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We find modular fibering-outs of conifold periods in one–parameter
Calabi-Yau differential equations in a number of hypergeometric
cases by using a technique described in VG’s recent joint paper
with Don Zagier.



An identity. Define the numbers an by the expansion

∞∑
n=1

anqn =
η(5τ)10

η(τ)η(25τ)
+ 5η(τ)2η(5τ)4η(25τ)2.



One numerically observes the identity
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2π2
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,

the first 50000 terms summing up to −8.12776 · · · on both sides.



Significance. The rational curve count on the generic quintic

hypersurface in P4 has been famously related by Candelas et al. to

the hypergeometric variation of periods arising in a family of

special Calabi–Yau threefolds, called the mirror family

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4 = 0.

The Picard-Fuchs equation arising in this family is the pullback of

the hypergeometric differential equation

[D4 − 55λ(D + 1/5)(D + 2/5)(D + 3/5)(D + 4/5)]Φ(λ) = 0

w.r. to the Kummer map λ 7→ 1/(5ψ)5; D = λ d
dλ .



The numbers of rational curves of any given degree d are finite and

can be extracted from the expansion of its Wronskian (the ‘Yukawa

coupling’) in terms of the natural parameter (the exponential of

the ratio of the logarithmic to the analytic solution) .



Singular fibers.

I Being hypergeometric, this variation has singularities at 0, ∞
and the so-called conifold point λ = 5−5.

I In accordance with the gamma conjecture, the behavior of the

variation near 0 encodes the Chern numbers of the quintic, or

the ambient P4, such as the Euler characteristic and c1c2.

I The fiber at infinity appears to be highly singular;

nevertheless, the interesting motive behind it is the one that

occurs in the pullback family with respect to the Kummer

map λ = 1/(5ψ)5 and is given by
∑4

i=0 x5
i = 0.

The periods of this Fermat quintic, according to Weil, can be

related to the values of Γ(i/5), i = 1 . . . 4.



I This so-called Calabi-Yau differential equation underlies a

variation of polarized Hodge structure of type

h3,0 = h2,1 = h1,2 = h0,3 = 1.

I There is a single vanishing cycle at the conifold point

λ0 = 5−5. The symplectic polarization arising in the family

causes the splitting of the Hodge structure in the singular

fiber into a sum of a rank 2 piece and a rank 1 piece.

I The motive of the conifold fiber in this [or a similar family]

underlying the rank 2 Hodge structure is expected to be

modular.

This means that it also arises in a Kuga–Sato threefold.



In particular, the periods of the conifold motive sitting in the

threefold x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 5x0x1x2x3x4 should be

expressible in terms of certain values of the Eichler integral of

some weight 4 modular form f (τ).



The conifold modular form in the quintic case. In our case of

the quintic, it is the form

f (τ) =
η(5τ)10

η(τ)η(25τ)
+ 5 η(τ)2η(5τ)4η(25τ)2;

the particular presentation in terms of the eta products is in fact

inessential.



The fourteen one parameter Calabi-Yau families with fourth order

hypergeometric differential Picard Fuchs operators are a direct

generalisation:

[D4 − µλ(D + a1)(D + a2)(D + a3)(D + a4)]Φ(λ) = 0



N AESZ a1, a2, a3, a4 µ Mirror M κ c2.D χ

8 3 1
2 ,

1
2 ,

1
2 ,

1
2 28 X2,2,2,2(18) 16 64 −128

9 11 1
4 ,

1
3 ,

2
3 ,

3
4 2633 X4,3(152) 6 48 −156

16 6 1
4 ,

1
2 ,

1
2 ,

3
4 210 X4,2(16) 8 56 −176

25 1 1
5 ,

2
5 ,

3
5 ,

4
5 55 X5(15) 5 50 −200

27 4 1
3 ,

1
3 ,

2
3 ,

2
3 36 X3,3(16) 9 54 −144

32 10 1
4 ,

1
4 ,

3
4 ,

3
4 212 X4,4(1422) 4 40 −144

36 5 1
3 ,

1
2 ,

1
2 ,

2
3 2433 X3,2,2(17) 12 60 −144

72 14 1
6 ,

1
2 ,

1
2 ,

5
6 2833 X6,2(153) 4 52 −256

108 8 1
6 ,

1
3 ,

2
3 ,

5
6 2436 X6(142) 3 42 −204

128 7 1
8 ,

3
8 ,

5
8 ,

7
8 216 X8(144) 2 44 −296

144 12 1
6 ,

1
4 ,

3
4 ,

5
6 21033 X6,4(13223) 12 32 −156

200 2 1
10 ,

3
10 ,

7
10 ,

9
10 2855 X10(132, 5) 1 34 −288

216 13 1
6 ,

1
6 ,

5
6 ,

5
6 2836 X6,6(122232) 1 22 −120

864 9 1
12 ,

5
12 ,

7
12 ,

11
12 21236 X2,12(144, 6) 1 46 −484



Problem

In each of these cases, find a period identity relating the conifold

Hodge structure to a modular Hodge structure. If possible, exhibit

an explicit correspondence between the conifold fiber and a

Kuga-Sato variety.



