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tropical analogue of modules / linear spaces

related with convexity over non-archimedean fields

equivalence with mean payoff games

motivation from the complexity of linear
programming; obstruction to one of the approaches
to Smale Problem # 9: no interior point method with
a self-concordant barrier is strongly polynomial.

Ambitropical convexity, a “self-dual” extension of
tropical convexity

game, lattice and metric geometry (nonexpansive
retracts) properties of ambitropical convex sets.
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Part I.

Motivation: complexity issues in convex

programming and games



The mean payoff problem



Mean payoff games

G = (V ,E ) bipartite graph. rij ∈ Z price of the arc (i , j) ∈ E .

MAX and MIN move a token, alternatively (square states: MAX
plays; circle states: MIN plays). n MIN nodes, m MAX nodes.

MIN always pays to MAX the price of the arc (having a negative
fortune is allowed)



i1 j1 i2 j2 . . .
ri1,j1 rj1,i2 ri2,j2 rj2,·

Initial position i1 := ı given. Player Max wants to maximize his mean
payoff, lim inf of:

ri1,j1 + rj1,i2 + ri2,j2 + · · ·+ rjN ,iN+1

N
when N → +∞

while Player Min wants to minimize her mean loss, the lim sup.

Theorem (Ehrenfeucht and Mycielski, 1979)

There exists a value χı ∈ R, and positional strategies σ and τ of
Players Max and Min such that:

with strategy σ, the mean payoff of Player Max is at least equal
to χı,

with strategy τ , the mean loss of Player Min does not exceed χı.



i1 j1 i2 j2 . . .
ri1,j1 rj1,i2 ri2,j2 rj2,·

Initial position i1 := ı given. Player Max wants to maximize his mean
payoff, lim inf of:

ri1,j1 + rj1,i2 + ri2,j2 + · · ·+ rjN ,iN+1

N
when N → +∞

while Player Min wants to minimize her mean loss, the lim sup.

Theorem (Ehrenfeucht and Mycielski, 1979)

There exists a value χı ∈ R, and positional strategies σ and τ of
Players Max and Min such that:

with strategy σ, the mean payoff of Player Max is at least equal
to χı,

with strategy τ , the mean loss of Player Min does not exceed χı.



i1 j1 i2 j2 . . .
ri1,j1 rj1,i2 ri2,j2 rj2,·

Initial position i1 := ı given. Player Max wants to maximize his mean
payoff, lim inf of:

ri1,j1 + rj1,i2 + ri2,j2 + · · ·+ rjN ,iN+1

N
when N → +∞

while Player Min wants to minimize her mean loss, the lim sup.

Theorem (Ehrenfeucht and Mycielski, 1979)

There exists a value χı ∈ R, and positional strategies σ and τ of
Players Max and Min such that:

with strategy σ, the mean payoff of Player Max is at least equal
to χı,

with strategy τ , the mean loss of Player Min does not exceed χı.



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



1

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

−2

−8

(χ1, χ2) = (−1, 5)



Problem (Gurvich, Karzanov, Khachyan 88)

Can we solve mean payoff games in polynomial time?

I.e., time 6 poly(L)? where L is the bitlength of the input

L =
∑
ij

log2(1 + |rij |)

Mean payoff games in NP ∩ coNP Zwick and Paterson [1996],
not known to be in P.
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Linear programming



A linear program is an optimization problem:

min c · x ; Ax 6 b, x ∈ Rn ,

where c ∈ Qn, A ∈ Qm×n, b ∈ Qm.

opt



Question (9th problem of Smale)

Can we decide whether {x | Ax 6 b} is empty in strongly polynomial
time?

(weakly) polynomial time (Turing model): = execution time bounded
by poly(L) or equivalently poly(n,m, L), L = number of bits to code
the Aij , bi , cj

6= strongly polynomial (arithmetic model): number of arithmetic
operations bounded by poly(m, n), and the size of operands of
arithmetic operations is bounded by poly(L).

[Smale, 2000], more on strongly polynomial algo. in [Grötschel, Lovász, and Schrijver, 1993]
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Two main approaches in LP.



The simplex method (Dantzig, 1947)

Iterate over adjacent vertices (basic points) of the polyhedron while
improving the objective function

c>v 1 > c>v 2 > . . . > c>vN

the algorithm is parametrized by a pivoting rule, which selects
the next edge to be followed.
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Every iteration (pivoting from a basic point to the next one) can
be done with a strongly polynomial complexity (linear system
over Q).

It is not known whether there is a pivoting rule making a
number of pivots polynomial in n,m. Superpolynomial
counter-examples have been found for commonly used pivoting
rules (Klee-Minty, . . . , Friedmann et al.).

It is not even known that the graph of the polyhedron has
polynomial diameter (polynomial Hirsch conjecture), ie that the
perfectly lucid pivoting rule taking the shortest path to the
optimum makes a polynomial number of steps.
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Interior points
For all µ > 0, consider the barrier problem

min c · x − µ
( m∑

i=1

log(bi − Aix)
)
, bi − Aix > 0 i ∈ [m]

µ 7→ x(µ) optimal solution, is the central path. branch of an
algebraic curve. x(0) is the solution of the LP.

x(0)

x(∞)

“the good convergence properties of Karmarkar’s algorithm arise from

good geometric properties of the set of trajectories”, Bayer, Lagarias 89.



