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Given a lattice A, choose r > 0 and consider the
open balls { B, (v) }yea suchforany vy, vs € A,
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Consider [R™ with the standard inner product. A
lattice A € R is a discrete subgroup such that the
quotient space R% /A has a finite induced volume.

Given a lattice A, choose » > 0 and consider the
open balls { B, (v) }yea suchforany vy, vs € A,

B;»(U 1 ) M B.,,(’Ug) %" U — V1 — V3.

Then (A, r) is called a lattice sphere packing, or
simply lattice packing inside (R?, ( , ).

Packing density of a lattice packing is:
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However, note that 27 can be at most

m(A) = min _|[v]],
veA\{0}
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However, note that 27 can be at most

m(A) = min |[v||,
’ veA\{0}

otherwise some balls will begin to intersect.

The goal is to maximize packing density. So take

r = %m(A). In that case packing density will be

equal to

p( By (a)/2(0))
u(R? /A)

and is independent of scaling.
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otherwise some balls will begin to intersect.

The goal is to maximize packing density. So take
r = 2m(A). In that case packing density will be

equal to

Bmi A)/2 {m\?

w(R? /A)

and is independent of scaling.

To maximize this over all A, it is sufficient to
maximize over unit covolume lattices (i.e.

p(R* /A)=1)
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Putting it together, we have

ca =sup {¢(B,(0)) |7 > 0,3 g € SLy(R) and B,(0) N gZ* = {0}} .
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Clearly, c; € [0,2%], so supremum exists!
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The exact value of the constant ¢4 is known only ford = {1, 2, 3,4, 5,6, 7,8, 24}. For other d, we want
to understand the asymptotic behaviour. In this talk, we will only focus on lower bounds.

Some asymptotic lower bounds for large dimensions

Lower bound Contribution of Dimensions covered
cqg > 1 Minkowksi (1896) Vd>1

cg > 2(d—1) Ball (1992) Vd>1

Can, = 8.81 Vance (2011) d=4n,n > 1

Cop(n) = T Venkatesh (2013) d = 2p(k) for some k

Since lim inf (mlog log n) = e 7, the last bound is the best lower bound (among these, and

n

overall) on ¢4 in infinitely many dimensions. The first dimension where it outperforms all others in this
listisd = 960.
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Theorem (G. 2021)

Let D be a finite-dimensional division algebra over Q. Let O C D be anorderin D and Gy € O be
a finite group embedded in the multiplicative group of D. Then ifd = 2dimg D, then

ca > #Go.

To recover Venkatesh's result, set D = Q(u,, ), O = Z[u,] and Gy = {(u,, ). Hence, this gives
Cayp(n) >n

The cherrypicked sequence of Venkatesh achieves an asymptotic growth of O(d log log d). This is
achieved by setting K as the nth cyclotomic field where n = HP<N p.

The division algbera construction gives more freedom to cherrypick sequences. Instead of choosing a
sequence of cyclotomic fields, we can now choose sequences of Q-divison algebras. However, no such
sequence will be able to give an asymptotic result strictly better than O(d log log d). Improvements in
individual dimensions is still possible, as shown before.
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To show ¢; > K, we must prove the existence of g € SLy(IR) such that the origin centered ball B with
1(B) = K has g7 N B = {0}
This is an optimization problem on the space
Xa:={A CRY u(R/A) =1} = {gZ" | g € SLa(R)}
~ SL;(R)/SL4(Z).

A priori, this is a bijection of sets. But now we can pull back the topology and the measure from

SLs(R)/SLy(Z).
SL4(IR) has the topology of a locally compact group.

(R)
SLg(R) isunimodular. SLy(Z) is a discrete subgroup inside SL;(R) and therefore there is a unique left
SL;(R)-invariant measure on SLy(R)/SL4i(7Z).
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Proposition

There exists a unique (upto scaling) natural measure on SL;(R)/SLy(Z), left-invariant under
SL4(R) action on cosets.
Furthermore, SL;(R)/SL4(Z) under this has a bounded total measure.




The probabilistic method

Proposition

There exists a unique (upto scaling) natural measure on SLy(R)/SLy(Z), left-invariant under
SLq(R) action on cosets.
Furthermore, SL;(R)/SL4(Z) under this has a bounded total measure.

