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INTRODUCTION



Knizhnik-Zamolodchikov differential equations

Let (7—[(@;’), 17_[(@)) be the ring of holomorphic functions over the

universal covering of the configuration space of n points, i.e.
Cli={z=(zn,...,2n) € C"|z; # z for i # j}.

Let H(C?){(7,)) be the ring of noncommutative series over the alphabet

To = {tij}1<i<j<n and with coefficients in #(C7).

The following noncommutative differential equation is so called KZ,
ti j
dF(z) = Q.(2)F(z), where Q,(z):= Z 2i7frd log(z — z)
1<i<j<n
for which solutions can be computed by convergent iterations, for the

discrete topology ! of pointwise convergence over 7—[(@)((7}»

Example (trivial case)

For n =2, one has T, = {t1 2} and a solution of the equation
dF(z) = Qu(z)F(z), where Qu(z) = (t12/2im)d log(z1 — z2),

is F(zl’z2) — e(t112/2i”) log(z1—22) — (21 _ 22)t1,2/2i7r c 7‘[(@)«75»

1. VS, T € H(CI)(Tn),d(S, T) = 2%5~T) where w denotes the valuation:



Quadratic relations among {t; j }1<i<j<n

According to Drinfel'd, KZ, is completely integrable if?

dQ,(z) — Qn(z) AQp(z) = 0.
It turns out that this condition induces the following quadratic relations
in {tij}1<i<j<n :

[tik + tjik tij] =0 fordistincti,j,k andl <i<j<k<n,
R, = [tij+ tik,tjk] =0 for distincti,j, k andl <i<j< k<n,

[tij,tk] =0 for distincti,j, k,/ and {1 <k<l<n

generating the Lie ideal Jx,.
Solutions of KZ, belong now to H(C?){(T,)/JIr,-

2. Cartier uses a similar criterion with matrices in place of letters t; ; & 7,.



NONCOMMUTATIVE SERIES WITH
HOLOMORPHIC COEFFICIENTS



Differential ring of holomorphic functions

> A= (H(V),d,...,0,), the differential ring of holomorphic

functions on a simply connected manifold V of C"(n > 0) and
equipped 13,(y) as the neutral element.

For any f € H(V), one has df = (01f)dz + ...+ (Onf)dz,.
> Let C be a sub differential ring of A (i.e. 9;C C C, for 1 < i < n)
and let ¢ ~ z denote a path over a simply connected manifold V),
i.e. the parametrized curve v : [0,1] — V such that
H0) =< = (51, rsn) and (1) =z = (21,..., 2,)

> For any integers 7, j such that 1 </ < j < n, let w;; denote the
1-differential forms3, in QY(B), w;; = d&;;, with & ; € C.
Example (&j(z) = log(zi — z),1 <i<j<n)

Let Co := C[{(01&i1 /)", - - -, (On&i ) hr<icjznl-
Then Cy is a sub differential ring of A.

3. Over V, the holomorphic function &;; is called a primitive for w; ; which is
said to be a exact form and then is a closed form (i.e. dw;,; = 0).



Notations

> (7.*,17.~) is the free monoid generated by 7,. A{(T,) (resp. A(T,))
is the set of series (resp. polynomials) over 7, with coefficients in A.
LynT, (resp. LynT) is the set of Lyndon words over T, (resp. T).

> T, = {tj’k}lggkfl,'r = {Tg, ey Tn} st. T =T UT_1,k <n.
|Tol=n(n—1)/2and | T,|=n—1.1f n >4 then | To—1|>| Tn|.
Example

» Ts = {ti2,t13,t14,t15, 023,24, to5, t34, t35, ta s}, One has
Ts = {t15, t25, t35, ta5 } and Ty.

» Ta={t12,t13,t14, 23, tra, t34}, One has
Ts ={tia,tr4,t34} and Ts.

> T3 = {tl,z, t1,3, t273}, one has T3 = {t1,3, t2,3} and 75 = {t172}.

> In (A(T.),04,...,0,), for any S € A(T,)), one defines

9:S= > (0:(Slw))w and dS= i(a,-S)dz,-.

weT* i=1

Const(A) = C.1yq) and Const(A(T,))) = C(T).



Diagonal series

Lie(T,) is the set of Lie polynomials over 7, with coefficients in A and
is equipped with the basis {P;}/c .y, over which are constructed the
PBW basis {P,, }we7- of U(Liea(T,)) and its dual, {S, }ne7-,
containing the pure transcendence basis {S;}/czyn7, of* (A(T,),w, 17+).