Interior point methods make a homotopy: move in a suitable
neighborhood of the central path, alternating Newton steps and
decreasing µ. This leads to weakly polynomial bounds for LP.

General interior point methods work with a self-concordant
barrier f on a convex body K ,

min
x∈intK

c · x + µf (x)

where f smooth, strictly convex, f (x)→∞ when x → ∂K , and
for all x , d ∈ Rn, φ(t) = f (x + td) satisfies

φ′′′ 6 2(φ′′)3/2 .

Theory of self-concordance: Nesterov, Nemirovski, Renegar. . .



Is there a strongly polynomial interior point method?

A theorem of Dedieu-Malajovich-Shub (2005), showing that the
log-barrier central path has a total curvature in O(n), averaged
over all 2n+m LP’s (cells of the arrangement of hyperplanes),
εiAix 6 bi , ηjxj > 0, εi , ηj = ±1, followed by a conjecture of
Deza, Terlaky, Zinchenko, stating that the total curvature be in
O(m), where m is the number of constraints, hinted towards a
positive answer.



Theorem (Allamigeon, Benchimol, SG, Joswig, MPG is “not more
difficult” than LP)

A semialgebraic strongly polynomial pivoting rule for LP would solve
Mean Payoff Games in polynomial time (SIAM Opt 2015)

Eg, combinatorial rules, depending on signs of minors of ( A b
c 0 ) work.

This is based on an embedding theorem. Every mean payoff game
can be encoded by a nonarchimedean linear program and complexity
results can be transferred.
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Theorem (Allamigeon, Benchimol, SG, Joswig, SIAM. J. Appl. Alg.
Geom. 2018, SIGEST 2021)

There is a LP with 2r + 2 variables and 3r + 4 inequalities such that
the log-barrier central path has a total curvature in Ω(2r ), and
log-barrier interior point methods make Ω(2r ) on this LP.

Theorem (Universality, Allamigeon, SG, Vandame, 2021)

No self-concordant interior point method is strongly polynomial.



Although the word “tropical” appears in none of these
statements, the proofs rely on tropical geometry in an
essential way, through linear programming over
non-archimedean fields, and tropical modules / convex
cones.



Part II.

Operator approach to mean payoff games



v k
i value of the game in horizon k and initial state (i ,MIN).

v k
1 = min(−2 + 1 + v k−1

1 ,−8 + max(−3 + v k−1
1 ,−12 + v k−1

2 ))

v k
2 = 0 + max(−9 + v k−1

1 , 5 + v k−1
2 )

1
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−9
MIN

MAX

−2

−8
v 1 = (0, 0)
v 2 = (−11, 5)
v 3 = (−15, 10)
v 4 = (−16, 15)
χ = limk→∞ v k/k = (−1, 5)



Theorem (Shapley)

v k = T (v k−1), v 0 = 0 .

The map T : Rn → Rn is an example of Shapley operator.

[T (x)]j = min
i∈[m], j→i

(
rji + max

k∈[n], i→k
(rik + xk)

)
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Definition

An abstract Shapley operator is a map T : Rn → Rn such that T is
monotone (or order preserving)

(M) : x 6 y =⇒ T (x) 6 T (y)

and additively homogeneous

(AH) : T (se + x) = se + T (x), ∀s ∈ R

where e = (1, . . . , 1) is the n-dimensional unit vector.

This entails that T is sup-norm nonexpansive:

‖T (x)− T (y)‖∞ 6 ‖x − y‖∞

Known axioms in non-linear potential theory / game theory / PDE viscosity solutions theory,
e.g. Crandall and Tartar, PAMS 80.

.



General example of Shapley operator T : Rn → Rn,

Ti(x) = inf
a∈A

sup
b∈B

(
r abi +

∑
j∈[n]

Pab
ij xj

)
where Pab

ij > 0,
∑

j P
ab
ij = 1.

T is the one day operator of a repeated game, in which MIN selects
a, MAX selects b, MIN pays r abi in state i , and next state becomes j
with probability Pab

ij .

[T k(0)]i is the value of the standard game in horizon k , starting from
state i .

[T k(u)]i is the value of a modified game, in which MAX receives an
additional payment of uj in the terminal state j .
We allow the inf and sup not to commute, this is the ‘turn based’ situation, MIN plays first, MAX plays next, and each player is
informed of the previous action of the other player. In the original example of Shapley (1953),

Ti (x) = infµ∈∆(A) supν∈∆(B)

∫
dµ(a)dν(b)(rabi +

∑
j∈[n] P

ab
ij xj ), where ∆(·) denotes the set of probability measures on a

space, i.e. players choose measures on actions rather than actions. This models the situations in which MAX and MIN play
simultaneously. This reduces to the general example, replacing A by ∆(A) and B by ∆(B). More generally, every Shapley
operator can be written as in the general example (Kolokoltsov 92), even with deterministic transitions, allowing infinite A
(Rubinov, Singer 01, Sparrow, and Gunawardena 04).