This gives us a probability space. Hence we can talk about random unit covolume lattices.
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compact support f : R? — R.
e.g. the indicator function of a ball.

With this, we can now construct the lattice-sum
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function ®¢(A) : X; — R, given as

e (A)= ) fv).

veA\{0}

Since we can generate random lattices, we can talk
about the expected value of ®¢(A).

Let us try to do this experimentally! Let us sample
overaset S C X, of lattices.

g & . ®(A)
So we see that it is almost the integral. Thes 2(4)

358

419

Visualizing in R?

0.854

Jp2 fz)dz

0.950



Lattice-sum function

Consider a bounded measurable function with

compact support f : R? — R.
e.g. the indicator function of a ball.

With this, we can now construct the lattice-sum
function ®¢(A) : X; — R, given as

e (A)= ) fv).

veA\{0}

Since we can generate random lattices, we can talk
about the expected value of ®¢(A).

Let us try to do this experimentally! Let us sample
overaset S C X, of lattices.

g & . ®(A)
So we see that it is almost the integral. Thes 2(4)

462

500

Visualizing in R?

.
.
.
l ¢
.

0.924

Jp2 fz)dz

0.950



Lattice-sum function

What we are empirically confirming is the following.




Lattice-sum function

What we are empirically confirming is the following.

Theorem (Siegel, 1945)

Suppose f : R? — R is a compactly supported bounded measurable function. Then, the following
holds.

/Xd b= [S’Ld(R)/SLd(Z) Z f(v) | dg = /Rd f(z)dz,

vegZ®\ {0}

where the dz on the right-hand side is the usual Lebesgue measure on R? and dg is the unique
S Lq(R)-invariant probability measure on SLy(R)/SLy(7Z).




Lattice-sum function

But as you saw that forany A € X, when f is the indicator of a ball, we must have
®,(A) € {0,2,4,6,...}. That's because balls are symmetric.

v € supp(f) N (A\ {0}) = —v € supp(f) N (A \ {0}).
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But as you saw that forany A € X, when f is the indicator of a ball, we must have
®:(A) €{0,2,4,6,...}. That's because balls are symmetric.
v € supp(f) N (A\ {0}) = —v € supp(f) N (A \ {0}).

If f is the indicator function of a ball of volume 2 — ¢, then this tells us that for any dimension d
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Lattice-sum function

But as you saw that forany A € X, when f is the indicator of a ball, we must have
®,(A) € {0,2,4,6,...}. That's because balls are symmetric.

v € supp(f) N (A\ {0}) = —v € supp(f) N (A \ {0}).

If f is the indicator function of a ball of volume 2 — ¢, then this tells us that for any dimension d

/ (I)fIZ—E
Xd

Conclusion: There exists some lattice A € X such that ®(A) = 0. That is, there is some lattice of unit
covolume that intersects trivially with an origin centered ball of volume 2 — €.




Lattice-sum function

But as you saw that forany A € X, when f is the indicator of a ball, we must have
®,(A) € {0,2,4,6,...}. That's because balls are symmetric.

v € supp(f) N (A \ {0}) = —v € supp(f) N (A \ {0}).

If f is the indicator function of a ball of volume 2 — ¢, then this tells us that for any dimension d

/ ‘I)fZZ—E
Xy

Conclusion: There exists some lattice A € X such that ®¢(A) = 0. That is, there is some lattice of unit
covolume that intersects trivially with an origin centered ball of volume 2 — ¢.

Another conclusion: ¢; > 2 for all dimensions d!
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But as you saw that forany A € X, when f is the indicator of a ball, we must have
®,(A) € {0,2,4,6,...}. That's because balls are symmetric.

v € supp(f) N (A\ {0}) = —v € supp(f) N (A \ {0}).

If f is the indicator function of a ball of volume 2 — ¢, then this tells us that for any dimension d

/ (I)fIZ—E
Xd

Conclusion: There exists some lattice A € X4 such that ®;(A) = 0. That is, there is some lattice of unit
covolume that intersects trivially with an origin centered ball of volume 2 — ¢.

Another conclusion: ¢; > 2 for all dimensions d!