Example (|n KZ3, 75 = {t172, t173, tgfg} and t1’2 =< t173 =< t2,3)
Vk>0,i=1or2, tf72t,',3 € LynTs, Ptfztia = ad’t‘L2 ti 3, Stlkzt;,a = tfzti,3-

In (A(7,), conc, 17+, A, ,e), the diagonal series is defined by
D:=M*, with M:= Z t®t,
teTh
and is the unique solution of the equations
VS=MS and VS=S5M,
where VS denotes S — 17+ @ 17+, for S € A(T,)&A(Ty,). Then

¢ ¢ ¢
D_< H H H >e5’®P’, for n>2.

1€ELynT -1 I=hh 1€eLynT,
he€LynT, _1,h €LynTy

4. in which one defines A, x = x ® 17, + 17, ® x, or equivalently,
vwlys=17wu=u and xuw yv=x(vw yv)+ ylxuw v).



Example of lexicographic ordering (in KZ,, n > 4)

Let us consider the following total order over T :

ik = oo = th1.ks for n>k>2,
and over 7 :

To>...= T, andthen LynT, = ...= LynT,.

With this ordering, one has

LynTo_1 = LynT,.LynT,_1 = LynT,.
More generally, for any (t1,t2) € Ty, X Tk, 2 < ki < ko < n, one has

titr € ﬁyn’ﬂ and t = titr = 7.
Hence,

> Forany /€ LynTix_1 and t € T,2 < k < n, one has
It € LynT, and [ <t <t.

> Forany h € LynTy, and h € LynTy,,2 < ki < ko < n, one has
hb € Eyn77, and h < hbh < bh.

> Forany h € LynTy and h € LynT,_1,2 < k < n, one has
hh e £yn7’n and h < hh < bh.

> Forany t € Ty,x € Tx—1,2 < ks < ka < nandi>0, one has
t < x and t'x € LynT; and then P,, = ad; x and S, = t'x.



More about notations

Let us back to the relations

[tik + tjk tij] =0 for distincti,j, k andl1 <i<j<k<n,
R, = [t,‘J + ti ks tj,k] =0 for distincti,/, k and1 <i<j< k <n,

. .. 1<i<j<n,
[tij, tks] =0 for distincti,j, k,/ and {1 g;( <"/§ n,
generating the Lie ideal Jx,.

> The monoid (resp. the set of Lyndon words) generated by 7,
satisfying the relations R, is denoted by (7,"; Jr,) (resp.
<[’ynTn; \772”>)'

> The set of noncommutative polynomials (resp. series) with
coefficients in A, over 7, satisfying R, is denoted by A(7,)/Jx,
(resp. A(Tn))/Tr,)-

> The set of Lie polynomials (resp. Lie series) with coefficients in A,
over T, satisfying R, is denoted by Lie(T,)/Tr, (resp.
Liea((Ta))/ Ir.,)-

> H., (7n)/JIr, denotes (A(T,)/Tr,,conc, A, L7+).



Combinatorial aspects with infinitesimal braid like relations

Let us consider the Lie ideal Z, generated by {adkT" ti,j}ggﬂ,l-

By the PBW theorem, the enveloping algebra U/(Z,) is freely generated
K Kiyookp>0,p>0 o
by {ad?n ti gy - -adf t,'p,j,,}t,i:, ,..it_,-pj’fgﬂfl and by the Lazard elimination,

for any n > 2, one also has

ﬁieA<77,> =7, E/eA<Tn>.

Lemma
For any n > 2, one has

1. 7,/ Ir, = {0} and then U(Z,)/Tr, = {0}.

2. U(Liea(Tn)) ) Ir, = A(T,)/Tr, and then
[To-1, Tal/Ir, = {{ti.n—1, tinl hi<i<n—2, .-, [ T2, Tal /TR, = {[t1,2, t1,n] }-

3. {PihicieynTngr,) = Tn U{[tin, tjnlh1<icj<n—1U
{[ta,ns [tins .0l)s (s [0y teon]]b1<i<icj<k<n—1 U
{’D/}/E([,ynz“T,,;JRn)'



BACKGROUND ON
NONCOMMUTATIVE PV THEORY



Iterated integrals and Chen series
The iterated integral associated, of the 1-differential forms {w; j}i1<i<j<n
and along the path ¢ ~ z, is given by aZ(17-) = 13y and, for any
W =t it tigj € 771*'
z S1 Sk—1
i) = [ i) [ wni)o [ wils) € W)
S S S

where (¢,s1...,5¢_1,z) is a subdivision of ¢ ~~ z.

