then Co-free. Let f € C then Of € spang{z*"},.1. Thus,

if Of = cu, then ¢ = 0.



Examples of negative cases over X = {x}, A = (H(Q), D)

1. Q=C,u(z) = €*,C = C{{eT?}} = C[e™?].
af(x") = ag(x = "/n!) = (e* —1)"/nl, for n > 1. Thus, dS = e*xS
and
z(,,n\,n ez_]')nn ef—1)x
SZZaO(X )x :Z(Tx = el&"=1x,
n>0 n>0
Moreover, af(x) = e* — 1 which is not transcendent over Cy and
{ag(x")}n>0 is not Co-free. If f(z) = ce” € Cy (¢ # 0) then
W(f,1q) = 0f(z) = ce* = cux(z).
2. Q= C\] - 0070]7 UX(Z): Za(a ¢ Q)
Co = C{{z, z*2}} = spanc{zF '}y jez.
Ad(x") = ag(x @ "/nl) = (a+1)""z"+) /nl, for n > 1. Thus,

dS = z7xS and
Zn(a+1) —1_(a+1)
_ z _ _ A(a+1)7Z X
57ZaO(Xn)Xniz(a_i_l)nn!Xniea '
n>0 n>0

Moreover, a(x) = (a+ 1)~1z2*! which is not transcendent over C
and {ag(x")}n>0 is not Co-free. If f(z) = c(a+ 1)1zt € (
(c #0) then W(f,1q) = 0f(z) = cz° = cuy(z).



EXTENDED REGULARIZATION OF DIVERGENT
POLYZETAS BY NEWTON-GIRARD FORMULA



Families of eulerian functions
Vr>1, [, (1+z):=e "2 and B, (ab):=T,(a),,(b)/T,(a+b),
where, for any z € C such that |z|< 1,
z) = ﬂ,/szC(k)(fz)k/k and f(z ZC (kr)(—z")*/k,r > 2.
k>2 k>1
For r > 1, let ¥ = e?7/7. We have for |z| < 1,

7*Z§(kr)( /k_Zfl z}uz Zlog 1+19JZ))

k>1
Taking the exponentlal and usmg Welerstrass factorlzatlon we also have

Wz v _ 9z
Hr1+mz HewHG*nZ)

n>1
Proposition
{f}r>1 and {e'},>1 U {lq} are'® C-linearly independent.
Moreover, f, is holomorphic'* on the open unit disc and e (resp. e=')
is entire (resp. meromorphic) admitting a countable set of isolated zeros
(resp. poles) on the complex plan which is Ujr;ol WN<_q, forr > 1.

13. Since (f,),>1 is triangular then (f,),>1 is C-linearly free. So is (e — 1),>1,
being triangular, then (e),>1 is C-linearly free and free from 1.

14. Vr > 2,{(2) > ¢(r) > 1: this proves that the radius of convergence of any
the f; is exactly one. In other words f, is holomorphic on the“open unit disc.



Independences by BTT (work in progress, 1/2)

M = Z u with Hy = eﬁafr — G = ﬁ eaé(Sz)P/
- y, Yrs w,(z) = u, (Z)dZ O~z — .
ey " leLynY

Let F :=spanc{f,},>1, E :=spanc{e’},>1 and let C[F], C[E] denote
their respective algebras. Let 7 := C{(f*!),>1}},& := C{(e*"),>1}}.
Since, for any i, 1, k > 1, there exists g; ;x € OF \ C.1qg such that
(0'e*h) = q; ) ket ¢ E then OE C Cy where®
Co := spanc{qi, n,n, - - - q;k7/k,,kellf'1+"'+lkﬂk}(ihll,rl),..‘,(lhrk)ENJr><Z+><N+,k21
C spang #{e®1 %}y nen, k>1 With ¢r = hfy + .o+ Iy,
Let 0 # g € Co C Fr(Cp) and let {¢, },>1 be a sequence, in C, such that

g = Z Cruy = Z ¢, 0ef = Z c,(8f,)ef’.

r>1 r>1 r>1
0g # 0 is impossible because Fr(Co) N E = {0}.
Hence, dg = 0 and then Vr > 1, ¢, = 0.

15. As linear combination of triangular holomorphic functions vanishing at
zero, ¢n,,....r, is triangular and holomorphic satisfying ¢n,,....r,(0) = 0 and
e®1:1k is then entire. They are C-algebraically independent.

Moreover, similarly to {f,},>1 and {€},>1, the families (ér,, ..., )xk>1 and
(e ) >1 are C-linearly independent.

.....



Independences by BTT (work in progress, 2/2)

Theorem
(e)r>1 (resp. (f,)r>1) is algebraically independent over OE (resp. OF ).
Hence, C[E] and OE are algebraically disjoint. So are C[F]| and OF.

Next, we have firstly the algebraic independence of {y*},cy over
(C{Y), w ,1y«) and then over (C.Y, w ,1y+).

