Categorification of Rule AlgeBRAs
Nicolas Behr (GirRS, Uwversité Paris Cité, IRIF) Combinatorics \& Arithmetic for Physics: special Dass IHES, NOVEMBER 28, 2022

BASED upON JOINT WORK WITH

- P.-A. Melliés \& N. Zeilberger
- R. Harmer \& 3. Krivine (2204.07175)

(1) MOtivation

(1) Motivation

(1) Motivation

(1) Motivation

\rightarrow All Formalizable in Double-Pushout (DPo) semantics:

$$
\begin{aligned}
& r_{\alpha}(X)<X \quad r_{\alpha}(x) \leftarrow{\underset{o}{\alpha}}^{K_{\alpha}} \rightarrow X
\end{aligned}
$$

(2) Motivation: Formalization of Remritimg + Combinatorics!

- Inspiration from combinatorial species theury:

$$
\begin{aligned}
& \text { (i) } \hat{x}\left(x^{n}\right)=x^{n+1}, \quad \frac{d}{d x}\left(x^{n}\right)=(n)_{1} x^{n-1} \equiv\left\{\begin{array}{cc}
0, & n=0 \\
n x^{n-1}, & \text { else }
\end{array}\right. \\
& \\
& \longrightarrow \text { (ii) } x^{n}=\hat{x}^{n}(1)
\end{aligned}
$$

(2) Motivation: Formalization of Remritimh + Combinatorics!

- Inspiration from combinatorial species theury:
(i) $\hat{X}\left(x^{n}\right)=x^{n+1}, \quad \frac{d}{d x}\left(x^{n}\right)=(n) x_{1} x^{n-1} \equiv\left\{\begin{array}{cc}0, & n=0 \\ n x^{n-1}, & \text { else }\end{array}\right.$

$$
\begin{aligned}
& \rightarrow(i i) x^{n}=\hat{x}^{n}(1) \\
& \hat{x}^{p}\left(\frac{d}{d x}\right)^{q}\left(x^{n}\right)=\overbrace{(n)}^{(n)} x^{n-q+p} \text { OF WAYS TO REMOVE } \\
& \text { dETENTS FROM A } \\
& \text { SET OF n ELEMENTS }
\end{aligned}
$$

$$
\hat{x}\left(\frac{d}{d x}\right)^{2} x^{n}=(n)_{2} x^{n-1}
$$

(2) Motivation: Formalization of Remritimh + Combinatorics!

- Inspiration from combinatorial species theury:
(i) $\hat{X}\left(x^{n}\right)=x^{n+1}, \quad \frac{d}{d x}\left(x^{n}\right)=(n) x_{1} x^{n-1} \equiv\left\{\begin{array}{cc}0, & n=0 \\ n x^{n-1}, & \text { else }\end{array}\right.$

$$
\begin{aligned}
& \longrightarrow\left(\text { ii) } x^{n}=\hat{x}^{n}(1)\right. \\
& \hat{x}^{p}\left(\frac{d}{d x}\right)^{q}\left(x^{n}\right)=\overbrace{(n)_{q}^{n}}^{n} x^{n-q+p} \\
& \text { \# of ways to remove } \\
& 9 \text { ELEmENTS FROM A } \\
& \text { SET OF } \because \text { ELEMENTS } \\
& \text { (iii) } \hat{x}^{p}\left(\frac{d}{d x}\right)^{q} \hat{x}^{\Gamma}\left(\frac{d}{d x}\right)^{s}=\sum_{k>0} \underbrace{\binom{q}{k} k!\binom{r}{k}}_{\epsilon \mathbb{Z} \geqslant 0} \hat{x}^{p+r-k\left(\frac{d}{d x}\right)^{q+S-k}}
\end{aligned}
$$

$$
\hat{x}\left(\frac{d}{d x}\right)^{2} x^{n}=(n)_{2} x^{n-1}
$$

(2) Motivation: Formalzation of Remritimh + Combinatorics!

- Inspiration from combinatorial species theury

$$
\text { (i) } \hat{x}\left(x^{n}\right)=x^{n+1}, \quad \frac{d}{d x}\left(x^{n}\right)=(n)_{1} x^{n-1} \equiv\left\{\begin{array}{cc}
0, & n=0 \\
n^{n-1}, & \text { else }
\end{array}\right.
$$

$$
4(i i) x^{n}=\hat{x}^{n}(1)
$$

$$
\text { (iii) } \hat{x}^{p}\left(\frac{d}{d x}\right)^{q} \hat{x}^{r}\left(\frac{d}{d x}\right)^{s}=\sum_{k \geqslant 0} \underbrace{\binom{q}{k} k!\binom{r}{k}}_{c \mathbb{Z} \geqslant 0} \hat{x}^{p+r-k\left(\frac{d}{d x}\right)^{q+s-k}}
$$