Theorem (Bewley, Kohlerg 76, Neyman 03)

The mean payoff vector

lim
k→∞

T k(0)/k

does exist if T : Rn → Rn is semi-algebraic and nonexpansive in any
norm.

Finite action space and perfect information implies T piecewise linear.

Semi-algebraic is needed to deal with finite action space, player playing simultaneously (incomplete information) - Shapley’s
original example.

This result still holds if T is definable in a o-minimal structure, and nonexpansive, e.g., log-exp type, entropy games. . . Bolte,
SG, Vigeral, MOR 14.
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Winning certificates

Theorem (“subharmonic vectors” Akian, SG, Guterman, IJAC 2012)

Let T be the Shapley operator of a deterministic mean payoff game.
The following are equivalent.

initial state j is winning, meaning that

0 6 lim
k→∞

[T k(0)]j/k

there exists u ∈ (R ∪ {−∞})n, uj 6= −∞, and

u 6 T (u)

A Shapley operator T : Rn → Rn always extends continuously (R ∪ {−∞})n → (R ∪ {−∞})n,
the topology of R∪ {−∞} being given by the metric d(x , y) = |ex − ey | (Burbanks, Nussbaum,
Sparrow)
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Space of subharmonic vectors

x1 x2

x3

x1 x2

x3

states 1,2,3 winning states 2,3 winning



Theorem (subharmonic vectors, cont.)

For an arbitrary Shapley operator T (infinite action space and stochastic

transitions allowed), the game has one initial state winning for MAX, i.e.,
∃j , lim infk→∞[T k(0)]j/k > 0, iff there exists
v ∈ (R ∪ {−∞})n, v 6≡ (−∞, . . . ,−∞), such that

v 6 T (v)

For stochastic games, the support of v ∈ V is a winning dominion of MAX (set of winning
states of MAX a.s. invariant under a strategy of MAX). Not all winning states are in winning
dominions. Allamigeon, SG, Skomra, JSC 2017



Part III.

Tropical modules / convex cones



Tropical semifield Rmax = R ∪ {−∞}, equipped with

“a + b” = max(a, b) “a × b” = a + b

“0” = −∞, “1” = 0

For some duality results, embed Rmax in the complete semiring
Rmax := R ∪ {±∞} (set −∞+ (+∞) = −∞ for “0” := −∞ to be aborbing).

We shall also need Rmin := R ∪ {+∞}, and Rmin := R ∪ {±∞},
equipped with min as addition, instead of max.
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Exemples of tropical modules over Rmax

Scalars act on vectors by “λx” = λe + x .

Rn
max: free Rmax-module, V ⊂ Rn

max is a submodule, aka tropical
convex cone, if for all x , y ∈ V , λ, µ ∈ Rmax,

“λx + µy” = sup(λe + x , µe + y) ∈ V .

Since “λ > 0” is automatic tropically, modules = cones.

V is a tropical convex set if the same is true conditionnally to
“λ + µ = 1”, i.e., max(λ, µ) = 0.
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Proposition (“subharmonic vectors”)

V ⊂ Rn
max is a closed Rmax-submodule iff there is a Shapley operator

T : Rn
max → Rn

max such that V = {v ∈ Rn
max | v 6 T (v)}.

“Only if”, take T = PV , where PV is the operator of best
approximation:

PV (x) = max{v ∈ V | v 6 x} .

The max belongs to the set since V stable by the sup of two vectors, and closed



Tropical adjoints

Let A ∈ Rm×n
max , x ∈ Rn

max, y ∈ Rn
max

(Ax)i = max
j∈[n]

(Aij + xj), i ∈ [m]

Ax 6 y ⇐⇒ x 6 A]y

(A]y)j = min
i∈[m]

(−Aij + yi), j ∈ [n]

The adjoint A] is a priori defined as a self-map of the order completion Rmax := (R ∪ {±∞})n
of Rn

max, but it does preserve Rn as soon as the game has no states without actions. More on
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The Shapley operator of a MPG can be written as

[T (v)]j = min
i∈[m], j→i

(
−Aij + max

k∈[n], i→k
(Bik + vk)

)

T (v) = A]Bv

v 6 T (v) ⇐⇒ Av 6 Bv

v 6 T (v) ⇐⇒ max
j∈[n]

(Aij + vj) 6 max
j∈[n]

(Bij + vj), i ∈ [m]

The sets of subharmonic certificates {v | Av 6 Bv} is a tropical
polyhedral cone, i.e. a set defined as the intersection of finitely many
linear inequalities.

