A tropical version of Hilbert polynomial

Dima Grigoriev

CNRS

02/12/2021, Bures-sur-Yvette

Dima Grigoriev (CNRS)

A tropical version of Hilbert polynomial

02.12.21 1/8

(4) E. (4)

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min$, $\otimes := +$. If *T* is an ordered (resp. abelian) group then *T* is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields; • $n \times n$ matrices over \mathbb{Z} , form a non-commutative tropical semi-ring:

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. *tropical semi-field*) w.r.t. $\oslash := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1 • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

- If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.
- **Examples** $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min$, $\otimes := +$. If *T* is an ordered (resp. abelian) group then *T* is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields: • $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring:

 $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$.

 $x = (x_1, ..., x_n)$ is a **tropical zero** of *f* if minimum min_{*j*}{ Q_j } is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{ 0 \le a \in \mathbb{Z} \}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{ \infty \}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ii}) \otimes (b_{kl}) := (\bigoplus_{1 \leq i \leq n} a_{ii} \otimes b_{il}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg = $i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_{i} (a_i \otimes x_1^{l_{i1}} \otimes \cdots \otimes x_n^{l_{in}}) = \min_i \{Q_i\};$ Dima Grigoriev (CNRS)

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i} X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer N and introduce Nⁿ variables

 $\{u(k_1,\ldots,k_n): 0 \le k_1,\ldots,k_n < N\}$. A **linearization** of f_{s_1,\ldots,s_n} is a tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1,\ldots,t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1,\ldots,t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1, \ldots, x_n) \in V(f)$ then point

 $\{u(k_1,\ldots,k_n) = k_1 x_1 + \cdots + k_n x_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$

Dima Grigoriev (CNRS)

イロト イヨト イヨト イヨ

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i} X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer *N* and introduce *Nⁿ* variables

 $\{u(k_1,\ldots,k_n): 0 \le k_1,\ldots,k_n < N\}$. A **linearization** of f_{s_1,\ldots,s_n} is a tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1,\ldots,t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1,\ldots,t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1, \ldots, x_n) \in V(f)$ then point

 $\{u(k_1,\ldots,k_n) = k_1 x_1 + \cdots + k_n x_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$

Dima Grigoriev (CNRS)

イロト イヨト イヨト イヨト

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i} X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer N and introduce N^n variables

 $\{u(k_1,\ldots,k_n): 0 \le k_1,\ldots,k_n < N\}$. A **linearization** of f_{s_1,\ldots,s_n} is a tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1,\ldots,t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1,\ldots,t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1, \ldots, x_n) \in V(f)$ then point

 $\{u(k_1,\ldots,k_n) = k_1 x_1 + \cdots + k_n x_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$

Dima Grigoriev (CNRS)

イロト イヨト イヨト イヨト

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i} X_i\}$ its shift $f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i) X_i\} \in I(f).$

Fix an integer N and introduce N^n variables $\{u(k_1, \ldots, k_n) : 0 \le k_1, \ldots, k_n < N\}$. A linearization

tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1, ..., t_{j,n} + s_n)\},\$ provided that $0 \le t_{j,1} + s_1, ..., t_{j,n} + s_n < N.$

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1, \ldots, x_n) \in V(f)$ then point

 $\{u(k_1,\ldots,k_n) = k_1 x_1 + \cdots + k_n x_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$

is a tropical zero of any linearization $f_{a,a} = \langle \mathbf{u} \rangle \langle \mathbf{a} \rangle \langle \mathbf{a} \rangle \langle \mathbf{a} \rangle$

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i}X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer N and introduce Nⁿ variables

 $\{u(k_1, \ldots, k_n) : 0 \le k_1, \ldots, k_n < N\}$. A **linearization** of f_{s_1, \ldots, s_n} is a tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1, \ldots, t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1, \ldots, t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of *f*.

If $(x_1, \ldots, x_n) \in V(f)$ then point

 $\{u(k_1,\ldots,k_n) = k_1 x_1 + \cdots + k_n x_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$

Dima Grigoriev (CNRS)

イロト イポト イヨト イヨト

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i}X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer *N* and introduce *Nⁿ* variables $\{u(k_1,...,k_n) : 0 \le k_1,...,k_n < N\}$. A linearization of $f_{s_1,...,s_n}$ is a tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1,...,t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1,...,t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1,\ldots,x_n) \in V(f)$ then point

 $\{u(k_1,\ldots,k_n) = k_1 x_1 + \cdots + k_n x_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$

is a tropical zero of any linearization $f_{a} \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow a$

