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Starting point and motivating analogy
In algebraic geometry, there are two kinds of spaces:

> schemes which may be seen as commutative rings dualized
iInto affine schemes and “glued together” in an appropriate way,

> bundles usually described as quasi-coherent modules
over the structure sheaf of rings a specific scheme X.

Much progress has been made to design sheaf models of dependent and
homotopy type theory. There, a type is interpreted as a sheaf or a space.

The position of linear logic is not entirely clear from that point of view.
Could we understand linear logic as a logic of bundles on spaces?



The category Mod; of modules
Every symm. monoidal closed category defines a model of linear logic.
Hence: the category Mody of R-modules for a given commutative ring R.
Conjunction as tensor product:
M ®pr N as the abelian group M ® N quotiented
Implication and hypothetical reasoning as linear hom:
M —op N as the abelian group of R-module homomorphisms.

Purpose of this talk: extend / adapt this interpretation to presheaves of
modules over a covariant presheaf X < [Ring, Set] of commutative rings.



An axiomatic approach to abelian groups

We want to axiomatize the properties of the category .« = Ab of abelian
groups and homomorphisms between them.
We suppose given a symmetric monoidal category
(«,®,1)
where every reflexive pair

f

A

~

B

g
has a coequalizer, preserved by the tensor product on each component.



Reflexive pairs

A reflexive pair in a category <7 is a pair of maps

U
A { B
g 4
such that there exists a common section of the two maps f and ¢
U
A < S ; B
8

in the sense that the equations hold:

fos = idg = gos



Rings as commutative monoid objects

A commutative ring is an object R € .« equipped with two maps
m:R®®R — R e:1 >R

making the diagrams commute:

R
R®R®R 2% R&R

R®mJ/

R®R T R

i

B
% x
X
N
3

idg
R®R




The category Ring of commutative rings

Given two rings R and S, a ring homomorphism

u (R, mg,egR) > (5,mg, eg)

is a map of the category .«

u : R > S

making the diagrams commute:

R®R > S®S 1

) VAN

R S R i » S




The category Ring of commutative rings

The category Ring is defined as the category
> whose objects are the commutative rings of the category .«7,

> whose maps are the ring homomorphisms between them.

Note that the category Ring has finite sums defined by the tensor product.

The sum of two commutative rings R and S is the commutative ring R® S
with multiplication map defined using the symmetry:

R®yk < ®S &
R®S®R®S — " R@R®S®S —R="

°y R®S

and terminal object the monoidal unit 1 seen as a commutative ring.



The category Modi of modules over aring R

Suppose given a commutative ring R.
An R-module is an object M € &/ equipped with a map

act : RM->M
making the diagrams below commute:

oM
RIROM —X2" s ReM ROM
R®act act
¢ d
ROM — 3 M M 2 s M

Equivalently, an R-module is an Eilenberg-Moore algebra for the monad

A R®RA . o —> o
induced by the commutative ring R in the category 7.



The category Modi of modules over aring R

A R-module homomorphism between R-modules
f (M, actyy) > (N, acty))

isa map f : M — N making the diagram commute:

R®f
Re®M > RN
actM\L iactN
f
M > N

We write Mody, for the category:

> whose objects are the R-modules,

> whose maps are the R-module homomorphisms between them.



The category Mod of modules
A module is a pair (R, M) consisting of

> acommutative ring R
> an R-module (M, acty,)

A module homomorphism

(w,f) + RM)—(5N)
IS a pair consisting of

> aring homomorphismu:R — S

> amap f: M — N making the diagram commute:

uef
ReM > SN

actM\L \LactN
M f

> N




The category Mod of modules

The category Mod is defined as the category
> whose objects are the modules,
> whose maps are the module homomorphisms between them.
There is an obvious functor
n : Mod > Ring
which transports every module (R, M) to its underlying commutative ring R.

For that reason, we find convenient to write
u:R—S E f: M— N
for a module homomorphism (u, f) : (R, M) — (S5, N).