I In practice, this means that we are
looking for a certain codimension 3
cycle in a 6-dimensional cartesian
product of the conifold fiber and the
Kuga-Sato variety.

I Compare our situation with where the
theory of elliptic curves was in the
pre-Heegner [Birch–Stephens] period.
In the range of low conductors, the
search over small boxes is quite
efficient at producing the Mordell-Weil
generators of analytic rank 1 curves.
The limitations of this method are
clear.

I In the absence of a general theory, we
have to resort to exactly this: search
over small–coordinate boxes . . .

37a1 (0, 0)
43a1 (0, 0)
53a1 (0, 0)
57a1 (2, -2)
58a1 (0, 1)
61a1 (1, -1)
65a1 (-1, 1)
77a1 (2, 3)
79a1 (0, 0)
82a1 (-1, 1)
83a1 (0, 0)
88a1 (2, -2)
89a1 (0, 0)
91a1 (0, 0)
91b1 (-1, 3)
92b1 (1, -1)
99a1 (0, 0)



. . . except that ‘embedding varieties as differential ideals may be

more economical than embedding them as polynomial ideals’.



Fibered motives and fibered periods.

Morse’s method to approach the topology of
a manifold is to equip it with a function and
try to pass to level hypersurfaces. If we put a
usual 2–torus T vertically on its top, i.e. on
a point on the equator, there are 4 critical
levels where the signatures are, successively,
(2, 0), (1, 1), (1, 1), (0, 2). A cycle is acquired
in the homology of the subcomplex
{x ∈ T | h(x) ≤ t} whenever we reach next
critical t; the dimension of the cycle is given
by the signature.

t



As one passes to more rigid theories where cohomology groups

bear more structure, one seeks to refine this crude information

while still keeping to the original Morse–Lefschetz idea.

For instance, if V is a variety over Fq and h is a rational function

on it, then

#V (Fq) =
∑

t∈P1(Fq)

#{x ∈ V (Fq) | h(x) = t}.



Let now V be an affine variety over Q, and h an invertible function

on it. Assume we are given a regular differential k–form Ω and a

Betti k–cycle C such that
∫
C Ω makes sense. Define ct to be the

result of intersecting C with the level h = t, and ωt to be the

residue form Res Ω
h−t . Put Φ(t) =

∫
ct
ωt . We will assume for a

while that dim h(C ) = 1.



By a version of Fubini, one may expect to find∫
C

Ω =

∫
γ

Φ(t)dt,

[perhaps up to a simple correction term],

where γ is a collection of paths in h(C ), either closed, or

connecting interesting points such as the critical values of h on V

(or on C ), 0 and ∞.



Observations:

I tautologically: in the presence of a unit h (= t), the period∫
C Ω becomes a special value (namely, at 0) of the motivic

gamma function

ΓC ,Ω,h(s) =

∫
C

hs Ω

which satisfies an ordinary linear recursion with polynomial

coefficients;

I secondly, the derivatives of Γ at 0 (or other integer

arguments) are periods as well.



Fibered periods. We will say that a period Π is fibered out by a

differential equation L[·] = 0 on Gm if the DE underlies a variation

of mixed Z–Hodge structures of geometric nature and there exists

a solution Φ(t) in the integral structure and a path γ on Gm(C)

with supp ∂γ ⊂ {0,∞, singularities of L} such that Π =
∫
γ Φ(t)dtt .



Two core practical questions about fibered motives:

(A) Given a differential operator L, how to compute in practical

terms the motive (e.g. the period matrix and the L–function) of

H1
? (Gm,D/LD)?

(B) Given a motive, how to construct effectively its fibering(s)?



Philosophically, (A) and (B) should be seen as aiming to

connect four facets of periods, namely, 1) integrals of forms on

domains, 2) entries of the matrices of the monodromy

transformation between the spaces of local solutions to

Picard–Fuchs equations at different singularities, 3) higher

derivatives of motivic gammas as above and 4) the coefficients

of the universal series that explicitly solve the Riemann–Hilbert

problem on varieties over Q.



A believer in all standard motivic conjectures may define the

rank of a period to be the minimal dimension of a period

matrix (a Betti–de Rham structure) over Q (or K ) where it

appears. The optimality question is then: for a period of rank

r , is it possible to fiber it out in a DE whose degree in t — call

it J — is exactly r?

If so, what is the minimal possible order of L? If not, what is the

minimal J (and therefore the order of the respective recursion)?