Let’s see how tropical polyhedral cones look like. . .
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Tropical hyperplanes

Given a ∈ Rn
max, a 6≡ −∞,

H := {x ∈ Rn
max | max

i∈[n]
ai + xi achieved twice (at least)}

x2x1

x3

max(x1, x2,−2 + x3)



Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞, ∀i ,

H6 := {x ∈ Rn
max | max

i∈[n]
ai + xi 6 max

i∈[n]
bi + xi}
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max(x1,−2 + x3) 6 x2



Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞, ∀i ,
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max | max

i∈[n]
ai + xi 6 max
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞, ∀i ,

H6 := {x ∈ Rn
max | max

i∈[n]
ai + xi 6 max

i∈[n]
bi + xi}

x2x1

x3

max(x2 − 2 + x3) 6 x1



Tropical polyhedral cones

can be defined equivalently either as intersections of finitely many
half-spaces or as finitely generated submodules of Rn

max.
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Tropical polyhedral cones

can be defined equivalently either as intersections of finitely many
half-spaces or as finitely generated submodules of Rn

max.

x2
x1

V

x3

x2
x1

x3

2 + x1 6 max(x2, 3 + x3)



Tropical polyhedral cones

can be defined equivalently either as intersections of finitely many
half-spaces or as finitely generated submodules of Rn

max.

V



Lam, Postnikov studied alcoved polyhedra (of the root system An),
being a generalization of Stanley’s order polytopes. Alcoved
polyhedra are of the form:

C := {x ∈ Rn | xi − xj 6 aij ,∀i , j} , for some aij ∈ R ∪ {+∞}

Develin, Sturmfels: tropical polyhedra are polyhedral complexes
whose cells are alcoved polyhedra. Example of a tropical polytope
with four vertices



Theorem (Develin and Sturmfels, 2004)

The combinatorial type of a tropical polyhedral cone with finite
generators are is determined by an arrangement of tropical
hyperplanes. It is dual to a regular subdivision of the product of two
simplices.

da b c

x1 x2

x3

0



Part IV.

Link between nonarchimedean and tropical

convexity



Let K be a real closed field with a nonarchimedean valuation having
R has the value group.

E.g., generalized Puiseux series:

x = x(t) =
∞∑
i=1

ci t
αi ,

where the sequence (αi)i ⊂ R is strictly decreasing and either finite
or unbounded and ci are real.

Can take either formal series (Markwig), or rather the subfield series
absolutely converging for t large enough (van den Dries and
Speissegger), then:

val(x) = lim
t→∞

log |x(t)|
log t

= α1 (and val(0) = −∞) .



A S ⊂ Kn is basic semialgebraic if

S = {(x1, . . . , xn) ∈ Kn : Pi(x1, . . . , xn) � 0, � ∈ {>,=},∀i ∈ [q]}

where P1, . . . ,Pq ∈ K[x1, . . . , xn]. A semialgebraic set is a finite
union of basic semialgebraic sets.

A set S ⊂ Rn is basic semilinear if it is of the form

S = {(x1, . . . , xn) ∈ Rn : `i(x1, . . . , xn) � h(i), � ∈ {>,=},∀i ∈ [q]}

where `1, . . . , `q are linear forms with integer coefficients,
h(1), . . . , h(q) ∈ R. A semilinear set is a finite union of basic
semilinear sets.

Theorem (Alessandrini, Adv. in Geom. 2013)

If S ⊂ Kn
>0 is semi-algebraic, then val(S) ⊂ Rn is semilinear and it is

closed.

A constructive version follows from Denef-Pas quantifier elimination in valued fields, see
Allamigeon, SG, Skomra, DCG 2020. See also Jell, Scheiderer and Yu arXiv:1810:05132.
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Theorem (Semi-algebraic version of “Kapranov theorem”)

Consider a collection of m regions delimited by hypersurfaces:

Si := {x ∈ Kn
>0 | P−i (x) 6 P+

i (x)}, i ∈ [m]

where P±i =
∑

α p±i ,αx
α ∈ K>0[x ], and let

Si := {x ∈ Rn | max
α

(val p−i ,α + 〈α, x〉) 6 max
α

(val p+
i ,α + 〈α, x〉)}

Then
val(

⋂
i∈[m]

Si) ⊂
⋂
i∈[m]

val(Si) ⊂
⋂
i∈[m]

Si

and the equality holds if
⋂

i∈[m] Si is the closure of its interior; in

particular if the valuations val p±i ,α are generic.

See Allamigeon, SG, Skomra DCG2020



Example 1.
S = {x ∈ K3

>0 | x2
1 6 tx2 + t4x2x3}

valS = {x ∈ R3 | 2x1 6 max(1 + x2, 4 + x2 + x3)}

Example 2.

Figure: This set is the closure of its
interior.



Correspondence: convex semialgebraic sets →
stochastic mean payoff games

Theorem (Allamigeon, SG, Skomra, coro of JSC 2018 + DCG 2020)

Let C ⊂ Rn. TFAE:

C is the image by val of a convex semialgebraic cone in Kn
>0;

C is a closed tropical convex cone and it is semilinear;

C = {v ∈ Rn | v 6 T (v)}, where T is a Shapley operator of a
stochastic turn based zero-sum game with finite action spaces
and rational transition probabilities

Ti(x) = inf
a∈A

sup
b∈B

(
r abi +

∑
j∈[n]

Pab
ij xj

)
(A,B finite, Pab

ij ∈ Q).