The category Mod of modules
The notation
u:R—S E f:M—>N
IS inspired by the intuition that every ring homomorphism

u : R ——S
induces a fiber consisting of all the module homomorphisms of the form

wf) + (RM) —— (5N)

equivalently, of all the maps f : M — N making the diagram commute:

uef
ReM > SON
actM\l/ \LactN
M ! > N

Note that Mody, is the fiber of the identity map idgr : R — R.



The Grothendieck bifibration 7 : Mod — Ring

A well-known fact is that the functor
n : Mod > Ring

defines a Grothendieck bifibration.

Every ring homorphism

u : R —>S

induces a restriction/extension adjunction between the fiber categories:

exty,

\
Modpg I ” Modg

Z
A res,




The restriction of scalar functor

Every S-module (N, acty) induces a R-module noted
resy,;N = (N, act}\])
with same underlying object N as the original S-module, and with action
acty, :R®N — N
defined as the composite:

N act
actz’\, - RN > SN N > N

The S-module (N, acty;) comes moreover with a module homomorphism

u:R—S E iy : resyN — N (1)
which is cartesian in the (original) sense of Grothendieck.



The extension of scalar functor

The restriction of scalar functor

res;, : Modg > Modg

has a left adjoint noted

ext; : Modp > Modg

One way to construct the functor ext,, is to define the R ® S-module
R®, S
as the reflexive coequalizer of the diagram:

MmRr®S
R®R®S <——RQer®S
(R®mg)o(R®uU®S)

~

R®S

g



The extension of scalar functor

Given three rings R, 51 and S,, we define the composition functor
@R M0d51®R X MOdR®52 — M0d51®52

a S1 ® R-module M

which transports a pair (M, N) consisting of { a R ® S,-module N

to the S; ® S,-module M ®r N defined as the reflexive coequalizer of

actyy® N .
M®R®N ¢ MoeeN— M®N
M®acty

Here, the two maps acty;: M® R — M and actyy : R® N — N are deduced
from the S; ® R-module structure of M and R ® S,-module structure of N,
by restriction of scalar along R — S ® Rand R — R® S».



The extension of scalar functor

The left adjoint functor

ext; : Modg > Modg

is defined as
ext,y, : M B Me&r(R®,S5)

by applying the R ® S-module
R®, S

on the R-module M using the composition functor

®Rr : Modr X Modrgs — Modg



An axiomatic approach to abelian groups (2)

Here, we make the exira assumption that the category .7 is symmetric
monoidal closed, with coreflexive equalizers.

The internal hom-object in <7 is noted Hom(M, N).



The category Mod® of modules and retromorphisms

A module retromorphism

w,f) : (5N)—= (R M)

IS a pair consisting of
> aring homomorphismu: R — S
> amap f : N — M making the diagram commute:

R®
R®M 4 ReN —N s soN

actM\L \l/aCtN
/ f

M < N




The category Mod® of modules and retromorphisms

The category Mod* is defined as the category
> whose objects are the modules,
> whose maps are the module retromorphisms between them.

There is an obvious functor
n® : Mod® > Ring

which transports every module (R, M) to its underlying commutative ring R.

Note that the functor 7© is a Grothendieck fibration, which coincides in fact
with the opposite of the Grothendieck fibration 7.



The Grothendieck bifibration 77 : Mod® — Ring

It turns out that the functor

n® : Mod® > Ring

defines in fact a Grothendieck bifibration.

The reason is that every ring homorphism

u : R —S
induces a restriction/coextension adjunction between fiber categories:

coext, N
Modﬁ 1 ’ Modg

Z
resy

A\

where the category Modﬁ is the opposite of the category Mody,.



The coextension of scalar functor

The restriction of scalar functor
res, Modse 5 Modlg

has a left adjoint noted

coext, Modﬁ >Modse

The functor coext;, transports every R-module (M, acty,) to the S-module
coext,(M) =[S M]y

defined as the coreflexive equalizer of the diagram:

Hom(u® S, M) o Hom(mg, M)
Hom(S, M) < Hom(eg ® S, M)
Hom(R®S,acty;) o Hom(R® —,R® —)

Hom(R ® S, M)

v |




The coextension of scalar functor

The coreflexive equalizer coext (M) provides an internal description in the
category <7 of the set of maps f : S — M making the diagram commute:

R®f

R®M < R®S
Jues
acty S5®S
! I
M < / S

or equivalently, as the set of R-module homomorphisms f : res ,S — M.



