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Scattering amplitudes are the fundamental
tools for making contact between quantum field
theory description of nature and experiments

I Comparing particule physics model against datas from accelators
I Post-Minkowskian expansion for Gravitational wave physics
I Various condensed matter and statistical physics
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Physics arguments indicate that any quantum field theory amplitude
can be expanded on a finite basis of integral functions

AL−loop
n−part. =

∑
i∈B(L)

coeffi Integrali + Rational function

I What is the dimension of the basis B(L)?
I What are the functions in the basis?

Feynman integrals are highly transcendental functions with a lot
singularities

I How can we achieve such decomposition?
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Feynman Graph Motive
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Feynman Integrals: parametric representation

The integral functions in the basis are Feynman integrals with L-loop
and n internal edges

IΓ (s,m) = Γ

(
n −

LD
2

) ∫
∆n

ΩΓ ; ΩΓ :=
UΓ (x)n− (L+1)D

2

FΓ (x)n− LD
2

n−1∏
i=1

dxi

The domain of integration is the positive quadrant

∆n := {x1 > 0, . . . , xn > 0|[x1, . . . , xn] ∈ Pn−1}

The integral is an analytic function of the space-time dimension D with
the Laurent expansion near Dc ∈N∗

IΓ (s,m) =
∑

r>−m

(D − Dc)
r I(r)
Γ (s,m) D = Dc − 2ε; 0 6 ε� 1
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Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree L + 1 in Pn−1

FΓ (x) = UΓ (x)×

(
n∑

i=1

m2
i xi

)
− VΓ (s, x)

UΓ (x) =
∑

a1+···+an=L
06ai61

ua1,...,an

n∏
i=1

xai
i , VΓ (x) =

∑
a1+···+an=L+1

06ai61

Sai ,··· ,an

n∏
i=1

xai
i

ua1,...,an ∈ {0,1} and Sai ,··· ,an are linear combination of the kinematic
variables
From FΓ we can reconstruct the associated Feynman graph Γ
I the number of edges is n
I the loop order is L = deg(FΓ ) − 1
I Number of vertices v = 1 + n − L from Euler characteristic of the

planar graph
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Feynman Integrals: parametric representation

IΓ (s,m) = Γ

(
n −

LD
2

) ∫
∆n

ΩΓ ; ΩΓ := ResXΓ

(
UΓ (x)n− (L+1)D

2

FΓ (x)n− LD
2

n−1∏
i=1

dxi

)

Algebraic differential form ΩΓ ∈ Hn−1(Pn−1\XΓ ) on the complement
of the graph hypersurface

XΓ := {UΓ (x) = 0&FΓ (x) = 0, x ∈ Pn−1}

I All the singularities of the Feynman integrals are located on the
graph hypersurface

I Generically the graph hypersurface has non-isolated singularities

Pierre Vanhove (IPhT & HSE) Mirroring Towers of Feynman Integrals 8/11/2019 7 / 43



Feynman integral and periods

∆n < Hn−1(Pn−1\XΓ ) because

∂∆n ∩ XΓ = {(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)}

we have to look at the relative cohomology H•(Pn−1\XΓ ;Dn\Dn ∩XΓ )

The normal crossings divisor Dn := {x1 · · · xn = 0} and XΓ are
separated by performing a series of iterated blowups of the
complement of the graph hypersurface [Bloch, Esnault, Kreimer]
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Differential equation

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups

M(s,m2) := H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

Since ΩΓ varies with the kinematic variables s and internal mass m
one needs to study a variation of (mixed) Hodge structure

The Feynman integrals inhomogenous differential equation

LPF IΓ = SΓ

Generically there is an inhomogeneous term SΓ , 0 due to the
boundary components ∂∆n

Deriving this differential equation is difficult in general and requires a
lot of computer resources and is still a major question in QFT
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Gel’fand-Zelevinsky-Kapranov approach

Unitarity in QFT motivates considering the following period integral

πΓ =
1

(2iπ)n

∫
|x1|=···=|xn|=ε

ΩΓ 0 < ε� 1

Consider the toric polynomial

Ftoric
∆(Γ)(x) =

∑
ν∈∆(Γ)∩Zn+1

fν xν

I FΓ (x) is a specialisation of the toric deformation parameters to the
physical locus fν 7→ (s,m). The map is linear

I πΓ is a period integral for the Calabi-Yau hypersurface X∆◦ and is
a GZK A-hypergeometric series

The Feynman graph hypersurface is highly non generic
I The system often resonant and reducible
I Obtaining the minimal order Picard-Fuchs operator this way is not

an easy task as one must restrict the D-module
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Geometry for Feynman graph motives

What is the geometry governing the Feynman graph motive?