Special case of polyhedra

Theorem

1 Every tropical polyhedron P can be written as P = valP where
P is a polyhedron in Kn

>0.

2 Moreover, P is the uniform (Hausdorff) limit of

logt P := { log z

log t
| z ∈ P}

as t →∞.

Part 1 was proved by Develin and Yu. Part 2 in Allamigeon, Benchimol, SG, Joswig, SIAGA
2018. Related result in Briec and Horvath.
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Tropical linear program

min“c>x”; “A+x + b+ > A−x + b−”

min max
j

cj + xj

max(max
j

(A+
ij + xj), b

+
i ) > max(max

j
(A−ij + xj), b

−
i ) .

x1

x2

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7



Correspondence classical ↔ tropical LP

Theorem (Allamigeon, Benchimol, SG, Joswig, SIAM J. Disc. Math)

Suppose that P = {x ∈ Kn | Ax + b > 0} is included in the positive
orthant of Kn and that the tropicalization of (A,b) is sign generic.
Then,

val(P) = {x ∈ Rn
max | “A+x + b+ > A−x + b−”} ,

where (A+ b+) = val(A+b+) and (A− b−) = val(A− b−). Moreover
the classical and tropical polyhedron have the same combinatorics:
valuation sends basic points to basic points, edges to edges, etc.

A point of a tropical polyhedron is basic if it saturates n inequalities.

� tropically extreme point implies basic, but not vice versa
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(0, 0, 0)

(0, 0, 4)

(4, 0, 0)

(4, 4, 0)

(4, 4, 4)



(t0, t0, t0)

(t0, t0, t4)

(t4, t0, t0)

(t4, t4, t0)

(t4, t4, t4)



This is how the application to complexity is obtained.

Corollary (Allamigeon, Benchimol, SG, Joswig, SIAM J. Opt)

Mean payoff games are easier than combinatorial linear programming.

A mean payoff game is equivalent to a tropical linear program
(feasibility problem), which can be assumed to be generic. This can
be lifted to a nonarchimedean linear program. A combinatorial
pivoting rule solving the linear program over the reals would solve the
mean payoff game. (The rule is implemented tropically, solving
optimal assignment problems.)

The counter example showing that interior point methods are not
strongly polynomial is obtained by considering a linear program with
a large parameter t, and working out the tropicalization of the central
path.



Part V.

Ambitropical convexity



Limitation of tropical convexity

Tropical convex cones are the basic examples of tropical modules.

They are inherently asymetric: two models of tropical convexity,
max-plus and min-plus.

Considering tropically linear maps as morphisms is too restrictive.
E.g., the best approximation mapping on a tropical module

PV (x) = max{v ∈ V 6 v 6 x}

is non-linear. Ranges of linear projectors are alcoved polyhedra (up to
isomorphism).

Is there a self-dual convexity, encompassing both max-plus and
min-plus convex sets, and retaining combinatorial properties and
game interpretation ? Answer: ambitropical convexity.



Observation

A map T : Rn → Rn is a Shapley operator (order preserving and
additively homogeneous) iff it is nonexpansive in the weak norm
top(x) := maxi xi , i.e.,

top(T (x)− T (y)) 6 top(x − y)

Compare with nonexpansive mapping in Banach spaces

‖T (x)− T (y)‖ 6 ‖x − y‖

Different classes of (weak)norms to different “convexities”.



Definition

A subset C of a metric space (X , d) is metrically convex if for any
distinct points x , y ∈ C and a decomposition d(x , y) = α + β with
α, β > 0, there exists a vector z ∈ C such that d(x , z) = α and
d(z , y) = β.

Proposition (Bruck 73)

Let X be a Banach space having the fixed point property for spheres
(every nonexpansive map leaving invariant a nonempty closed convex set of a sphere has a fixed

point – true if X finite dimension or strictly convex). Then, the fixed point set of a
non-expansive map T : X → X is metrically convex.

Suppose ‖x − y‖ = α + β with α, β > 0. T leaves invariant the
non-empty closed convex set
B(x , α) ∩ B(y , β) ⊂ Sphere(x , α) ∩ Sphere(y , β)



Observation (Case of Euclidean norms)

Let C be a subset of a Hilbert space X . TFAE

1 C is the fixed point set of a non-expansive mapping T : X → X;

2 C is a non-expansive retract of X , meaning that C = P(X )
where P = P2 is nonexpansive;

3 C is closed and convex.

Proof.

(3)⇒(2): Take P(x) = arg min{‖y − x‖ | y ∈ C} (best
approximation).
(1)⇒(3) holds more generally in any strictly convex normed
space.

Actually, if dimX > 3, and if every closed convex set of X is a nonexpansive retract of X , then
X is a Hilbert space (Reich, JFA77)



Definition (Aronszahn and Panitchpakdi (1956))

A metrix space (X , d) is hyperconvex if for any indexed family of
closed balls B(xi , ri) such that d(xi , xj) 6 ri + rj , the intersection⋂

i B(xi , ri) is non-empty.

Equivalently, (X , d) is hyperconvex iff it is metrically convex and the
family of closed balls has Helly number two.