The trifibration 77 : Mod — Ring of modules

Putting together all the constructions, every ring homomorphism

R GN
induces three functors
coext, N
MOdR {<——resy ( MOdS
exty, ’

organized into a sequence of adjunctions

ext;, 4 res; 4 coexty

where extension of scalar ext;, is left adjoint, and coextension of scalar coext,,,
right adjoint to restriction of scalar res,,.



Ringed categories

A ringed category is as a pair (4, ) consisting of

> a category ¢,

> afunctor 7 : ¥ — Ring to the category of commutative rings.
Typically, the category Mod defines a ringed category, with functor:

n : Mod > Ring

The slice 2-category Cat/Ring has ringed categories as objects, fibrewise
functors and natural transformations as 1-cells and 2-cells.

The 2-category Cat/Ring is cartesian, with cartesian product defined by
the expected pullback above Ring.



Mod as a symmetric monoidal ringed category

The cartesian product of Mod with itself is computed by the pullback:

Mod XRing Mod > Mod
! I

Tt .
Mod > Ring

and comes equipped with a fibrewise tensor product
®Mod : Mod Xgijng Mod —> Mod
which transports every pair of modules on the same ring R

(R, M) (R,N)
to the R-module (R, M ®r N) defined by their tensor product in Modp,.



Mod as a symmetric monoidal ringed category

Every pair of module homomorphisms
u:R—S E h : M| — N
u:R—S E h : My — Ny
above the same ring homomorphism u : R — S to the homomorphism
u: R —S5SE h®,hy : M{®gr My — N1 ®g N»p

where 1y ®;, hy is the uniqgue map making the diagram commute:

h1®u®hy
M;{®R® M» > N1 ®S®N»
actyr, ®M» Mj®acty, acty, ®N» Ni®acty;
T
M ® M» > N1 ® N»
quotient map quotient map
\L h1®,hy \L

M1 ®gr M» > N1 ®g N>




Mod as a symmetric monoidal ringed category

In this way, the ring category

n : Mod > Ring

defines a symmetric pseudomonoid in the 2-category Cat/Ring.
This is what we call a symmetric monoidal ringed category.

Note that the fibrewise unit of (Mod, 77) is defined as the functor
IModa : Ring — Mod

which transports every commutative ring R into itself, seen as an R-module.



Functors of points and Ring-spaces

A Ring-space is defined as a covariant presheaf
X : Ring — Set

on the category Ring of commutative rings,

To every such Ring-space X, we associate its Grothendieck category
Points(X)
> whose objects are the pairs (R, x) with x € X(R)

> whose maps u : (R,x) — (S,y) are ring homomorphisms u: R — S
transporting the element x € X(R) to the element y € X(5),
in the sense that

Xu)(x) = v.



Functors of points and Ring-spaces

The category Points(X) comes equipped with a functor of point
nx : Points(X) — Ring

and thus defines a ringed category.

Amap f: X — Y of Ring-spaces may be equivalently defined as a functor

f : Points(X) —— Points(Y)
making the diagram commute:
Points(X) / > Points(Y)

nx\ Ring </ny

thus defining a functor of ringed categories.



Presheaves of modules

A presheaf of modules M on a Ring-space
X : Ring — Set
or more simply, an &'x-module M, consists of the following data:
> for each point (R, x) € Points(X), a module M, € Modpy over the ring R,
> foreach map u : (R,x) — (5, y) in Points(X), a module homomorphism
u:R——S5 FE 0O@x): My —> Ny

living over the ring homomorphism u : R — S.

Adapted from Demazure-Gabriel (1970) and Kontsevich-Rosenberg (2004).



Presheaves of modules
The map 0O is required to satisfy the following functorial properties:

1. first of all, the identity on the point (R, x) in the category Points(X) is
transported to the identity map on the associated R-module:

dr o OGdR ) = idpm,
2. then, given two maps

(1, %) : (R,x) = (S, y) @,y): (5 y) = (T,2)
in the category Points(X), one has:

vou E  0((v,y)o 1) = 0v,y) o Ou,x)
where composition is computed in the ringed category Points(X) — Ring.