1 One-loop graph hypersurface degree 2 in Pn−1

The motive structure is the one of dilogarithms
2 Two-loop graph hypersurface degree 3 in Pn−1

for n = 3 Brown-Levin elliptic multiple polylogarithms [Bloch, Vanhove;

Adams, Bogner, Weinzierl]

For n > 4 motivic elliptic curve for the mixed Hodge structure [Bloch,

Doran, Kerr, Vanhove (work in progress)]

3 family of sunset graphs : n − 1-loop graph hypersurface degree n
in Pn−1 define Calabi-Yau n − 2-fold [Doran, Novoseltsev, Vanhove]
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Creative Telescoping
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We want to derive the differential equation

LPF

∫
Γ

ΩΓ = SΓ

The differential form ΩΓ is functions of the kinematics parameters
s = {pi · pj } and the internal masses m = {m1, . . . ,mn} which are all non
vanishing.
For a given subset of kinematic parameters z := (z1, . . . , zr ) ⊂ s ∪m
we want to construct a differential operator Tz such that

TzΩΓ = 0

such that

Tz = LPF (s,m,∂z) +

n∑
i=1

∂xi Qi(s,m,∂z ; x ,∂x)
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where the finite order differential operator

LPF (s,∂z) =
∑

06ai6oi
16i6r

pa1,...,ar (s,m)

r∏
i=1

(
d

dzi

)ai

Qi(s,m2,∂z) =
∑

06ai6o ′i
16i6r

∑
06bi6õi
16i6n

q(i)
a1,...,ar (s,m, x)

r∏
i=1

(
d

dzi

)ai n∏
i=1

(
d

dxi

)bi

I The orders oi , o ′i , õi are positive integers
I pa1,...,ar (s,m) polynomials in the kinematic variables

I q(i)
a1,...,ar (s,m, x) rational functions in the kinematic variable and the

projective variables x .
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Integrating over a cycle γ gives

0 =

∮
γ

TzΩΓ = LPF (s,m,∂z)

∮
γ

ΩΓ +

∮
γ

dβΓ

For a cycle
∮
γ dβΓ = 0 (e.g. maximal cut) we get

LPF (s,m,∂z)

∮
γ

ΩΓ = 0

For the Feynman integral IΓ we have

0 =

∫
∆n

TzΩΓ = LPF (s,m,∂z)IΓ +
∫
∆n

dβΓ

since ∂∆n , ∅
LPF (s,m,∂z)IΓ = SΓ
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This can done using the creative telescoping method introduced by
Doron Zeilberger (1990) and the algorithm by F. Chyzak
This works in all case even when the graph hypersurface does not
have isolated singularities (which is the generic case)
This algorithm gives immediately the minimal order differential operator
no need for reducing the system

�x

�y

�z

Algorithmes E�caces
en Calcul Formel

Alin Bostan
Frédéric Chyzak

Marc Giusti
Romain Lebreton

Grégoire Lecerf
Bruno Salvy
Éric Schost

Version préliminaire du 11 janvier 2017

A Fast Approach to Creative Telescoping

Christoph Koutschan

Abstract. In this note we reinvestigate the task of computing creative telescoping relations in
differential-difference operator algebras. Our approach is based on an ansatz that explicitly includes
the denominators of the delta parts. We contribute several ideas of how to make an implementation
of this approach reasonably fast and provide such an implementation. A selection of examples
shows that it can be superior to existing methods by a large factor.

Mathematics Subject Classification (2010). Primary 68W30; Secondary 33F10.
Keywords. holonomic functions, special functions, symbolic integration, symbolic summation,
creative telescoping, Ore algebra, WZ theory.