Secondly, with 7, = Of,, r > 1, taking iterated integrals, we get on the
one hand, af(y;) = e"®) and af(y") = a3(y,"" "/n!) = £"(z)/n!, n > 0.
On the other hand, since (ef'),zl and (f;),>1 are algebraically free
families, respectively, of C[E] and C[F] then, using the first fact and the
injectivity of af (restricted in this case), it follows that

Corollary

1. (e"),>1 is algebraically independent over C[F].
2. C[F] and C[E] are algebraically disjoint.

3. ()r>1 is algebraically independent over C[E].
4

- A¢n,...n)k>1 and (P “)x>1 are algebraically independent,
respectively, over C[F] and C[E].



Back to polylogarithms : ug(z) = z 71, uy(z) = (1 — z) 7!
Here, @ = C\ {0,1},C = C{{u", uf}} = Clz,z 1, (1 - 2)~!] € C(z) and

N
Copz = L(2)(L(20)) 7Y, where®® L= > Li,w= [[ "7,

weX* leLynX
Liy, (z) = af(x) = log(z) and, for ny,...n, e Ny and z € C,|z|< 1,
. - - z"
Lign-t, o1 (2) = 0g06 g ha) = ) P

ki>..>k>0 1 °

The coefficients {Hy, ., (n)}s>1 are defined by the following Taylor expansion

E Lixgl—lxl.nxg,—lxl (Z) = Z H}’sl-u}/sr (n)z".
n>0

The following morphisms of algebras are injective
Lie : (Q(X), w ,1x+) — (Q{Liw }wex*, -, 1), w+— H,,
He : (Q(Y), w,1y+) — (Q{Hy }weyr, -, 1), w +— Li,, .
Hence”, {Li,}/ccynx and {H,}/ccyny are algebraically independent.

16. Vk > 1,3Q« € C,d* sy = (d*L(2))(L(20)) ! = QuL(2)(L(20)) .
Moreover, the PV extension related to (NCDE) is C{X){Czsz} = C{XN{L}.
17. VI € LynX \ {xo}, then [, S; € C,(X)x1 and wy (/) € LynY.

VI € LynY then mx(l) € LynX \ {x0}.



Polyzetas and 3 characters of regularization

By a Abel’s theorem, for n; > 1, one has

¢(ny, ... ny) = zlgnl Lixérl—lxlu‘xg,—lxl(z) = nliToo Hy, . (n),

Z = spang{Lin(1)}wexx=x = spang{Hw(+00)}wey\y v+
We use then the one-to-one correspondences

X _ —
(s1,.--,5) ENL & ys ...y € Y*fxé1 1x1...x(§’ 1y e X*xq.
Y

The following pz)ly—morphism is surjective )
. Qlx- ® xQ(X)x1, w , 1x+
C@iy- (Y - (n)e(Y), w.ly) 0 (D
mapping, both, x§171x1 .. .xg’71x1 and ys, ... ys to ((S1y...,5).
It can be extended as characters as follows
Cw (RX), w,1x-) — (R,.,1),
Ctﬂv’\/' (R<Y>7 ttJa]'Y*) — (R7'a1)7
st Cuw (XO) = |Og(1) =0, Ctﬂ (/) = Ctﬂ (7TYI = Vryl = C(/)v for
I € LynX — X, and
Cuw ()= 0 =fp.,  log(l—2z), {(1-2)?log’(1-2)}sczpen,
Cuw()= 0 =fp.,, i Hi(n), {n"H7(n)}aez,ben,
Y= 7 =EpiacHi(n), {n?1og®(n)}acz.ben.



Extensions of Li, and of H, (C = C{z? (1 — Z)b}avbg(c)

Theorem (indexing by noncommutative rational series)
1. IfR e (Crat<<X>> with m/n/ma/ representation of dimension n then'®
y(20,2) = 5, (R) = (R G z) = (RI|L(2)(L(20)) 1.
There exists | = 0, .,n—1 st {0 }o<k</ is C-linearly independent
and a,...,a1, a0 € C st (a0 + 231071+ ...+ 210 + ag)y = 0.

2. {Li, }wex~ is C-linearly independent®. Moreover, the kernel of the
following map is the w -ideal is generated by x§ w x{ — x{ + 1
Lig : (C22L (X)) w C(X), w ,1xx) = (C{Liy }wex=,- 1), R+~ Lig.

exc

3. The algebra C{Li, }wex~ is closed under the differential operators
0o = 20,01 = (1 — 2)0, and under their sections®® 1q, 11.

Theorem (Kleene stars of the Elane
By Newton-Girard formula, the arithmetic function Hy, ) is given by?!

—t
Vr> 1LVt e C,|t|<1, Hyy,- = ZHyrkt = exp ZHyk,>
k>0

and His o) His by =H(S (0t S, oy acbiyer ) (13s] 1 bs|< 1),
18. aZ, : C™ (X)) — H(R) is not injective : aZ (205 + (1 — 20)(—x1)* — 1x=) = 0.
19. The proof uses BTT (see also in the talk by G.H.E. Duchamp).
20. i.e. Ogto = 0101 = Id. Note also that [(90, 01] =09+ 60, =0.