Presheaves of modules

In the sequel, we will use the following equivalent formulation:

Proposition. An O0x-module M is the same thing as a functor

M : Points(X) — Mod

making the diagram below commute:

Points(X) > Mod

e

Ring

M
Ttx

Note that Kontsevich and Rosenberg (2004) use this specific formulation
of presheaves of modules in their work on noncommutative geometry.



The structure presheaf of modules

Every Ring-space
X : Ring — Set

comes equipped with a specific presheaf of module, called the structure
presheaf of modules, and defined as the composite

O
X > Ring > Mod

Ox : Points(X)

where the functor
O=1pmoq : Ring — Mod

denotes the section of 7 : Mod — Ring which transports every commuta-
tive ring R to itself, seen as an R-module.



The category PshMod of presheaves of modules
and forward morphisms

A forward morphism between presheaves of modules

fe) = XM —— (YN)
IS a morphism (= natural transformation) of Ring-spaces f : X — Y

together with a natural transformation

. Points(f) .
Points(X) > Points(Y)




The category PshMod of presheaves of modules
and forward morphisms

The natural transformation ¢ is also required to be vertical (or fibrewise)
above Ring, in the sense that the natural transformation

) Points(f) .
Points(X) > Points(Y)

Ring

coincides with the identity natural transformation from 7y to 7ty o f.



The category PshMod of presheaves of modules
and forward morphisms

There is an obvious functor

p : DPshMod —— [Ring, Set]

which transports every presheaf of modules (X, M) to its underlying Ring-
space X, and every forward morphism (f, ) : (X, M) — (Y, N) to its under-
lying morphism f : X — Y between Ring-spaces.

We thus find convenient to write
f:X—Y E ¢: M—> N
for a forward morphism between presheaves of modules

(f, ) : (X, M) — (Y,N)



The functor p is a Grothendieck fibration

Every morphism f : X — Y of Ring-spaces X and Y induces a functor
f* : PshMody —— PshMody

which transports every ¢y-module N into the Ox-module N o Points(f)
obtained by precomposition with the functor Points(f), as depicted below:

Point
Points(X) ointslf) > Points(Y)

=

Mod

US'¢ lﬂ Ty

Ring




An axiomatic approach to abelian groups (3)

Here, we make the extra assumption that the category Ring as well as ev-
ery category Mody associated to a commutative ring R has small colimits.

The property holds in the case of the category .« = Ab of abelian groups.



The functor p is a Grothendieck bifibration

In that case, it turns out that the functor
p : DPshMod —— [Ring, Set]

is also a Grothendieck bifibration, but for less immediate reasons.

For every morphism f : X — Y between Ring-spaces, the functor
f* : PshMody —— PshMody

has a left adjoint

fi : PshMody —— PshMody



The functor p is a Grothendieck bifibration

It is worth noting that the ¢y-module f,(M) can be directly described with
an explicit formula:

fld) : yeYR) = P MreModg.
xeX(R), fx=y}

The adjunction f, 4 ™ gives rise to a sequence of natural bijections, which
can be formulated in the type-theoretic fashion of PAM-Zeilberger (2015)

dy: X = XEM— f(N)
f:X=>YEM—->N
dy: Y —->YE fi(M) - N




The category PshMod® of presheaf of modules
and backward morphisms

A backward morphism between presheaves of modules

£,y XM) —— (V,N)

iIs a morphism (= natural transformation) of Ring-spaces f : X — Y
together with a natural transformation

Points(X) > Points(Y)

I ——




The category PshMod® of presheaf of modules
and backward morphisms

One requires moreover that ¢ is vertical in the sense that the diagram
below commutes:

Points(X) > Points(Y)

< |




The category PshMod® of presheaf of modules
and backward morphisms

The category PshMod® has presheaves of modules as objects, and back-
ward morphism as morphisms. There is an obvious functor

p® : PshMod® —— [Ring, Set]
We thus find convenient to write
f:X—Y %Y ¢ : M—N

for such a backward morphism (f, ) : (X, M) — (Y, N) between presheaves
of modules.