Every hyperconvex Banach space is of the form (C (K ), ‖ · ‖∞) where
K is an extremally disconnected (the closure of every open set is open)
compact Haussdorf space (Nachbin 50 and Kelley 52).

Ex. Rn, `∞ with the sup-norm.



Theorem (Aronszahn and Panitchpakdi (1956))

Let H be a metric space. TFAE

1 H is hyperconvex;

2 for every metric space M which contains H metrically, there
exists a nonexpansive retraction P : M → H.

Corollary

Let C ⊂ Rn. TFAE

1 C is the fixed point set of a sup-norm non-expansive mapping of
Rn;

2 C is a sup-norm non-expansive retract of Rn;

3 C is hyperconvex;



Since ‖x‖∞ = top(x) ∨ top(−x), top-nonexpansive implies
‖ · ‖∞-nonexpansive.

So, we expect the set of fixed points of Shapley operators Rn → Rn

to constitute a “generalized convexity”, refining hyperconvexity.



Consider additive cones C ⊂ Rn, i.e., subsets inheriting the partial
order of Rn and stable by translation by λe for all λ ∈ R.

Definition

An additive cone is ambitropical if it is a lattice in the induced order.

� x ∨C y := min{z ∈ C | z > x , z > y} differs from the sup in Rn,
x ∨ y = (max(xi , yi)), similarly for x ∧C y .

Theorem

Let C ⊂ Rn. TFAE

there exists a Shapley operator T : Rn → Rn such that
C = {x ∈ Rn | x = T (x)};
there exists a Shapley operator P : Rn → Rn such that P = P2

and P(Rn) = C;

C is a closed ambitropical cone.



Proof

Lemma

An ambitropical cone is closed iff it is a conditionnally complete
lattice (every set bounded from above, resp. below, has a sup, resp.
an inf).

If C is ambitropical and closed, the maps

Q−C (x) = supC{y ∈ C | y 6 x} and Q+
C (x) = infC{y ∈ C | y > x}

are Shapley operators, satisfying (Q+
C )2 = Q+

C and Q+
C (Rn) = C ;

similarly for Q−C . So closed ambitropical ⇒ Shapley retract of Rn.
If C = {x ∈ Rn | x = T (x)}, then, for x , y ∈ C , T (x ∨ y) > x ∨ y ,
and since T is sup-norm nonexpansive with a fixed point, the orbit
{T k(x ∨ y)}k>1 is bounded. Then:

x ∨C y = lim
k→∞

T k(x ∨ y) ∈ Rn .

So the fixed point set of T is ambitropical.



Ambitropical cones contain as special cases closed tropical cones
(stable by sup) and their opposites, closed dual tropical cones (stable
by inf);

closed additive cones stable by sup and inf alcoved polyhedra
closed tropical cone {x ∈ Rn | x 6 T (x)}

closed dual tropical cone {x ∈ Rn | x > T (x)}
ambitropical cones {x ∈ Rn | x = T (x)}

where T is a Shapley operator.

Flip invariance. If E is ambitropical, then −E is ambitropical,
corresponding to the fixed point of x 7→ −T (−x).



Cmax:= set of suprema of family of elements of C bounded from
above; Cmin defined dually.

Pmax
C (x) = sup{y ∈ Cmax | y 6 x}, Pmin

C (x) = inf{y ∈ Cmin | y > x}.

Theorem

If C is ambitropical and closed, then,

Q−C (x) := supC{y ∈ C | y 6 x} = Pmin
C ◦ Pmax

C (x)

Q+
C (x) := infC{y ∈ C | y > x} = Pmax

C ◦ Pmin
C (x)

Proof. Check first that Pmax
C (x) = sup{z ∈ C | z 6 x}, and dual for min. Then,

Pmin
C (Pmax

C (x)) = inf{y ∈ C | y > Pmax
C (x)}

= inf{y ∈ C | y > sup{z ∈ C | z 6 x}}
= inf{y ∈ C | (z ∈ C , z 6 x) =⇒ z 6 y}

= supC{z ∈ C | z 6 x} = Q−C (x)
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Q−
C

x
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z

 =

(x ∧ y ∧ (1 + z)) ∨ (x ∧ (1 + y) ∧ z) ∨ (y ∧ z ∧ (1 + x))
y ∧ (1 + x) ∧ (1 + z)
z ∧ (1 + y) ∧ (1 + x)


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C in grey. Cmin and Cmax both consist of C union of the blue triangle
(g1, h, f2). So C ( rangePmin

C ◦ Pmax
C is not ambitropical.
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Theorem (Flip-flop property)

Let C be an additive cone in Rn. TFAE:

C = P(Rn) where P = P2 is a Shapley operator;

For all z ∈ Rn, [Pmax
C (z),Pmin

C (z)] meets C ;

For all z ∈ Cmax, Pmin(z) ∈ C;

For all z ∈ Cmin, Pmax(z) ∈ C.
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� The intersection of ambitropical cones is generally not ambitropical.

