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A bit of history
Associahedra were discovered

→ by Dov Tamari (1951),

→ by Jim Stasheff (1963),

... constructed as polytopes

→ by John Milnor,

→ by Mark Haiman (1984),

→ by Carl Lee (1989),
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... and generalized (or related polytopes discovered/constructed)

→ by Mikhail Kapranov (permutoassociahedron, 1993),

→ by Raoul Bott and Clifford Taubes (cyclohedron, 1994),

→ by Sergey Fomin and Andrei Zelevinsky (2001),

→ by Alexander Postnikov (2009),

→ and many more!



Metric properties

Remark. The graph of the associahedron provides a geometry (in terms of
arc flips) to the set of the triangulations of a convex polygon.

Question (open). Given two triangulations of a convex n-gon, what is the
distance between them in the graph of the associahedron?

Question (solved). What is the largest possible distance between any two
triangulations in the graph of the associahedron? In other words, what is the
diameter (of the graph) of the associahedron?

Theorem (Sleator–Tarjan–Thurston 1988). The (n − 3)-dimensional associ-
ahedron has diameter 2n − 10 when n is large enough.

Theorem (P. 2014). Large enough means n ≥ 13.



Metric properties: why? (1)

Distances in the graph of the associahedron are also rotation distances be-
tween binary trees. Rotations are used in computer science to re-balance
binary trees in order to improve data storage efficiency.

Distances in the graph of the associahedron are used to measure dissimilarity
between two binary (phylogenetic) trees in computational biology. Here exact
distances need to be computed (but how?)

Algorithm to estimate d(T1,T2)

(1) Flip an arc in T1 such that the number
of arc crossings with T2 decreases,
(2) Repeat until T2 is reached.

Theorem (Hanke–Ottman–Schuierer 1997).
One can always flip some arc in T1 such
that the number of arc crossings with T2

decreases after the flip.
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binary trees in order to improve data storage efficiency.

Distances in the graph of the associahedron are used to measure dissimilarity
between two binary (phylogenetic) trees in computational biology. Here exact
distances need to be computed (but how?)

Algorithm to estimate d(T1,T2)

(1) Flip an arc in T1 such that the number
of arc crossings with T2 decreases,
(2) Repeat until T2 is reached.

Theorem (Hanke–Ottman–Schuierer 1997).
One can always flip some arc in T1 such
that the number of arc crossings with T2

decreases after the flip.

Unfortunately...

Theorem (Cleary–Maio 2018).
The distance estimation com-
puted from this arc crossings-
based method is sometimes
one off d(T1,T2).

Can this get worse? Can the
estimation be larger than
αd(T1,T2) where α > 1?



Metric properties: why? (2)

Remark. The (geometric) case of a convex n-gon
is the same as a topological disk with n marked
points in its boundary.

'

Question. Instead of a disk, can we pick a topological surface, possibly with
punctures and at least one marked point in each boundary component?
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punctures

genera

marked points

Lemma (S̆varc 1955, Milnor 1968). The graph whose vertices are the tri-
angulations of the surface Σ and whose edges correspond to flipping arcs is
quasi-isometric to any Cayley graph of the mapping class group of Σ.
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Metric properties: why? (2)

Remark. The (geometric) case of a convex n-gon
is the same as a topological disk with n marked
points in its boundary.
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Question. Instead of a disk, can we pick a topological surface, possibly with
punctures and at least one marked point in each boundary component?
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Theorem (Disarlo–Parlier 2019). Given two triangulations T1 and T2 of the
surface Σ, one can always flip some arc in T1 such that the number of arc
crossings with T2 decreases after the flip.



Metric properties: why? (3)

Remark. A path between triangulations T1 and T2 in the graph of the asso-
ciahedron can be thought of as a certain type of 3-dimensional triangulation.

T1 T2

Remark. A blow-up triangula-
tion is not a usual triangulation:

(1) Multiple arcs are allowed,

(2) Two tetrahedra can be
glued along the union of
two triangles.

Remark. d(T1,T2) is also the
number of tetrahedra required
to fill a triangulated sphere S .

...and an upper bound on the
L1 norm of the 3-chains whose
boundary is a 2-cycle correspond-
ing to the triangulation of S .
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Strong convexity
Lemma (Sleator–Tarjan–Thurston 1988). The triangulations that contain a
given arc ε induce a strongly convex subgraph in the graph of the associahe-
dron: ε is not removed along any geodesic between two such triangulations.

Proof. Consider a path between two triangulations that contain ε and
project each triangulation T in that path as follows.

x xx

Consecutive triangulations in the path are projected to either

(1) two triangulations related by a flip or
(2) the same triangulation.

A flip that removes ε is of the second kind. If there is such a flip in the
considered path, the projected path is shorter. �

Theorem (Disarlo–Parlier 2019). The same holds for topological surfaces.



Geodesicity ⇒ flagness

Theorem (P.-Wang 2021). The blow-up triangulations that correspond to a
geodesic path in the graph of the associahedron are flag.

A blow-up triangulation K is flag when three arcs in K that form a cycle
always bound a triangle of K .

In other words: if the three edges of a triangle abc appear in possibly distinct
triangulations along a geodesic path in the graph of the associahedron, then
abc itself appears along that path.

Proof rough idea.
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Theorem (P.-Wang 2021). Blow-up triangulations corresponding to geodesic
paths remain flag when the initial convex polygon (or topological disk) is
replaced by a convex polygon with well-placed flat vertices.



Some consequences (1)

Theorem (P.-Wang 2021). The arc crossings based distance estimate method
sometimes overestimates distances by a factor that can get arbitrarily close
to 3/2 both in the cases of associahedra and topological surfaces.
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Some consequences (2)

Theorem (P.-Wang 2021). The subgraph induced by the triangulations that
contain a given arc is not always strongly convex in the limit case of a geo-
metric convex polygon with as few as two flat vertices or punctures.
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