1. Introduction
The method of creative telescoping nowadays is one of the central tools in computer algebra for
attacking definite integration and summation problems. Zeilberger with his celebrated holonomic
systems approach [17] was the first to recognize its potential for making these tasks algorithmic for
a large class of functions. In the realm of holonomic functions, several algorithms for computing
creative telescoping relations have been developed in the past. The methodology described here is
not an algorithm in the strict sense because it involves some heuristics. But since it works pretty
well on nontrivial examples we found it worth to be written down. Additionally we believe that
it is the method of choice for really big examples. Our implementation is contained in the Mathe-
matica package HolonomicFunctions as the command FindCreativeTelescoping. The
package can be downloaded from the RISC combinatorics software webpage:

http://www.risc.uni-linz.ac.at/research/combinat/software/

Throughout this paper we will work in the following setting. We assume that a function f to
be integrated or summed satisfies some linear difference-differential relations which we represent in
a suitable operator algebra (Ore algebra). We use the symbol Dx to denote the derivation operator
w.r.t. x and Sn for the shift operator w.r.t. n. Such an algebra can be viewed as a polynomial ring
in the respective operators, with coefficients being rational functions in the corresponding variables,
subject to the commutation rules Dxx = xDx +1 and Snn = nSn +Sn. Ideally, all the relations for f
generate a @-finite left ideal, i.e., a zero-dimensional left ideal in the operator algebra. If addition-
ally f is holonomic (a notion that can be made formal by D-module theory), then the existence of
creative telescoping relations is guaranteed by theory (i.e., by the elimination property of holonomic
modules). Chyzak, Kauers, and Salvy [6] have shown that creative telescoping is also possible for
higher-dimensional ideals under certain conditions. We tacitly assume that any input to a creative

supported by NFS-DMS 0070567 as a postdoctoral fellow, and by the Austrian Science Fund (FWF): P20162-N18
The final publication is available at www.springerlink.com, DOI: 10.1007/s11786-010-0055-0.

The method provides as well the space of annihilator (the GKZ system
of equations) with respect to all the parameters
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The sunset graphs family
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The sunset family of graph

The graph polynomial for the n − 1-loop sunset

F�n (x) = x1 · · · xn
(
φ�n (x) − p2) ; φ�n (x) = ( 1

x1
+ · · ·+ 1

xn

)(
m2

1x1 + · · ·+ m2
nxn
)

The Feynman integral in D = 2

I�n (p
2,m2) =

∫
x1>0,...,xn>0

1
p2 − φ�n (x)

n−1∏
i=1

dxi

xi

and the classical period

π�n (p
2,m2) =

∫
|x1|=···=|xn|=1

1
p2 − φ�n (x)

n−1∏
i=1

dxi

xi
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The sunset family and generalized Apéry numbers

The classical period

π�n (p
2,m2) =

∫
|x1|=···=|xn|=1

1
p2 − φ�n (x)

n−1∏
i=1

dxi

xi

has the series expansion

π�n (p
2,m2) =

∑
k>0

(p2)−k−1An(k ,m2)

with

An(k ,m2) =
∑

r1+···+rn=k
ri>0

(
(r1 + · · ·+ rn)!

r1! · · · rn!

)2 n∏
i=1

(m2
i )

ri
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The sunset integrals and L-function values

For the special value p2 = m2
1 = · · · = m2

n = 1 the sunset Feynman
integral becomes a pure period integral [Bloch, Kerr, Vanhove]

I�n (1, . . . ,1) =
∫

xi>0

∏n−1
i=1 d log xi

1 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

Using impressive numeric experimentations [Broadhust] found that
I�n (1, . . . ,1) is given by L-function values in the critical band. For large
n the L-function are from moments Kloosterman sums over finite fields

Pierre Vanhove (IPhT & HSE) Mirroring Towers of Feynman Integrals 8/11/2019 20 / 43



The sunset integrals and L-function values

For the special value p2 = m2
1 = · · · = m2

n = 1 the sunset Feynman
integral becomes a pure period integral [Bloch, Kerr, Vanhove]

I�n (1, . . . ,1) =
∫

xi>0

∏n−1
i=1 d log xi

1 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

n = 3: elliptic curve case : I�3 (1, . . . ,1) =
1
2ζ(2)

n = 4: K 3 Picard rank 19 : I�4 (1, . . . ,1) =
12π√

15
L(fK 3,2) [Bloch, Kerr, Vanhove]

I L(fK3 , s) is the L-function of H2(K 3,Q`)
I Functional equation L(fK 3, s) ∝ L(fK 3,3 − s)
I fK 3 = η(τ)η(3τ)η(5τ)η(15τ)

∑
m,n qm2+4n2+mn
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The sunset integrals and exponential motives