GOAL
(i) " $\rho(\delta(r))|x\rangle=\sum_{\alpha}\left|r_{\alpha}(x)\right\rangle=\sum_{y} \overbrace{x}^{y}|y\rangle$ "
(ii)" $|X\rangle=\rho(\delta(X \leftharpoonup \varnothing))|\phi\rangle$

क>
(iii) " $\rho\left(\delta\left(r_{2}\right)\right) \rho\left(\delta\left(r_{1}\right)\right)=\sum_{r_{n}} \underbrace{}_{r_{r_{1}}, r_{z}} r_{n} \rho\left(\delta\left(r_{n}\right)\right)^{\prime}$
(iv) " $\rho\left(\delta\left(r_{2}\right)\right) \rho\left(\delta\left(r_{1}\right)\right)$ $=\rho\left(\delta\left(r_{2}\right) O \delta\left(r_{1}\right)\right)$
(3) CONCEPTUAL OBSTALLE: ESSENTIAL UNIQUENESS OF UNIVERSAL CONSTRUGTIUMS RECAP:

$$
\begin{aligned}
& r_{\alpha}(X)^{\longleftarrow} X \quad r_{\alpha}(x) \leftrightarrows K_{\alpha} \rightarrow X
\end{aligned}
$$

(4) Ansatz: CATEGORIFICATION
(iii) " $\rho\left(\delta\left(r_{2}\right)\right) \rho\left(\delta\left(r_{1}\right)\right)=\sum_{r_{u}} \underbrace{\mu_{r_{1}}, r_{2}}_{c \mathbb{Z}=r 0} r_{u} \rho\left(\delta\left(r_{u}\right)\right)^{\prime \prime}$
(iv)" $\rho\left(\delta\left(r_{2}\right)\right) \rho\left(\delta\left(r_{1}\right)\right)$

$$
=\rho\left(\delta\left(r_{2}\right) \bigcirc \delta\left(r_{1}\right)\right)
$$- Rule Algebra product

II. FORMALIZE $Z \geqslant-$ COEFFICIENTS AS CARDINALITIES (OF SUITABLE SETS...) METHODS: DOUBLE CATEGORIES, PRESHEAVES, FIBRATIONS, COENDS, MULTISUMS...
(5) Defimition: A Double category Dis a weany miternal categrey w chit

D: $\quad \begin{aligned} & x \\ & \text { It } \\ & y\end{aligned}$

$$
D_{1}
$$

(5) Definition: A Double category Dis a weakiy internal categury w chit

D_{0}
$\underset{Y}{X} \quad$ "O-cells" - objectes of D_{0}
It "verticul murphisms"
y \quad - morphisme of \mathbb{N}_{6}

"horizontal morphisms"

- objects of D_{1} " 2 -cells" - murphisms of D_{1}

verticul compusition
- composition in D_{1}

Nicolas Behr, CAP'22, IHÉS, November 28, 2022
(6) Definition: A Presentation of a double category \mathbb{D} is a family $\left(h_{n}\right)_{n \geqslant 0}$

OF FUnctors $h_{n}: \mathbb{D}_{n} \rightarrow \mathbb{D}_{1}$, Where $\mathbb{D}_{n}:=\underbrace{\mathbb{D}_{1} X_{D_{0}} \ldots x_{\mathbb{D}_{0}} \mathbb{D}_{1}}_{n \text { times }}$,

$$
\begin{array}{r}
h_{0}:=U, \quad h_{1}:=i d, \quad h_{2}\left(--_{2},--_{n}\right):=-\nabla_{2} \nabla_{h}, \\
\forall n \geqslant 2: h_{n+1}\left(--_{n+1}, \ldots,-1\right) \cong h_{2}\left(--_{n+1}, h_{n}(-n, \ldots,-1)\right)
\end{array}
$$

- Notational Convention:

(6) Definition: A presentation of a double category id is a family $\left(h_{n}\right)_{n \geqslant 0}$
of functors $h_{n}: \mathbb{D}_{n} \rightarrow \mathbb{D}_{1}$, Where $\mathbb{D}_{n}:=\underbrace{\mathbb{D}_{1} X_{\mathbb{D}_{0}} \ldots X_{\mathbb{D}_{0}} \mathbb{D}_{1}}_{n \text { times }}$,

$$
\begin{gathered}
\left.h_{0}:=U, \quad h_{1}:=i d, \quad h_{2}\left(-2,--_{n}\right):=-2\right\rangle_{h}-1, \\
\forall n \geqslant 2: h_{n+1}\left(--_{n+1}, \ldots,-1\right) \cong h_{2}\left(--_{n+1}, h_{n}(-n, \ldots,-1)\right)
\end{gathered}
$$

- Notational convention:

- ExAmple:
* Horizuntal

Composition:
$\hat{=}$ CHOICE OF PULLBACKS (PBS)!