The Chen series, of the differential forms {w; j}1<i<j<n and along a path
¢ ~» z, is the following noncommutative generating series

Conzi= ) aZ(w)w € HV)(T,).

weTx

Proposition

L VYu,vin T, aZ(uvwv) = aoZ(u)aZ(v) (Chen's lemma).
2. Vt € To,k >0,07(t5) = (aZ(t))"/k! and then o?(t*) = e*<().

3. For any compact K C V, there is ¢ > 0 and a morphism of monoids
pi Ty — Ryo st [[(Cowzlw)llc < cp(w) (w172, forw € T,
and then C..., is said to be exponentially bounded from above.



Basic triangular theorem over a differential ring

Recall that A = (H(V),1,...,0,) and C be a sub differential ring of A.

Lemma
The following assertions are equivalent®

1. The following map is injective

(.A<77,>, i, 17*nx) — (H(V), *, 1H(V))7
woo— al(w).

- {aZ(w)}wer- is linearly free over C.
. {Z(N}iesynT, is algebraically free over C.
A

t)}ieT, is algebraically free over C.

o~ N

a(
<
ag(
«

- {Z(t)}ee,u{1,-1 i linearly free over C.

5. This is the abstract form, over ring, of (Deneufchatel, Duchamp, HNM &
Solomon, 2011).



Noncommutative differential equations
(NCDE) dS=M,S, where® M,= " w;jti.

1<i<j<n

Proposition
1. Cc.sz, satisfying (NCDE), is group-like and log C...., is primitive :
N
Cosz = H eGP and log C.oy = Z aZ(w)m(w),

leLynT, weTx
(=1 1
Where7r1 E E <W|U1uu...uuuk>ul...uk.
k>1 UL, Uk €T T

2. Let C € C(Ta),(C|17+) = 1. Then C....C satisfies (NCDE).
Moreover, C...,C is group-like if and only if C is group-like.

From this, it follows that the differential Galois group of (NCDE) +
group-like solutions is” the group {eC}CGL,-eCln «xy - Which leads to the
definition of the PV extension related to (NCDE) as C/Q.}.{CZOWZ}.

6. M, € Q'(V)(Ts) and Ay M, =17+ @ M, + M, ® 17+
7. In fact, the Hausdorff group (group of characters) of (A{7,), w, 17=).




ALGORITHMIC AND COMPUTATIONAL
ASPECTS OF SOLUTIONS OF KZ, BY
DEVISSAGE



KZ; : Simplest non-trivial case (1/4)

One has T3 = {t12,t13, t>3} and

1 d(z; — d(zy — d(z, —
W(z) = 5= <t1,2 (2 = ) +t3 (2= 2) +ta3 (22 Z3)>.
a2 21— 273 2z — 73

C 2im

Solution of dF(z) = Q3(z)F(z) can be computed as limit of the

sequence {F}/>o, in H(C3)({(T3)), by convergent Picard’s iteration :

Fo(z) = L@ and Fi(z) = /OZ Q3(s)F-1(s).

Let us compute, by another way, a solution of dF (z) = Q3(z)F(z) as the
limit of the sequence {V)}/>o, in H(C2)({(73)), iteratively obtained by

Vo(z) = elt12/2im) '°€(Zlfzz),
VI(Z) = / e(f1,2/2i7r)(|og(z1—zz)_|og(51_52))§.-22(s) \/I_I(S)
0

— Vo(Z) / ef(t1,2/2i‘n’) Iog(slfsz)fb(s) V/,l(S),
0

. 1 _ _
with Q(z) = 2-(t1,3d(21 Z3)+t23d(22 23))_

1T zZ1— Z3 Tz —2z3




KZ; : Simplest non-trivial case (2/4)

Explicit solution is F = VoG, where Vy(z) = (z; — 22)t1,z/2i7f and

6= % / wii (51)0% () / i (5m)e™ (£ ),

tiy oy tim jm € 111,3:22,31
m>0

where w1 3(z) = dlog(z1 — z3) and w2 3(z) = dlog(z; — z3) and ¢ is the
following automorphism of Lie algebra, EieH(@)U}),