However, there is a notion of ambitropical hull defined up to isomorphism:

Theorem

Let C be an additive cone in Rn. All closed ambitropical sets containing
C that are minimal for inclusion are isomorphic (morphisms are Shapley
operators).

The sets Pmax
C ◦ Pmin

C (Rn) are Pmin
C ◦ Pmax

C (Rn) are two (isomorphic)
examples of ambitropical closure of C .



Define ambitropical polyhedra to be ambitropical cones that are
polyhedral complexes whose cells are alcoved polyhedra.

A Shapley operator T : Rn → Rn is finitely generated if we can find
p > 1 and matrices A,B ∈ Rp×n

max such that i.e.,

Ti(x) = min
j∈[p]

(−Aji + max
k∈[n]

(Bjk + xk)) .

I.e., T represents a deterministic game with finite action spaces.



Game significance of fixed points of the Shapley

operator

Suppose that T (u) = u + λe, λ ∈ R. Then, the mean payoff is equal
to λ, for all initial states.

The set of such eigenvectors u is the fixed point set of −λ + T , so
an ambitropical convex set.

An eigenvector u determines a pair of positional strategies σ∗ and π∗

of Min and Max. In state i , let Min move to any state j achieving the
minimum in

Ti(u) = min
j

(
− Aji + max

`
(Bj` + u`)

)
and similarly, in state j , let Max move to any state ` achieving the
maximum.



Observation

The pair of strategies σ∗, π∗ of Players Min and Max arising from u is
u-calibrated, meaning that:

By playing σ∗, Player Min can guarantee that, whatever Max
does, and for all horizons k,

−Aj0i0 + Bj0i1 + · · ·+−Ajj−1ik−1
+ Bjk−1ik 6 ui0 − ujk + kλ ,

where i0, j0, i1, j1 . . . , ik is the sequence of states that are visited;

By playing π∗, Player Max can guarantee that, whatever Min
does, and for all horizons k,

−Aj0i0 + Bj0i1 + · · ·+−Ajj−1ik−1
+ Bjk−1ik > ui0 − ujk + kλ .

Calibrated strategies yield optimal strategies in the mean payoff
problem (but not vice versa).
This extends the notion of calibrated trajectory introduced by Fathi in the one player case. Fathi considers weak-KAM
solutions, i.e., solutions u of the Hamilton-Jacobi PDE λ = H(x, ∂u

∂x
) where H(x, ·) is convex = infinite dimensional max-plus

eigenspaces.



Theorem

Let C ⊂ Rn. TFAE

C is an ambitropical polyhedron;

C is the fixed point set of a finitely generated Shapley operator;

there exists a finitely generated Shapley operator P = P2; such
that C = P(Rn)

C is a closed ambitropical cone, clo↓ Cmax is a finitely generated
submodule of Rn

max, and clo↑ Cmin is a finitely generated
submodule of Rn

min.

clo↓(·) denotes the closure in Rn
max by taking limits of nonincreasing sequences, and dually for

clo↑ ·.

Hence, an ambitropical cone can be represented in an equational way,
or by means of generators of clo↓ Cmax and clo↑ Cmin.



x1 x2

x3

a

b

An ambitropical polyhedron

Blue and black: generators of clo↓ Cmax; Red and black: generators of
clo↑ Cmin. In Green: an example of geodesic in Hilbert’s seminorm.



An ambitropical cone C is homogeneous if for all α > 0 and x ∈ C ,
αx ∈ C .

Proposition

If C is an ambitropical polyhedron, then, its tangent cone at any
point is a homogeneous ambitropical polyhedron.

If C is a homogeneous ambitropical polyhedron, then the skeletton of
C is Sk(C ) := C ∩ {0, 1}n.

A Weyl cell associated to an ordered partition [n] = I1 ∪ · · · ∪ IS a set
of the form

W = {x ∈ Rn | (i ∈ Ir , j ∈ Is , r 6 s) =⇒ xi 6 xj} .

If I1 = {i1}, . . . , In = {in}, this specializes to

W = {x ∈ Rn | xi1 6 . . . 6 xin} .



Theorem

The map C 7→ Sk(C ) sets up of bijective correspondence
between homogeneous ambitropical polyhedra and suposets of
{0, 1}n that are lattices in the induced order (equivalently, order
preserving retracts of {0, 1}n).

A homogeneous ambitropical polyhedron is the support of a
polyhedral complex composed of Weyl cells in bijection with
chains in the lattice Sk(C ).



Order preserving retracts of complete lattices studied in Crapo
(1982).

(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0) x1 x2

x3

g1g2·

h

f1

f2

C = {x ∈ R3 | x3 > x1 > x2} ∪ {x2 > x1 > x3}.



Concluding remarks

Tropical convex sets have the following properties:

1 characterize the winner in mean payoff games;
2 coincide with sub-fixed point sets of Shapley operators;
3 admit external and internal representations;
4 are the image by the valuation of non-archimedean convex sets;
5 can be characterized combinatorially (combinatorial types of

tropical polyhedra are duals of regular subdivisions of products
of two simplices).

Ambitropical convex sets provides a generalization (or even a
refinement) of the first three properties.