The Feynman integral for 0 6 p2 6 (m1 + · · ·+ mn)
2

I�n (p
2,m2) = 2n−1

∫∞
0

uI0(
√

p2u)
n∏

i=1

K0(miu)du

The classical period for p2 > (m1 + · · ·+ mn)
2

π�n (p
2,m2) =

1
2

∫∞
0

uK0(

√
p2u)

n∏
i=1

I0(miu)du

where we have the modified Bessel function of the first kind

I0(z) =
1

2iπ

∫
|t|=1

e− z
2(t+ 1

t )d log t ; K0(z) =
∫+∞

0
e− z

2(t+ 1
t )d log t

There are exponential period integrals in the sense of the non classical
exponential motives (cf. [Fresàn,Jossen] for recent work on this)

Pierre Vanhove (IPhT & HSE) Mirroring Towers of Feynman Integrals 8/11/2019 22 / 43



Sunset Calabi-Yau
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Sunset graphs toric variety Xp2(An) [Verrill]

The sunset graph polynomial

F�n = x1 · · · xn

((
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2

)

is a character of the adjoint representation of An−1 with support on the
polytope generated by the An−1 root lattice
I The Newton polytope ∆n for F�n is reflexive with only the origin as

interior point
I The toric variety X (An−1) is the graph of the Cremona

transformations Xi → 1/Xi of Pn−1

X (An−1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . ,(0, . . . ,0,1) in Pn−1
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Two-loop Sunset toric variety X (A2)

(m2
1x1 + m2

2x2 + m2
3x3)(x1x2 + x1x3 + x2x3) = p2x1x2x3

I The toric variety is X (A2) = Bl3(P2) = dP6 blown up at 3 points
I The subfamily of anticanonical hyperspace is non generic

The combinatorial structure of the NEF partition describes
precisely the mass deformations

I True for all n
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Sunset graphs pencils of variety Xp2(An) [Verrill]

For p2 ∈ P1 we define the pencil in the ambient toric variety X (An−1)

Xp2(An−1) = {(p2, x) ∈ P1 × X (An−1)|x1 · · · xn

(
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2x1 · · · xn = 0}

The fiber at p2 = ∞ is Dn = {x1 · · · xn = 0}

Since Dn is linearly equivalent to the anti-canonical divisor of X (An−1)
the family has trivial canonical divisor: We have a family of (singular)
Calabi-Yau n − 2-fold

This is specific to this family of associated with root lattice of An
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The Iterative fibration
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The Iterative fibration

The sunset family
(∑n

i=1 m2
i xi
) (∑n

i=1
1
xi

)
− p2 = 0 is birational to a

complete intersection variety in Pn

1
x0

+

n∑
i=1

1
xi

= 0; p2x0 +

n∑
i=1

m2
i xi = 0

Obviously X (An−1) is obtained from X (An−2) with the substitutions

1
xn−1

→ 1
xn−1

+
1
xn

; m2
n−1xn−1 → m2

n−1xn−1 + m2
nxn

X (An−1) is fibrered over X (A1) = P
1 with generic fibers X (An−2)

X (An−2)→ X (An−1)→ X (A1) = P
1
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The Iterative fibration

The geometric phenomenon at work that the n-loop sunset
corresponds to a family of Calabi-Yau (n − 1)-folds each of which is a
double cover of the (rational) total space of a family of (n − 1)-loop
sunset Calabi-Yau (n − 2)-folds.

At the level of the integrals this

I�n (p
2,m2) =

∫+∞
0

I�n−1

(
p2,m2, (m2

n−1 + t−1m2
n)(1 + t)

)
d log t

and for the classical period

π�n (p
2,m2) =

1
2iπ

∫
|t|=1

π�n−1

(
p2,m2, (m2

n−1 + t−1m2
n)(1 + t)

)
d log t

This construction allows to understand the geometry and build the PF
operator for all loop orders [Doran, Novoseltsev, Vanhove]
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The two-loop sunset graph [Bloch, Kerr, Vanhove]

The pencil of sunset elliptic curve
Xp2(A2) = {(p2, x) ∈ P2 ×X (A2)|(m2

1x1 + m2
2x2 + m2

3x3)(x1x2 + x1x3 + x2x3) = p2x1x2x3}

The fibers types are
I Generic case m1 , m2 , m3

I2(0) + I6(∞) + I1(µ1) + · · ·+ I1(µ4); µi = (±m1 ±m2 ±m3)
2

I single mass m1 = m2 = m3 , 0 : modular curve X1(6)

I2(0) + I6(∞) + I3(m2) + I1(9m2)

The Feynman integral is an elliptic dilogarithm [Bloch, Kerr,Vanhove]