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i}X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer *N* and introduce *Nⁿ* variables $\{u(k_1, \ldots, k_n) : 0 \le k_1, \ldots, k_n < N\}$. A **linearization** of f_{s_1, \ldots, s_n} is a tropical linear polynomial $\min_{1 \le j \le m} \{a_j + u(t_{j,1} + s_1, \ldots, t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1, \ldots, t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f. If $(x_1, \ldots, x_n) \in V(f)$ then point

 $\{u(k_1,...,k_n) = k_1 x_1 + \dots + k_n x_n : 0 \le k_1,...,k_n < N\} \in \mathbb{R}^{N^n}$

Dima Grigoriev (CNRS)

is a tropical zero of any linearization $f_{a, a} = \langle a \rangle + \langle a \rangle + \langle a \rangle + \langle a \rangle + \langle a \rangle$

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1,\ldots,f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1,\ldots,f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le j \le n} t_{j,j} X_j\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer N and introduce N^n variables $\{u(k_1,\ldots,k_n): 0 \le k_1,\ldots,k_n < N\}$. A linearization of f_{s_1,\ldots,s_n} is a tropical linear polynomial min_{1 < i < m} { $a_i + u(t_{i,1} + s_1, \dots, t_{i,n} + s_n)$ }, provided that $0 \le t_{i,1} + s_1, ..., t_{i,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

is a tropical zero of any linearization $f_{\alpha_1, \alpha_2, \dots, \alpha_n} \to \langle \mathbb{R} \rangle \to \langle \mathbb{R} \rangle$ Dima Grigoriev (CNRS)

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i}X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer N and introduce N^n variables

 $\{u(k_1,\ldots,k_n): 0 \le k_1,\ldots,k_n < N\}$. A **linearization** of f_{s_1,\ldots,s_n} is a tropical linear polynomial $\min_{1\le j\le m}\{a_j + u(t_{j,1} + s_1,\ldots,t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1,\ldots,t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1, \ldots, x_n) \in V(f)$ then point

$$\{u(k_1,\ldots,k_n) = k_1x_1 + \cdots + k_nx_n : 0 \le k_1,\ldots,k_n < N\} \in \mathbb{R}^{N^n}$$

a tropical zero of any linearization

Dima Grigoriev (CNRS)

For tropical polynomials f_1, \ldots, f_k in *n* variables a **tropical prevariety** $V(f_1, \ldots, f_k) \subset \mathbb{R}^n$ is the set of tropical zeros of f_1, \ldots, f_k . A tropical prevariety is a finite union of polyhedra. $V(f_1, \ldots, f_k)$ are zeros of the semiring ideal $I(f_1, \ldots, f_k)$.

For a tropical polynomial $f = \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} t_{j,i}X_i\}$ its shift

$$f_{s_1,...,s_n} := \min_{1 \le j \le m} \{a_j + \sum_{1 \le i \le n} (t_{j,i} + s_i)X_i\} \in I(f).$$

Fix an integer N and introduce N^n variables

 $\{u(k_1,\ldots,k_n): 0 \le k_1,\ldots,k_n < N\}$. A **linearization** of f_{s_1,\ldots,s_n} is a tropical linear polynomial $\min_{1\le j\le m}\{a_j + u(t_{j,1} + s_1,\ldots,t_{j,n} + s_n)\}$, provided that $0 \le t_{j,1} + s_1,\ldots,t_{j,n} + s_n < N$.

Linearizations appear as the rows of Macauley matrix of f.

If $(x_1, \ldots, x_n) \in V(f)$ then point

$$\{u(k_1,...,k_n) = k_1x_1 + \cdots + k_nx_n : 0 \le k_1,...,k_n < N\} \in \mathbb{R}^{N^n}$$

is a tropical zero of any linearization $f_{s_1,...,s_n}$

Dima Grigoriev (CNRS)

(ロ) (部) (注) (注) (三)

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the (tropical) entropy of f. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals I.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A tropical Hilbert function of f is $T_N(f) := \dim(U_N)$.

There exists the limit

 $H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$

which we call the (tropical) entropy of f. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals I.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

 $H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$

which we call the **(tropical) entropy** of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

 $H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$

which we call the **(tropical) entropy** of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the (tropical) entropy of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the (tropical) entropy of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the (tropical) entropy of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree N in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the (tropical) entropy of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree *N* in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the (tropical) entropy of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree *N* in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the **(tropical) entropy** of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree *N* in classical algebra.

Denote by $U_N \subset \mathbb{R}^{N^n}$ the tropical prevariety of all the points being tropical zeroes of all the linearizations $f_{s_1,...,s_n}$. A **tropical Hilbert function** of *f* is $T_N(f) := \dim(U_N)$.