An axiomatic approach to abelian groups (4)

We make the extra assumption that the category Ring as well as every
category Modp associated to a commutative ring R has small limits.



The functor p© is a Grothendieck bifibration

As the opposite of the fibration p, the functor
p® : PshMod® —— [Ring, Set]

is also a Grothendieck fibration with the opposite functor
(f)°? : PshMod,” — PshMod,’

as pullback functor associated to a morphism f : X — Y of Ring-spaces.

Fact. Thereis a functor

Elf . PShMOdX % PShMOdy.

right adjoint to the functor f*.

By duality, the functor (Hf) P is left adjoint to the functor (f*)°P.



The functor p is a Grothendieck trifibration

The adjunction f* Bl gives rise to a sequence of natural bijections, for-
mulated below in the type-theoretic fashion:

idy: X - XEPM — f*(N)
f:X->YEPM—>N
idy:Y > Y EP 3¢(M) - N
In summary, every morphism f: X — Y between Ring-spaces X and Y
induces three functors

Iy
PShMOdX <— f*

fi
organized into a sequence of adjunctions

f! -If*-|3f.

~

PShMOdY

g




The category PshMod is symmetric monoidal closed
above the cartesian closed category [Ring, Set]

The presheaf category [Ring, Set] of Ring-spaces is cartesian closed.

We exhibit a symmetric monoidal closed structure on PshMod designed
in such a way that the functor

p : PshMod —— [Ring, Set]

is symmetric monoidal closed.



The cartesian structure on [Ring, Set]

Suppose given a pair of Ring-spaces
X, Y : Ring —— Set
and a pair of presheaves of modules M and N over them:

M € PshModx N € PshMody.

The cartesian product X x Y of Ring-spaces is defined pointwise:

XXY : R > X(R)XY(R).



The monoidal structure on PshMod

The tensor product
M ® N € PshMod .y
Is defined using the isomorphism:
Points(X X Y) = Points(X) XRing Points(Y)
as the presheaf of modules

: (M,N) ®
Points(X X Y) > Mod XRing Mod ——> Mod

where the functor (M, N) is defined by universality of the pullback.



The monoidal structure on PshMod

The unit of the tensor product is the structure presheaf of modules

(Spec Z, ﬁSpeC Z) . (R, *R) - R € MOdR
on the terminal object Spec Z of the category [Ring, Set].

Here, +g denotes the unique element of the singleton set Spec Z(R).



The closed structure on PshMod

The internal hom X = Y in [Ring, Set] is the covariant presheaf
X=Y : Ring —— Set
which associates to every commutative ring R the set

X=Y : R = ([Ring, Set]/yr)(yr X X,yr X Y)

of natural transformations f making the diagram commute:

YR X X ! 7 YRXY

WRX A,Y
YR




The closed structure on PshMod

Here,
yRr € [Ring, Set]
denotes the Yoneda presheaf
yr : S — Ring(R,S) : Ring — Set
generated by the commutative ring R, while
MRX * YRXX —> YR
mRY * YRXY — Y5

denote the first projections in the cartesian category [Ring, Set].



The closed structure on PshMod
The presheaf of modules
M —o N € PShMOd(X:y)

is constructed in the following way. To every element
feX=Y1R)
we associate the R-module
(M — N)¢

consisting of all natural transformations ¢ making the diagram commute:



The closed structure on PshMod

Points(yg X X) > Points(ygr X Y)
Points(nR,X)J/ 4 , J/Points(any)
Points(X) Points(Y)

M N
Mod

X J/n Y%

Ring



The closed structure on PshMod
This condition may be expanded using the notation f(u, x) = (u, f(u, x)).

Such a natural transformation ¢ is a family of module homomorphisms
st . S — S |: Pu x . Mx — Nf(u,x)

foru: R — S and x € X(S), natural in z and x in the sense that the diagram

Pu,x
My 7 N,
le lNﬂv,v)
Poou,x’
My 7 N flou,x

commutes for every ring homomorphism v : S — S with X(v)(x) = x’.