H2(P2\{x1x2x3 = 0},X�,Q(2))
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The 3-loop case : pencil of K 3

Xp2(A3) := {(p2, x) ∈ P1×X (A3)|
(
m2

1x1 + m2
2x2 + m2

3x3 + m2
4x4
)( 1

x1
+ · · ·+ 1

x4

)
= p2}

Generic anticanonical K 3 hypersurface in the toric threefold X∆◦ has
Picard rank 11
The physical locus for the sunset has at least Picard rank 16

masses fibers Mordell-Weil Picard rank
(m4,m1,m2,m3) 8I1 + 2I2 + 2I6 2 16
(m4 = m1,m2,m3) 8I1 + I4 + 2I6 2 17
(m4,m1,m2 = m3) 4I1 + 4I2 + 2I6 1 17
(m4 = m1,m2 = m3) 4I1 + 2I2 + I4 + 2I6 1 18
(m4 = m1 = m2,m3) 8I1 + I4 + 2I6 3 18
(m4,m1 = m2 = m3) 4I1 + 4I2 + 2I6 2 18
(m4 = m1 = m2 = m3) 4I1 + 2I2 + I4 + 2I6 2 19

|Pic| = 19 motive of an elliptic 3-log H3(P3\D4,X4,Q(3)) [Bloch, Kerr, Vanhove]
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The Picard-Fuchs operator: three loop sunset

L3

L4

m4=m1

??

L4

m4=m1

__

L5

m3=m1

``
m3=m4

>>

L6

m2=m1

OO

Lr = (α
d

dp2 + β) ◦ Lr−1

The Picard-Fuchs operators for the
Feynman integral for general parameters
m4 , m1 , m2 , m3

L6 =

6∑
r=0

qr (s)
(

d
dp2

)r

is order 6 and degree 25

q6(p2) = q̃6(p2)×∏
εi=±1

(p2 − (ε1m1 + ε2m2 + ε3m3 + ε4m4)
2)

with q̃6(p2) degree 17 contains the
apparent singularities
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The 4-loop case : pencil of CY 3-fold

Xp2(A4) := {(p2, x) ∈ P1 × X (A4)|
(
m2

1x1 + · · ·+ m2
5x5
)( 1

x1
+ · · ·+ 1

x5

)
= p2}

This gives a pencil of nodal Calabi-Yau 3-fold

For a (small or big) resolution Ŵ is
I h12(Ŵ ) = 5 for the 5 masses case : 30 nodes
I h12(Ŵ ) = 1 for the 1 mass case m1 = · · · = m5 : 35 nodes
I h12(Ŵ ) = 0 for p2 = m1 = · · · = m5 = 1: rigid case birational to

the Barth-Nieto quintic
I�5 (1, . . . ,1) = 48ζ(2)L(f ,2) [Broadhurst]

f weight 4 and level 6 modular form f = (η(τ)η(2τ)η(3τ)η(6τ))2

This L-series is precisely the one for H3(X (A4),Q`) [Verrill]

Functional equation L(f , s) ∝ L(f ,4 − s)
Again we have a manifestation of Deligne’s conjecture
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The Picard-Fuchs operator : 4 loop sunset

L4

L6

>>

L6

``

L8

OO 66

L8

hh OO

L10

`` >>

L12

OO

Lr =

(
α

(
d

dp2

)2

+ β
d

dp2 + γ

)
◦Lr−2

The Picard-Fuchs operators for the
Feynman integral for general parameters
m1 , m2 , m3 , m4 , m5

L12 =

12∑
r=0

qr (s)
(

d
dp2

)r

is order 12 and degree 121

q12(p2) = q̃12(p2)×

(p2)12
∏
εi=±1

(p2 − (ε1m1 + · · ·+ ε5m5)
2)

with q̃12(p2) degree 98 contains the
apparent singularities
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Sunset Mirror Symmetry
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Sunset local Gromov-Witten invariants

It was shown that the sunset Feynman integral takes the expression
[Bloch, Kerr, Vanhove]

I�3 (p
2) = π�3 (p

2)

3R2
0 +

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`(1 − `R0)N loc.
`1,`2,`3

3∏
i=1

Qi
2`i

 .