There exists the limit

$$H:=H(f):=\lim_{N\to\infty}\dim(U_N)/N^n$$

which we call the **(tropical) entropy** of *f*. Clearly, $0 \le H \le 1$.

One can literally generalize the entropy H(I) to semiring ideals *I*.

Relation to Hilbert polynomial

The tropical prevariety U_N plays a role similar to the quotient ring $F[X_1, \ldots, X_n]/(g)$ with respect to the filtration degree *N* in classical algebra.

Example

i) For a tropical polynomial f = min{2X, 1 + X, 0} its entropy H(f) = 1/4;
ii) for a tropical polynomial f = min{sX, (s-1)X,...,X, 0} its entropy H(f) = 1 - 2/(s+1).

Sharp bounds on the entropy.

Theorem

i) If H(f) > 0 then $H(f) \ge 1/4$; ii) If f is a tropical univariate polynomial of degree s then $H(f) \le 1 - 2/(s+1)$.

< ロ > < 同 > < 三 > < 三

Example

i) For a tropical polynomial *f* = min{2*X*, 1 + *X*, 0} its entropy *H*(*f*) = 1/4;
ii) for a tropical polynomial *f* = min{*sX*, (*s* - 1)*X*,...,*X*, 0} its entr*H*(*f*) = 1 - 2/(*s* + 1).

Sharp bounds on the entropy.

Theorem

i) If H(f) > 0 then $H(f) \ge 1/4$; ii) If f is a tropical univariate polynomial of degree s then $H(f) \le 1 - 2/(s+1)$.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ its entropy H(f) = 1/4; ii) for a tropical polynomial $f = \min\{sX, (s-1)X, \dots, X, 0\}$ its entropy H(f) = 1 - 2/(s+1).

Sharp bounds on the entropy.

Theorem

i) If H(f) > 0 then $H(f) \ge 1/4$; ii) If f is a tropical univariate polynomial of degree s then $H(f) \le 1 - 2/(s+1)$.

< ロ > < 同 > < 回 > < 回 > .

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ its entropy H(f) = 1/4; ii) for a tropical polynomial $f = \min\{sX, (s-1)X, \dots, X, 0\}$ its entropy H(f) = 1 - 2/(s+1).

Sharp bounds on the entropy.

Theorem i) If H(f) > 0 then $H(f) \ge 1/4$; ii) If f is a tropical univariate polynomial of degree s then $H(f) \le 1 - 2/(s+1)$.

Example

```
i) For a tropical polynomial f = \min\{2X, 1 + X, 0\} its entropy H(f) = 1/4;
ii) for a tropical polynomial f = \min\{sX, (s-1)X, \dots, X, 0\} its entropy H(f) = 1 - 2/(s+1).
```

Sharp bounds on the entropy.

Theorem

i) If H(f) > 0 then $H(f) \ge 1/4$; ii) If f is a tropical univariate polynomial of

 $I(t) \le 1 - 2/(s + s)$

Example

```
i) For a tropical polynomial f = \min\{2X, 1 + X, 0\} its entropy H(f) = 1/4;
ii) for a tropical polynomial f = \min\{sX, (s-1)X, \dots, X, 0\} its entropy H(f) = 1 - 2/(s+1).
```

Sharp bounds on the entropy.

Theorem

i) If H(f) > 0 then $H(f) \ge 1/4$; ii) If f is a tropical univariate polynomial of degree s then $H(f) \le 1 - 2/(s+1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ its **Newton polygon** $P(f) \subset \mathbb{R}^2$ is the convex hull of the vertical rays $\{(k, y) : y \ge a_k\}, 0 \le k \le s.$

Theorem

The entropy H(f) = 0 iff all the points (k, a_k) , $a_k < \infty$, $0 \le k \le s$ are the vertices of Newton polygon P(f), and the indices k such that $a_k < \infty$ form an arthmetic progression.

マロト イラト イラ

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ its **Newton polygon** $P(f) \subset \mathbb{R}^2$ is the convex hull of the vertical rays $\{(k, y) : y \ge a_k\}, 0 \le k \le s.$

Theorem

The entropy H(f) = 0 iff all the points (k, a_k) , $a_k < \infty$, $0 \le k \le s$ are the vertices of Newton polygon P(f), and the indices k such that $a_k < \infty$ form an arthmetic progression.

・ 同 ト ・ ヨ ト ・ ヨ ト

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ its **Newton polygon** $P(f) \subset \mathbb{R}^2$ is the convex hull of the vertical rays $\{(k, y) : y \ge a_k\}, 0 \le k \le s.$

Theorem

The entropy H(f) = 0 iff all the points (k, a_k) , $a_k < \infty$, $0 \le k \le s$ are the vertices of Newton polygon P(f), and the indices k such that $a_k < \infty$ form an arthmetic progression.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ its **Newton polygon** $P(f) \subset \mathbb{R}^2$ is the convex hull of the vertical rays $\{(k, y) : y \ge a_k\}, 0 \le k \le s.$

Theorem

The entropy H(f) = 0 iff all the points (k, a_k) , $a_k < \infty$, $0 \le k \le s$ are the vertices of Newton polygon P(f), and the indices k such that $a_k < \infty$ form an arthmetic progression.