Both Venkatesh and the division algebra lattices use this idea. What we want is to find expectation of the
lattice sum over a smaller subset of lattices that have a larger group of symmetries.




Lattice-sum function

But as you saw that forany A € X, when f is the indicator of a ball, we must have
®,(A) € {0,2,4,6,...}. That's because balls are symmetric.

v € supp(f) N (A \ {0}) = —v € supp(f) N (A \ {0}).

If f is the indicator function of a ball of volume 2 — ¢, then this tells us that for any dimension d

/ ‘I)fZZ—E
Xy

Conclusion: There exists some lattice A € X such that ®¢(A) = 0. That is, there is some lattice of unit
covolume that intersects trivially with an origin centered ball of volume 2 — ¢.

Another conclusion: ¢; > 2 for all dimensions d!

Both Venkatesh and the division algebra lattices use this idea. What we want is to find expectation of the
lattice sum over a smaller subset of lattices that have a larger group of symmetries.

For Venkatesh, the group of symmetries is always a cyclic group. For the new result, the symmetries are
non-commutative.




Venkatesh's lower bound
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The idea is to take a nice enough subcollection Y,; C X of lattices and average the lattice-sum function
® ; over them.
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The idea is to take a nice enough subcollection Y; C X of lattices and average the lattice-sum function
®; over them.

Define the set Y} as

Yo={|2t]| Ok la,bc,d € Ku = K@R,ad—be = 1r, | .
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The idea is to take a nice enough subcollection Y; C X of lattices and average the lattice-sum function
®; over them.

Define the set Y; as

Yo={|2t]| Ok la,bc,d € Ku = K@R,ad—be = 1r, |
In conventional notation, this is just

Yy = {9(0F) | g € SLy(KRr)} ~ SLy(KR)/SL:(Ok).
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Define the set Y; as

Yo={|2t]| Ok la,bc,d € Ku = K@R,ad—be = 1r, |
In conventional notation, this is just

Yy = {9(0%) | g € SLy(Kg)} ~ SLy(Kr)/SL:(Ok).

Y, can be given probability measure.




Venkatesh's lower bound

The idea is to take a nice enough subcollection Y; C X of lattices and average the lattice-sum function
®; over them.

Define the set Y; as
Yo={|2t]| Ok la,bc,d € Ku = K@R,ad—be = 1r, |
In conventional notation, this is just
Ya = {9(0F) | g € SLy(Kr)} =~ SLy(Kr)/SL2(Ok).
Y, can be given probability measure.

So if f is the indicator function of an origin-centered ball with respect to a quadratic form that is

invariant under (u,, ), we have that ®¢(A) € {0,n,2n, 3n,4n, ...} for A € Y. Such a quadratic form
always exists by averaging!
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Venkatesh, then proves the following analogue of Siegel's theorem.




Venkatesh's lower bound

Venkatesh, then proves the following analogue of Siegel's theorem.

Theorem (Venkatesh 2013)

Letd = 2¢(n) Suppose f : Kﬁ — R is a compactly supported bounded measurable function.
Then, the following holds.

/1;1 b= /SLZ(KR)/SLZ(OK) Z f(v) | dg = /Rd f(z)dz,

vegOF\{0}

where the dz on the right-hand side is that lebesgue measure on R? that makes O?}z of unit
covolume and dg is the unique S Ly (K )-invariant probability measure on Y.




Venkatesh's lower bound

Venkatesh, then proves the following analogue of Siegel's theorem.

Theorem (Venkatesh 2013)

Letd = 2¢(n) Suppose f : Kﬁ — R is a compactly supported bounded measurable function.
Then, the following holds.

¢ :/ f(v) | dg = f(x)dz,
/Y = Lo s > fw) § (z)

vegOR \{0}

where the dz on the right-hand side is that lebesgue measure on R? that makes (9??2 of unit
covolume and dg is the unique S L, (KR )-invariant probability measure on Y.

Conclusion: By setting f as the indicator function of a ball in a suitable quadratic form, we conclude that
there exists some lattice A € Y, such that <I>f(A) = (. That is, there is some lattice of unit covolume
that intersects trivially with an origin centered ball of volume n — «.