I N loc.
`1,`2,`3

are rational genus 0 Gromov-Witten numbers

I With π�3 (p
2) = d

dp2 R0

R0 :=

∫
|x1|=|x2|=|x3|=1

log(p2 − φ�3 )

3∏
i=1

d log xi

2πi
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Classical and regularised periods I

The classical period associated to a Laurent polynomial f : (C×)n → C
is

πf (t) =
(

1
2πi

)n ∫
|x1|=···=|xn|=1

1
1 − tf (x1, . . . , xn)

n∏
i=1

dxi

xi

I This period satisfies an ordinary differential equation Lπf (t) = 0
with L =

∑r
i=0 pr (t)

( d
dt

)i
of minimal order

I In our case the Laurent polynomial is given by the second
Symanzik graph polynomial
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Classical and regularised periods II

The (regularised) quantum period GV (t) of a Fano manifold V

GV (t) = 1 +
∑

β∈H2(V ,Z)

|− KV · β|!〈[pt ]ψ−KV ·β−2〉V0,1,βtKV ·β

where 〈[pt ]ψ−KV ·β−2〉V0,1,β is a 1-pointed genus 0 Gromov–Witten
invariant with descendants for anticanonical degree KV ·β curves on V
I This (regularised) quantum period is annihilated by a quantum

differential operator L̂Ĝ =
∑s

i=0 q̂r (t)
( d

dt

)i

A complex projective manifold V of complex dimension n is called
Fano if the anticanonical line bundle −KV = ∧nTX is ample.
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Fano/ LG mirror symmetry I

Mirror symmetry predicts that the mirror of a Fano n − 1-fold V is a pair
(Y ,w) called a Landau-Ginzburg model where Y is an n − 1-fold and
the superpotential w ∈ Γ(Y ,OY ) is a regular function

The Gromov-Witten theory of V should be related to the Hodge theory
of the fibers of w : Y → A1 as follows : the regularised quantum period
ĜV of V coincides with the classical period πw defined by

πw (t) =
∫
Γ

dx1 · · ·dxn

1 − tw(x1, . . . , xn)

A Laurent polynomial f ∈ C[x±1 , . . . , x±n ] is mirror to a smooth Fano
variety V of dimension n − 1 if the classical period πf coincide with the
regularised quantum period ĜV .
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Sunset Landau-Ginzburg mirror symmetry

The LG superpotential is the sunset graph polynomial

w = F�n (x) = x1 · · · xn

(
p2 − φ�n (x)

)
is homogeneous of degree n in Pn−1 therefore the central charge is

c = 3(n − 2) in agreement with the statement that Xp2(An−1) is a
Calabi-Yau n − 2-fold

We can know use the mirror symmetry between Landau-Ginzburg
model and Fano varieties
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The mirror sunset theorem

Theorem
The pencils of sunset Calabi-Yau (n − 1)-folds form Landau-Ginzburg
models mirror to weak Fano n-folds. Specifically, the “all equal
masses” case is known to be mirror to the toric Fano variety whose
N-lattice polytope is the Newton polytope of the n-loop sunset
Feynman graph hypersurfaces. This is just the type (1,1, . . . ,1)
hypersurface in P1 × . . .× P1 (n + 1 factors).

[Doran, Novoseltsev, Vanhove (to appear)]
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A motivic conjecture

For graph with more edge the graph polynomial does not define a
Calabi-Yau but based on in depth-analysis of the graph polynomial
geometry we can make the following conjecture

Conjecture (Motivic Mirror Conjecture (short version))
I Feynman integrals satisfy irreducible Fuchsian systems over

momentum space
I ODE are are inhomogeneous differential equations whose

homogeneous part is the Picard-Fuchs equation of a pencil of
Calabi-Yau varieties

I These pencils can be interpreted as Landau-Ginzburg models, for
which the internal mass parameters are complex structure
deformations, mirror to weak Fano varieties, for which the internal
mass parameters are deformations in the Kähler cone.

[Doran, Novoseltsev, Vanhove (to appear)]
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Conclusion

� We have put forward the new relation between Feynman integrals
and mirror symmetry between Fano / LG model

� It is a new result that all the sunset Feynman integrals compute
the genus 0 relative Gromov-Witten invariants

Generic Feynman graphs is more intricate

# For Feynman graph with deg(F)Γ = L in Pn with n > L + 1 we do
not have a Calabi-Yau

Multiple potential LG models?
Relations with the Doran-Harder-Thompson construction for Tyurin
degenerations cf. [Doran (strings math 2015)]

� For higher-point two-loop integrals (ie with graph polynomial of
degree 3 in Pn with n > 3) there seems to be an extension of the
mirror symmetry to other del Pezzo surfaces
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