(7) KEY (ONCEPT: (covARIANT) PRESHEAVES F: $D_{1} \rightarrow$ set
$4 \underline{\text { DDEA: }} \quad \forall r \in \mathbb{D}_{1}: \quad \hat{\triangle}_{r}:=\mathbb{D}_{1}(r,-)$

(7) KEY (ONCEDT: (covARIANT) PRESHEAVES F: $D_{1} \rightarrow$ Set

4 IDEA: $\forall r \in \mathbb{D}_{1}: \quad \hat{\triangle}_{r}:=\mathbb{D}_{1}(r,-)$

 AND SUCH THAT (i) $\forall x \in \mathbb{D}_{0}: \exists!(x<\phi) \in$ ob $\left(\mathbb{D}_{1}\right) \wedge \exists!(\phi-x) \in$ ob $\left(D_{n}\right)$

(8) Definition: A coend For a fünctur $F: \varphi$ op $x \rightarrow$ set IS DEFINED AS $\int^{C(C, C)} \underset{F(C)}{C(C)} F(C, C)=\left(\frac{1}{C \in \varphi} F(C, C)\right) / \sim$ with: $(c, x) \sim\left(c^{\prime}, x^{\prime}\right): \Leftrightarrow \exists C \xrightarrow{\gamma} c^{\prime}, y \in F\left(c^{\prime}, c\right): x=F(\gamma, i d) y \wedge x^{\prime}=F(i d, \gamma) y$
(8) DeFinition: A coend For a fünctur $F: \varphi$ op $\times \varphi \rightarrow$ set
 with: $(c, x) \sim\left(c^{\prime}, x^{\prime}\right): \Leftrightarrow \exists C \xrightarrow{\gamma} c^{\prime}, y \in F\left(c^{\prime}, c\right): x=F(\gamma, i d) y \wedge x^{\prime}=F(i d, \gamma) y$ KEY CONCEPT: CONVOLUTION PRODUCTS OF PRESHEAVES $F_{n} \ldots, F_{1} D_{1} \rightarrow$ 先
(9)

$$
\begin{aligned}
& \cdot(S,(\sigma, f)) \sim\left(S^{\prime},\left(\sigma^{\prime}, f^{\prime}\right)\right): \Leftrightarrow \exists S \xrightarrow{A} S^{\prime} \in \mathbb{D}_{n},(\tau, g) \in \mathbb{D}_{1}\left(h_{n}\left(S^{\prime}\right), r\right) \times \mathbb{F}_{n}(S) \text {. } \\
& (\sigma, f)=\left(\mathbb{D}_{1}\left(h_{n}(A), r\right) \tau, g\right) \wedge\left(\sigma^{\prime}, f^{\prime}\right)=\left(\tau, \mathbb{F}_{n}(A) g\right)
\end{aligned}
$$

(9)

$$
\begin{aligned}
& \cdot(S,(\sigma, f)) \sim\left(S^{\prime},\left(\sigma^{\prime}, f^{\prime}\right)\right): \Leftrightarrow \exists S \xrightarrow{A} S^{\prime} \in \mathbb{D}_{n},(\tau, g) \in \mathbb{D}_{1}\left(h_{n}\left(S^{\prime}\right), r\right) \times \mathbb{F}_{n}(S) \\
& (\sigma, f)=\left(D_{1}\left(h_{n}(A), r\right) \tau, g\right) \wedge\left(\sigma^{\prime}, f^{\prime}\right)=\left(\tau, \mathbb{F}_{n}(A) g\right)
\end{aligned}
$$

(10) Key concept: Fibrational structures

-Definition: A functor $G: \varepsilon \rightarrow B$ is a Grothendieck opfibration iff

(10) Key concept: Fibrational structures

- Definition: A functur $G: \varepsilon \longrightarrow B$ is a GROTHENDIECK OPFIBRATION iff

- DEFINITIUN: A FUNGTUR $S: \varepsilon+B$ IS A STREET OPFIBRATION IFF

(11) Defimition: A functur $M: \varepsilon \rightarrow B$ is a Multi-opfibration iff
(12) Definition: A Functor $R: \varepsilon \rightarrow B$ is A Residual mucil-opfirration IFF

(13) DEFINITION: LET $X: \varepsilon \longrightarrow B$ BE AN $X-O P F I B R A T I O N ~(X \in\{G, s, M, R\})$