For r = 1 we are essentially dealing with the periods of the

grossencharacter motives. By the Lerch–Chowla–Selberg

theorem, sufficiently high powers of these can be fibered out

optimally in certain hypergeometric (J = 1) D–modules which

we will call the Chowla–Selberg objects. For r = 2, modular

periods constitute an important class; the question of which

modular periods correspond to order 2 (= three–term)

recursions seems to be completely open in weights ≥ 2.



B: Hypergeometric fibering-out (Golyshev–Zagier).

Suppose we are given a hypergeometric variation of Hodge

structures V on the torus Gm = SpecC[λ, λ−1]. Fix λ = λ0 and

write the period(s) of H = Vλ0 generically as
∑

Γ(k)λk0 , where

the fact that V is hypergeometric simply means that

Γ(k) =
∏

i Γ(li (k))ni for some linear functions li (k) ∈ Zk + Q
and some exponents ni ∈ Z.



Choose a lift of Γ(k) to Γ̃(n, k) given by the formula

Γ̃(n, k) =
∏

i Γ(̃li (n, k))ni , where l̃i (n, k) are now linear functions

in two variables (i.e. belonging to Zn + Zk + Q) such that

l̃i (0, k) = li (k), and set formally

Cn =
∑
k

Γ̃(n, k)λk0 (n ∈ C).



Remarks.

I The formal infinite sum Φ(t) =
∑

n Cntn satisfies a

differential equation LΦ(t) = 0.

I Cauchy’s formula says Cn =
∫

Φ(t)t−n dt
t .

I The same quantity C0 =
∫

Φ(t)dtt can be interpreted,
depending on one’s optic,

I as a period of the Hodge structure H
I or as a period in the Hodge structure arising in the

cohomology of the t-torus SpecC
[
t, t−1

]
with coefficients in

the Hodge module H given by L.



A proto-definition. We will say that the Hodge structure

H is fibered out by t into a Hodge module H on Gm(t).

One can imagine an invertible function, or a “unit”, on the

motive M that underlies H which turns it into a pencil of

motives M over the t-torus.



Why fibered motives rather than functions on varieties?

No need to compactify and resolve.



Remark. One anticipates a relation between the value of the

motivic gamma function

Γmot
H (s) :=

∫
Φ(t)ts

dt

t

at s = 0 and the entries of the period matrix of H — provided,

of course, that one can make the meaning of the integral precise.

See Bloch–Vlasenko for the fundamentals of motivic gammas.



Search-in-a-box strategy revisited.

I The rank 2 conifold motive M that underlies the conifold

Hodge structure H can be fibered out “in different

directions” that correspond to the choice of the lifts.

I We are looking for special choices that turn H into a

modular variation of Hodge structure.

I One should look for those directions of fibering–out that

correspond to short lift vectors.



Modular variations of Hodge structure. Modularity means in

this context that:

I in the differential equation LΦ(t) = 0 that controls H, the

solution Φ(t) can be chosen to be a [weak] weight 2

modular form, and t a Hauptmodul;

I the modular parameter τ can be interpreted as the ratio
Φ∗(t)
Φ(t) of the normalized log to the analytic solution around

t = 0;

I among the entries of the conifold period matrix of H is the

Eichler integral of the weight 4 form Φ(t(τ))t ′(τ).



Results.

1. The lift
(5k)!

k!5
;

(5k + n)!

k!4(k + n)!

is modular (and eventually leads to the identity that appeared

at the beginning). Define E as the unique normalized level 2

Eisenstein series of weight 2 and f50 as the normalized Hecke

eigenform in S2(Γ0(50))new with Hecke eigenvalue a3 = −1. One

then finds that

5t(τ) = 5 +
E (5τ)

f50(τ)

Φ(t(τ)) = f50(τ)



and

Φ(t(τ))
t ′(τ)

t(τ)
= 4f (2τ)− f (τ)

where

f (τ) =
η(5τ)10

η(τ)η(25τ)
+ 5 η(τ)2η(5τ)4η(25τ)2 .
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2. In the cases N = 8, 9, 16, 25, 27, 36, 72 the following lifts

produce order 3, degree 3 recursions:

N AESZ Lift

8 3
(2k
k

)4
;

(2k+n)!(2k)3

(k+n)!k!7

9 11
(3k
k

) (4k)!
k!4 ;

(3k+n)!(4k)!
(k+n)!k!4(2k)!

16 6
(2k
k

) (4k)!
k!4 ;

(2k+n)!(4k)!
(k+n)!k!5

25 1 (5k)!
k!5 ;

(5k+n)!
k!4(k+n)!

27 4 (3k)!2

k!6 ;
(3k+n)!(3k)!

(k+n)!k!5

36 5
(2k
k

)2 (3k)!
k!3 ;

(2k+n)!(2k)!(3k)!
k!6(k+n)!

72 14
(2k
k

) (6k)!
k!3(3k)!

;
(2k+n)!(6k)!

(k+n)!k!4(3k)!



3. In the cases N = 8, 9, 16, 27, 32, 36, 108, 144, 216 there exist

modular hypergeometric lifts.