The closed structure on PshMod

Note that the R-module
(M —o N)f S MOdR
associated to the map of Ring-space
for yRXX — yrRXY

can be computed using the end formula

(M —o N)f = res, ( [My, Nf(x,u)]s)

»ﬁu:R%S,xGX(S))EPoints(yR><X)
in the category Modg.



Main result of the talk

Theorem. The tensor product

MNH— MQN
and the implication just defined

M,N— M —oN
equip PshMod with the structure of a symmetric monoidal category.
This structure is moreover transported by the functor
p : DPshMod —— [Ring, Set]
to the cartesian closed structure of [Ring, Set] in the sense that

PIMO®N)=XXY pM —oN)=X=Y
for the Ring-spaces X = p(M) and Y = p(N).



Application: PshMody is a smcc

We establish that the category PshMody associated to a Ring-space
X : Ring — Set

is symmetric monoidal closed. The tensor product M ®x N of a pair of
OU'x-modules M, N is defined as

MexN = A'(MQ®N)
where we use the notation
A 1 X — XxX

for the diagonal map induced by the cartesian structure of the presheaf
category [Ring, Set]|. The tensorial unit is defined as the structure presheaf
of modules &’y associated to the Ring-space X.



Application: PshMody is a smcc

The internal hom M —x N of a pair of O'x-modules M, N is defined as
M —ox N = curry (M —o Jx(N))
where
curry : X — X = (XXX)
is the map obtained by currifying the identity map
idywx : XXX — XXX

on the second component X. One obtains that

Proposition. The category PshMod x equipped with ®x and —ox defines
a symmetric monoidal closed category.



Proof in a nutshell

dy: X > XEM®&xN)—>P

idy : X > XEAM®N)—> P

idy: X —> XEPP—- A (M®N)

A:X>XXXEPP—->MQ®N
dxxx : XXX > XXXE®A\(P) > M®N
dxxx : XXX > XXXEM@N — dx\(P)

curty : X - X = (XX X) EN - M —o )\ (P)

idx : X = X EN — curry* (M — A5 (P))
idxiX—>X|=N—>(M—OXp)

Sequence of natural bijections establishing that the functor

M@y —- : PshMody —— PshMody
Is left adjoint to the functor
M —ox — : PshMody — PshMody

for any presheaf of modules M € PshMody.



Application: change-of-basis functors

Moreover, given a morphism X — Y in [Ring, Set] and two &y-modules M
and N, the fact that Ay o f = (f X f) o Ax and the isomorphism

(f XY (M@N) = f(M)® f(N)

imply that
f* : PshMody —> PshMody

defines a strongly monoidal functor, in the sense that there exists a
family of isomorphisms

mxamyN : f(M)®x f*(N) — f(M®yN)
mxy : Ox — f*(Oy)

making the expected coherence diagrams commute.



Application: change-of-basis functors

From this follows that

> the right adjoint functor Bl Is lax symmetric monoidal ;
> the adjunction f* 4 3f is lax symmetric monoidal ;

> the left adjoint functor f, is oplax symmetric monoidal ;
>

the adjunction f, 4 f* is oplax symmetric monoidal.
In particular, the two functors ¢ and f, come with families of maps:

(M) ®n Fp(Y) —> Fs(M ®x N) Oy — 3((O%)
fiM®x N) —» fIiM) ®y fi(N)  fu(Ox) — Oy
parametrized by &'x-modules M and N.



What we did not speak about here

> the Sweedler dual construction of a free commutative coalgebra

Forget

>  the induced construction of an linear-non-linear adjunction

Expx
K\
PshCoAlgy T PshMody
Liny

defining an exponential modality A — !A for linear logic.



Conclusion and future directions

work with sheaves and schemes instead of general presheaves,

understand the structure of the inclusion functor

qcMod > PshMody

from the category qcMody of quasi-coherent modules.
shift to derived categories and clarify the connection
linear logic <« Grothendieck-Verdier duality

explore the connection to dependent and homotopy type theory.



Thank you !