THEN A CLEAVAGE FOR X IS DEFINED AS A CHOICE OF REPRESENTATNE FOR EACh X-opcartesian lifting:
(14) EMPIRICAL RESULT: DI FOR COMPOSITIONAL REINRITING SEMANTICS
*2204.07175

- $h_{2}=\stackrel{s}{n}^{:} \mathbb{D}_{2} \rightarrow D_{1}$ is A "GLORULAR" STREET OPFIBRATION, ie.,

By induction on n, ONE FINDS THAT
$\forall n \geqslant 2: \quad h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}$
are "Globular" STREET OPFIBRATIONS
(15) Do HAS MULTI-suMS

$$
\forall(A, B) \in D_{0} \times D_{0}: \exists\left\{\begin{array}{ll}
A^{\prime} & \\
o_{j} \times M_{j} a_{b j}
\end{array}\right\}_{j \in\}_{M, B)}}
$$

$$
\begin{aligned}
& \text { DÉFINITION: CLEAVAGE FOR MULTI-SLUMS: } \\
& \forall(A, B) \in \mathbb{D}_{0} \times \mathbb{D}_{0}: m s(A, B)=\left\{\begin{array}{cc}
A & B \\
0_{j} & \mu_{j}
\end{array} \sum_{b_{i}}^{y_{i A, B)}^{x}}\right.
\end{aligned}
$$

(15) Do HAS MULTI-SUMS:
(16) CONVOLUTION PRODUCTS REVISITED
(16) CONVOLUTION PRODUCTS REVISITED

(17)

EXAMPLE: FOR $\hat{\Delta}_{r_{j}}:=\mathbb{D}_{1}\left(r_{j},-\right) \quad(j=1, \ldots, n)$

Nicolas Behr, CAP'22, IHÉS, November 28, 2022
(18) Key result: Weak associativity of *

$$
\forall F_{3}, F_{2}, F_{1}: D_{1} \longrightarrow D_{0}, r \in \mathbb{D}_{1}: \quad F_{3} *\left(F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2}\right) * F_{1}(r)
$$

(18) KEY RESULT: WEAK ASSOCIATIVITY OF * $\forall F_{3}, F_{2}, F_{1}: D_{1} \longrightarrow D_{0}, r \in \mathbb{D}_{1}: \quad F_{3} *\left(F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2}\right) * F_{1}(r)$
Proof (SkETCH)

(18) KEy RESULT: WEAK Associativity of * $\forall F_{3}, F_{2}, F_{1}: D_{1} \longrightarrow D_{0}, r \in \mathbb{D}_{1}: \quad F_{3} *\left(F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2}\right) * F_{1}(r)$
Proof (SkETCH)

(18) KEy RESULT: WEAK Associativity of * $\forall F_{3}, F_{2}, F_{1}: D_{1} \longrightarrow D_{0}, r \in \mathbb{D}_{1}: F_{3} *\left(F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2} * F_{1}\right)(r) \cong\left(F_{3} * F_{2}\right) * F_{1}(r)$
Proof (SkETCH)

(9)
(20) FINAL INGREDIENT: CATEGORIFICATION OF RULE ALGEBRA
(LAIM

$$
\begin{aligned}
& =: \hat{\Delta}_{r_{2} O r_{1}}(r)
\end{aligned}
$$

(21) Proof (SUETCH): ASSUMING CHOSEN CLEAVAGES.
$\mathrm{O}_{2}<r_{\text {r }}^{r_{2}} I_{2}$

(21) Proof (SUETCH): ASSUMING CHOSEN CLEAVAGES
$O_{r}^{O_{2}<\frac{r^{2}}{V \alpha_{2}} I_{2}}$

(21) Proof (SLIETCH): ASSUMING CHOSEN CLEAVAGES

(21) Proof (SUETCH): ASSUMING CHOSEN CLEAVAGES:

(21) Proof (SUETCH): ASSUMING CHOSEN CLEAVAGES:

PROOF (SKETCH):

(23) EXAMPLE: A.V. Kiselev's CAPIIg RuLe $\quad \vdots: \rightarrow 0$

5 Contributions to $\hat{\Delta}_{2}$ or

(24) Counting Rewriting sequences

$$
\begin{aligned}
& \text { - " } \rho(\delta(r))|x\rangle=\rho(\delta(r)) \rho(\delta(x<\phi))|\phi\rangle=\sum_{\alpha} \rho\left(\delta\left(r_{\alpha}(x)<\phi\right)\right)|\phi\rangle
\end{aligned}
$$

(25) OUTLOOK
*"\# OF WAYS TO REWRITE X VIA APPLYING RuLE $r^{\prime \prime}$:

- Starting march zor3: ANr prosect Core act
www. coreuct. wini
Coq- -assed Rewnitiny: towards Executuble Applied Category Thery