Link between ambitropical convexity and the theory of nonexpansive
retracts (subtheory of hyperconvexity).

Nonarchimedean interpretation is still missing. Combinatorial
characterization in the homogeneous case (∼ lattices in {0, 1}n).



References: on Ambitropical convexity, Akian, SG, Vannucci,
arXiv:2108.07748

On the application of tropical convexity to complexity of linear
programming, Allamigeon, Benchimol, SG, Joswig, SIAM SIGEST, 2021.

More references below.

Thank you !
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Part VI.
Tropicalization of the central path
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Primal-dual central path

minimize
c>x

µ
−

n∑
j=1

log(xj)−
m∑
i=1

log(wi)

subject to Ax + w = b, x > 0,w > 0.

(1)

Ax + w = b

−A>y + s = c

wiyi = µ for all i ∈ [m]

xjsj = µ for all j ∈ [n]

x ,w , y , s > 0 .

(2)

For any µ > 0, ∃! (xµ,wµ, yµ, sµ) ∈ Rn × Rm × Rm × Rn. The
central path is the image of the map C : R>0 → R2m+2n which sends
µ > 0 to the vector (xµ,wµ, yµ, sµ).



The tropical central path

Assume now that A(t),b(t), c(t) have entries in K (absolutely
converging Puiseux series with real exponents, t →∞).

The tropical central path is the image by the valuation of the central
path. It is the log-limit, taking the parameter µ := tλ,

Ctrop : λ 7→ lim
t→∞

log C(tλ)

log t
. (3)

Ctrop can be computed by combinatorial means.



barycenter of a (compact) tropical
polyhedron P

= greatest point of the set P w.r.t.
the coordinate-wise order 6

Let P be the feasible set of LP(A,b, c):

P := {(x ,w) ∈ Kn+m
>0 : Ax + w = b} .

Assume, for simplicity, b, c > 0.

Theorem

The image under val of the point (xµ,wµ) of the primal central path
is given by the barycenter of the tropical polyhedron:

val(P) ∩ {(x ,w) ∈ Rn+m
max : val(c)> � x 6 val(µ)} .
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¡



-10¿[t]

minimize x1 + t3x2

P :



x1 + x2 6 2

tx1 6 1 + t2x2

tx2 6 1 + t3x1

x1 6 t2x2

x1, x2 > 0

max(x1, 3 + x2) 6 λ

val(P) :



max(x1, x2) 6 0

1 + x1 6 max(0, 2 + x2)

1 + x2 6 max(0, 3 + x1)

x1 6 2 + x2

λ = 4λ = 3λ = 2λ = 1λ = 0λ = −1



The counter example . . .
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min v0

s.t. u0 6 t1

v0 6 t2

vi 6 t(1− 1

2i
)(ui−1 + vi−1) for 1 6 i 6 r

ui 6 t1ui−1 for 1 6 i 6 r

ui 6 t1vi−1 for 1 6 i 6 r

ur > 0, vr > 0

LWr

Theorem (Allamigeon, Benchimol, SG, Joswig SIAGA 2018)

For t large enough, the total curvature of the central path is
> (2r−1 − 1)π/2.

Large enough: log2 t = Ω(2r ).



u0 6 t1 u0 6 1

v0 6 t2 v0 6 2

vi 6 t(1− 1

2i
)(ui−1 + vi−1) vi 6 1− 1

2i
+ max(ui−1, vi−1)

ui 6 t1ui−1 ui 6 1 + ui−1

ui 6 t1vi−1 ui 6 1 + vi−1

ur > 0, vr > 0 c>x = v0 6 λ

The tropical central path is given by

u0 = 1

v0 = min(2, λ)

vi = 1− 1

2i
+ max(ui−1, vi−1)

ui = 1 + min(ui−1, vi−1)
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0
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λ
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v1

u2

v2

u3

v3
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Figure: A tropical central path with many segments



Corollary (Interior point methods are not strongly polynomial,
Allamigeon, Benchimol, SG, Joswig SIAGA 2018)

Suppose that

t >

((
(10r − 1)!

)8

1− θ

)2r+2

.

Then, any log-barrier interior point method which stays in a wide
neighborhood of the primal-dual central path of LWr (t) needs to
perform at least 2r−1 iterations to reduce the duality measure from t2

to 1.

Wide neighborhood:

N−∞t (µ) :=
{

(x ,w , s, y) ∈ P(t)×Q(t) : µ̄(x ,w , s, y) = µ and
( xs
wy

)
> (1− θ)µe

}
µ̄(x ,w , s, y) :=

1

m + n

(
x>s + w>y

)
and θ ∈ ]0, 1[ parametrizes the size of the neighborhood.
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Figure: The successive iterations performed by the predictor-corrector
interior point method of Mizuno et al. [1993] on the linear program
LW4(t) to reduce the duality measure µ from t2 to 1, when t is equal to
108 (left). The points depict the projection of the iterations on the last
two coordinates (u4, v4) in logarithmic scale (where the logarithm is taken
in base t). Orange and red points respectively correspond to prediction
and corrections steps. The tropical central path is depicted in blue.
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