L =51 He(—t")*/k is termwise dominated by ||f, and then Hry,)- is
termwise dominated, in norm, by e




Extended double regularization

Theorem (Regularization by Newton-Girard formula)

The characters C ,, ,7ve can be extended algebraically as follows
Cu (CX) w CEAXD, w,1x-) — (C,.,1),
vt e C,|t|< 1, (txo)", (tx1)* — lc.
Ve - (C<Y>M{Crat<<yf>>}f21’ tf_l’]_y*) — (C7'71)7
VteC,|t|<1,Vr>1,(t"y,)* — T H1+1).
Moreover, the morphism (C[{y;},>1], w1, ly-) — (C[{e"},>1], x, 1),
maps y; to [ !, is injective® and Ty, (1 —t) =T, (1+ 1), (1 —1t).

Corollary (comparison formula)

For any z,a,b € C such that |z|< 1 and Ra > 0,Rb > 0, one has*
Liofax)s w ((1-5)a)71(2) = Lixa-1)0)" w (~bx)71(2) = B(z: 2, b),

(partial Beta function) and B(1; a, b) = B(a, b). Hence,

B(a,b) = —EHEZIAT e (f(ax0)* @ (1 — b)x)*])
Y((a—1)y1)* W ((b—1)y1)*

= Cuw (al((a = 1)x0)" w (=bx1)"]).

22. {y;},>1 and {e’},>1 are C-algebraically independent.
23. xo[(ax0)™ w ((1 — b)x1)*] and x1[((a — 1)x0)" w (—bx1)*] are of the form
(F2) which is closed by conc, w and co-products.




Polyzetas and extended eulerian functions
For to, t; € C, | tp]< 1 |t1|< 1 let R := t2t1x0[(tox0)* w (tix1)*]x.
With wo(z) = z71dz and wl (1- z) ldz, we get

i~ anf % [ (O (0

- totl/ (1 —s)bhgh— 1/( — r)o= 1~ dsdr,

0
By changes of variables, r = st and then y = (1 — s)/(1 — st), we obtain
1o
Ry = du [ [a-sn-syetevds
017%

= tgtl/ /(1—ty)*1t*t°yt°t1dtdy.
o Jo

By expending (1 — ty)~! and then by integrating, we get on the one hand

to toty P
R) = = Ktit.
C(R) = Y BB = 5 (ke
n>1 k>1>0
Since R = toxo(toxo + t1x1) totix1 then we get also on the other hand
Ry=>>" > C(s1,...,s)tktl.
k>0 >0 s1+...4+s=k,51>2,55...,5>1
Identifying the coeffients of (C(R)|tkt!), we deduce the sum formula
C(k): Z C(Sl',"'as/)'

S1+...+s5=k,51>2.5....5>1




Riemann zeta function and eulerian functions
For v =—u (Ju|< 1), one gets

ry1(1—u)1ry1(1+ eXp( PRNCLE ) SInLSﬂ' !

k>1
Taking the logarithms and then taking the Taylor expansions, one obtains

u2k 2n
—kz;lc(zk)T = |og< >
-1 /-1
- x5 ZM > et

>1 k>1 ny,.m>1 j=1
nyt.. 0=k
— E : 2k§ : 2 : H
= uT
(uim) ry, 2n
k>1 1>1 npyem>1 =1

Nt bn=k
One can deduce then the following expression for ((2k) :

2k L (=1)kH Lo
<7(r2k):kz( /) > 7 ) €@

=1 ny,eees m=1 j=1
n+...+n=k
Euler gave an other explicit formula using Bernoulli numbers {bx }xen :
2k bok
k) bu o

(2ir)2k = 2(2k)!



More about Riemann zeta function and eulerian functions

"/(l—tzyz)* = 1“/(ty1)*“/(_§y1)*
& -t = +_t)(r;1)(1 —t) -~
— T2 SRRk sin(tm) . tim
& el Lk = _ .
tm k%:l (2k)!
Tt = ) (-t
e a-n = (-1 .
o e Tencwortn o snlitmsin(tn) g 2040 T
itm tm = (4k +2)!

Since v(— ety = C((=t*a)*), Yy = C((=252)"), Y2y = C((H2y2)")
then, using the poly-morphism (, one deduces
(=t'ya)) = (=) )C(tPy2)) = C((—t7x0x1)")C((tPx0%1)"))

= (((—tPxox1)" w (Px0x1)*) = C((—4t*x5x7)").

It follows then, by identification the coeffients of t2k and t** :
ktimes
—
¢(2,... ,2)/7r2k =1/2k+ 1)l €Q,
ktimes ktimes

C(3,1,...,3,1)/n* = ak¢(a, ... 4) /% =2/(4k + 2)! € Q.

THANK YOU FOR YOUR ATTENTION