K
7 _ 3oy p/2im) gl — 1) log™ (21 — ) k
v Z (—2im)kk! ads -
k>0
Since t1» < t13 < tr3 and, for k >0 and i =1 or 2, t1‘2t,-‘,3 € LynT3 then

k
P adg iz and Sy .. =tiotis

thotis — e,
and then . .
R log“(z1 — 22) . log“(z1 — 2z2)
w3 = 2 (Coim)ekl | tane $7(3) = > (2l ot

k>0 k>0
where ¢ (adjoint to ¢) is the following automorphism of (A(T3),w, 17)
%2 — g—(t12/2im)log(z1—22) — Z Iog (21 tk

9’ K fe| 1,2+
= (—2in) k



KZ; : Simplest non-trivial case (3/4)
Belonging to H(@)«E)} G satisfies dG(z) = Q2(2)G(z), where

- 1 d(z1 — z3) d(z — z3)
Q = — z t _ -7 Az t:
2(2) = 5 (99 (t3)— = = T ¢ (La)—

In the affine plan (P12) : z1 — zo = 1, one has
and then ¢ =1d.

log(z1 —2) =0
Setting xop = t1,3/2im,x1 = —tr3/2im and z; = 1,2z, = 0,23 = s, one has
- 1 d(z; — z d(z — z ds ds
MD(z)=5=(t13 (21— 2) + b3 (22 = 7) = X1 + Xxo—.
2im z1— Z3 Z — Z3 1-—s s

KZ3 admits then the noncommutative generating series of polylogarithms,
L, as the actual solution satisfying the Drinfel'd asymptotic conditions.
Via L and the homographic substitution g : z3 — (z3 — z)/(z1 — z2),
mapping {2, z1} to {0,1}, L((z3 — 2)/(z1 — 22)) is a particular solution
of KZs, in (P12). Sois L((zz — 22)/(z1 — 22))(z1 — zo) B2ttt as)/2im,



KZ; : Simplest non-trivial case (4/4)

Denoting (X*, 1x~) the monoid generated by X = {xg, x1}, recall that
= Y Liu(s)w € H(C\ {0,1})(X),
weX*
where Li, is the character of (H(C\ {0,1})(X),w, 1x+) defined by
Liy,. = 17—1(@({771})’ Liy (s) = log(s), Liy(s)=log(l—5s)
and, for any x;w € LynX \ X,
. ‘ . wo(s) = ds/s,
Lixw(s) = [ wi(o)Liy(c), where wi(s) = ds/(1—s).

{Lis}recynx (resp {Liy }wex~) are C-algebraically (resp. linearly) free.
By the Friedrichs crirerion, L is group like. Thus,

ﬁ Lis ()P { lim L(s)e™elez = 1,
e s/ (5)P1 and then T log(1—2) —
e Z|E)nl eX1 L(S) = q>KZ7

where @~ is the following constant group like series

P ﬁ Lis(DPr ¢ RYXY), for X0 = ti2/2im,
Kz = € » 10 X1 = —t2’3/2171'.
leLynX\X

admitting {Li/(1)}/eynx\x as convergent locale coordinates.



Solutions of (NCDE) in A{(T,))/JIr, (1/2)

Let the solution of (NCDE) be computed by {Vin(<, z)} m>0 satisfying

Z / [ e[a ( )]t)w,-,j(s)t,-,jvm,l(g.,s)),

tij€Tn-1 teT

Vo(s,2) = w @t = 3" ((aZ(tf, )t ) w . w((0Z (5] )t )-
teln eesin—120
Then Vj satisfies the partial differential equation

Onf = Ny_1f, where N,_; = Zwk,nfk,n

and, for any m > 1, on obtains epr|C|t|y

-1
Valo2)= 3 / win(s1) / Wi o (Sm) (2,51, 5m),
W=ty 1o tig jm €T,

where
m

VO(Cvz)ilK’W(Z?Sl?"' ,Sm) = H _EtETn = t)tt’pajp

p=1
ool
B z; ];[ ?adquteT al (6)t Eio jo:



Solutions of (NCDE) in A{(T,))/JIr, (2/2)

S,51 S3Sm

Hence, Vo(g,z)_lﬁw(z751,--~ ) Pte.n ( /1,11) - Pten (t’malm)
where ¢, . is an automorphisms of Lies(7,) defined on letters s.t.
) ad (o

over Ty, ¢, , =1d and over T,_1, @g:?f)(t,"j) —e el )(‘f-n)ffwt,-J-.
It can be extended as an injective conc-morphism of m s.t. its adjoint,
denoted by %, , and restricted in (A(7,),w,17~), is an automorphism.
One has oy, (Liea(Tn)) € Liea(Ts) and &, (A(Ta)) € A(Tn)).
Theorem

(NCDE) admits Vi(s,z)G(s, z) as solution and G(s, z) is obtained by
the Picard’s iteration of

dS=M1S, where MIi(2)= . wif@)e(ty).