・ 戸 ト ・ ヨ ト ・ ヨ ト

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ its **Newton polygon** $P(f) \subset \mathbb{R}^2$ is the convex hull of the vertical rays $\{(k, y) : y \ge a_k\}, 0 \le k \le s.$

Theorem

The entropy H(f) = 0 iff all the points (k, a_k) , $a_k < \infty$, $0 \le k \le s$ are the vertices of Newton polygon P(f), and the indices k such that $a_k < \infty$ form an arthmetic progression.

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ its **Newton polygon** $P(f) \subset \mathbb{R}^2$ is the convex hull of the vertical rays $\{(k, y) : y \ge a_k\}, 0 \le k \le s.$

Theorem

The entropy H(f) = 0 iff all the points (k, a_k) , $a_k < \infty$, $0 \le k \le s$ are the vertices of Newton polygon P(f), and the indices k such that $a_k < \infty$ form an arthmetic progression.

(ロ) (同) (ヨ) (ヨ) 三日

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s} \{u_{j+k} + a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) =$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m, 0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s} \{ u_{j+k} + a_k \}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) =$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m, 0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) =$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) =$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function

 $T_N(f) = \dim(U_N(f)).$

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) = \max\{2X, X, 0\}$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (m_S)^{O(S)}$). The period does not exceed $\exp((m_S)^{O(S)})$.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f)$ =

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f)$ =

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

$$\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) =$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

 $\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) = \lfloor N/3 \rfloor$.

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

$$\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) =$

Dima Grigoriev (CNRS)

For a tropical polynomial $f = \min_{0 \le k \le s} \{a_k + kX\}$ with finite coefficients $0 \le a_k \le m$, $0 \le k \le s$ consider a tropical linear prevariety $U_N(f) \subset \mathbb{R}^N$ of the points (u_1, \ldots, u_N) such that for each $1 \le j \le N - s$ the minimum in

$$\min_{0\leq k\leq s}\{u_{j+k}+a_k\}$$

is attained at least twice. The tropical Hilbert function $T_N(f) = \dim(U_N(f))$.

Theorem

 $T_N(f)$ is the sum of the linear function $H(f) \cdot N$ and a periodic function with an integer period (for $N > (ms)^{O(s)}$). The period does not exceed $\exp((ms)^{O(s)})$. In addition, the entropy H(f) is a rational number.

Example

i) For a tropical polynomial $f = \min\{2X, 1 + X, 0\}$ we have $T_N(f) = \lfloor N/4 \rfloor$; ii) For a tropical polynomial $f = \min\{2X, X, 0\}$ we have $T_N(f) = \lfloor N/3 \rfloor$.

Dima Grigoriev (CNRS)

A tropical version of Hilbert polynomial

02.12.21 7/8

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of V are tropical zeroes. For a semiring ideal I its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of V are tropical zeroes. For a semiring ideal *l* its radical is rad(V(l)). **Conjecture**. For any semiring ideal *l* it holds H(rad(l)) = 0. **Strong conjecture**. For a semiring ideal *l* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(l))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of

degree at most n - 1 (for sufficiently large N).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of *V* are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n - 1 (for sufficiently large *N*).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le j \le r} \{t_{j,1}X + t_{j,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical quadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2.

For a tropical prevariety $V \subset \mathbb{R}^n$ its **radical** rad(V) is the semiring ideal of all the tropical polynomials for which points of V are tropical zeroes. For a semiring ideal *I* its radical is rad(V(I)).

Conjecture. For any semiring ideal *I* it holds H(rad(I)) = 0.

Strong conjecture. For a semiring ideal *I* of tropical polynomials in *n* variables its tropical Hilbert function $T_N(rad(I))$ is a polynomial of degree at most n-1 (for sufficiently large N).

Theorem

- If V consists of a finite number of points then H(rad(V)) = 0;
- the strong conjecture holds for univariate polynomials;

• if $f = \min_{1 \le i \le r} \{t_{i,1}X + t_{i,2}Y\}$ is a tropical polynomial in 2 variables then H(rad(f)) = 0.

Example

Consider a tropical guadratic polynomial $f = \min\{0, X, Y, X + Y\}$. Then H(f) > 1/2. Dima Grigoriev (CNRS)