1<i<j<n—1
It can be also obtained, in A{T,))/Jr,, as follows
N
G2)= Y ol (mw= [[ et
weT leLynTy—1

There is a holomorphic function in H(V), g, ,, s.t.

Moi(z) = > gl wig(2)ti.

1<i<j<n—1



Solutions of KZ, (n > 4)

Now, let V = C7, where C" := {z=(a1,...,22) € C"|z; # zj for | # j}
and let us consider the affine plans (P;j) 1 zi—z=1,1<i<j<n-1.
Theorem (w; j(z) = dlog(z; — z;), tij < t;;/2im)

For z, — z,_1, solution of (NCDE) is in the form f(z)G(z,...,z,-1) s.t.

1. f(z) ~ (zp—1 — zn)' 1 satisfying O,f = N,, 1f, where®

n—1 n—1

dzn . S =2z,
E tk.n = E , with

— pa Sk = Zp — Zg.

I'I

2. G(z1,...,2,-1) satisfies dS = M;'_'”lS, where
Myi(z) = > (21— za-1)” o Pdlog(z — 7).
1<i<j<n—1
Moreover M, b, " exactly coincides with M,y in [);_. (P,-_,,,_l).

Conversely, if f satisfies 0,f = N,_1f and G(zi, ..., ,Zn—1) satisfies
dS = M*S then f(2)G(z, ... 7zn,1) satisfies (NCDE).

8. At this stage, z, is variate, moving towards z,_1 while {zx}1<k<n are fixed
(and then d(z, — z) = dz,).



Other example of non-trivial case : KZ, (t;j < t;;/2im)

To={tio, t13, tia, to3, tra t3a}, Ta ={t1a, toa, t3a}, T3 = {t12, t13, t23}.

9927_4 — ead, Teer, ¢t 3 9‘527_4 —e Zt6T4 O‘é(t)t.
Hence,
0i, (tia) = (21— z)*%e and 57 (t1a) = (21 — z4) 0%,
¢Z (toa) = (22 — z2)*%2+  and 7%, (toa) = (22 — z2) 722,

¢f (t3a) = (z3—z2) "5+ and @7 (t34) = (23 — za) 5.

For z3 — z3, F(2) = Vo(2)G(z1, 22, z3), where V(z) = eXisiss ti 1o8(zi—2:)
and G(z, z, z3) satisfies dS = /\/Ié""S with

d(Zl — 22)

1 — 22

Az =2) W;._A(tz,g)m,

+¢5, (13
Z1 — Z3 Z — Z3

fo,4

M3 (2) = ¢, (t12)

Considering (P14):z1—zz=1, (Pou):zo—zz=1, (P34):zz—24=1,
one has, in the intersection (P14) N (Pa4) N (P34),

log(z1 — z1) = log(z2 — z) = log(zs —z3) =0 and ¢, =1d

and then Vg = 14,(y) and M;"4 exactly coincides with Mjs.



Solutions of KZ, (n > 4) with asymptotic conditions
Let F: (C(Ta),w,17=) — (H(V), %, 13y(v)) be the character defined by
FlT,,* = 17.[(\;), Vl’;’j S 77,, Ft/._’j(Z) = |Og(Z,' — Zj), Vf,"jW S Eyn7} \ 77,,

Fiow(z) = / wi j(s)Fu(s), where w;(z)= dlog(z — z).
0
CoroIIary (w,-J(z) =d |Og(Z,' — ZJ), t,"J' — t;J/2i7r)
L. {Fi}eeTuq1,.y are Co-linearly free.

2. F, being the graph of F, is group like and then log F is primitive :

e
Fi= > Fw= [] " and logF= > F,m(w),

weT* 1€LynT, weT*

-1 k—1
Whereﬂl(w):z% Z (Wlugw . w gy .. ug.
k>1 Uy i €T T
3. F is unique solution ofdS = M,S (and then C...., = F(z)F1(¢)) s.t.
F(z) ~ zjzi_ (Z,',l — Z,')t"’l”'G,'(Zl7 ey i — 1, i+ 1, ey Zn)
1<i<n
and Gi(zy,...,i—1,i+1,...,z,) satisfies dS = Mt:’ls, where

n

Mei(z) = Y (2= zao1)” *in B d log(z — z)).

1<i<j<n—1
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