Venkatesh's lower bound

Venkatesh, then proves the following analogue of Siegel's theorem.

Theorem (Venkatesh 2013)

Letd = 2¢(n) Suppose f : Kﬁ — R is a compactly supported bounded measurable function.
Then, the following holds.

‘/;/d s [ng(KR)/SLz(OK) Z flo) | dg = /Rd f(z)dz,

vegOR \{0}

where the dz on the right-hand side is that lebesgue measure on R? that makes (’)??2 of unit
covolume and dg is the unique S L, ( K )-invariant probability measure on Y.

Conclusion: By setting f as the indicator function of a ball in a suitable quadratic form, we conclude that
there exists some lattice A € Y, such that ®(A) = 0. That is, there is some lattice of unit covolume
that intersects trivially with an origin centered ball of volume n — «.

Another conclusion: ¢y, (,) = n forall n!




Towards division algebra

The division algebra case is also very similar. Let D be a finite-dimensional division algebra over Q. Let
O C Dbeanorderin D.We workind = 2dimg D dimensions. Define Dr = D ®qg R.

Y; = {g((’)eﬂ) | g c SLQ(DR)} o SLQ(D]R)/SLQ(O)

Here

SLy(Dgr) = { {a b] | [m] — laa: T by} is a measure preserving map on D%r‘)}
c d Y cx + dy
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Towards division algebra

The division algebra case is also very similar. Let D be a finite-dimensional division algebra over Q. Let
O C Dbeanorderin D.Weworkind = 2dimg D dimensions. Define Dr = D ®qg R.

Yy = {9(0%?) | g € SLy(Dg)} =~ SLy(Dr)/SLa(O).

Here

SLs(Dgr) = { {a b] | {CC] — [a:c i by] is a measure preserving map on D%}
c d Y cx + dy

Y, consists of lattices that are invariant under diagonal right-multiplication by unitsin O

g(O%?) = g(O%?) [g 2] , for any p € O




Towards division algebra

Theorem (G. 2021)

Letd = 2[D : QJ. Suppose f : D% — R is a compactly supported bounded measurable function.
Then, the following holds.

[ o= >t |do= [ fla)
Yy SLy(Dr)/SL2(0) R

veg0™\{0}

where the dz on the right-hand side is that Lebesgue measure on R? that makes O%? of unit
covolume and dg is the unique S Ly (D )-invariant probability measure on Y;.




Towards division algebra

Theorem (G. 2021)

Letd = 2[D : QJ. Suppose f : D?R — R is a compactly supported bounded measurable function.
Then, the following holds.

/Yd (I)f h /:QLQ(D?@)/SLQ(O) Z f(v) dg = /Rd f($)d$,

veg®®*\{0}

where the dzx on the right-hand side is that Lebesgue measure on R? that makes O%2 of unit
covolume and dg is the unique S Ly ( Dy )-invariant probability measure on Y.

To get packing bounds, fix a finite subgroup Gy C O to act diagonally on the right of O%2. We get the
bounds

€2 dimy D = #Go-




Towards division algebra

In fact we only need to find finite subgroups that live in Q-division algebras. The order O can be aligned
according to the finite group. Fortunately, there exists a complete classification of such finite subgroups
due to Amitsur, 1955.




Towards division algebra

FINITE SUBGROUPS OF DIVISION RINGS

BY
S. A. AMITSUR

1. Introduction. The problem of determining all finite groups which can
be embedded in the multiplicative group of the nonzero elements of division
rings was first proposed and partially solved in [6] by I. N. Herstein. It was
shown there that the only finite subgroup of division rings of finite character-
istic are cyclic, and that the subgroups of odd order of division rings of char-
acteristic zero are of a very special type [6, Theorem 5)]. In particular, the
odd subgroups of the real quaternions are all cyclic. This brought I. N. Her-
stein to the conjecture that all odd subgroups of division rings are cyclic.

The purpose of the present paper is to determine completely all subgroups
(of even and odd order) of division rings. These groups are classified in five
classes connected in some way to the finite groups of rotations of the 3-
Euclidean sphere. Among others we disprove the conjecture of Herstein and
exhibit infinitely many finite subgroups of division rings of odd order. In
particular the minimal order of an odd noncyclic group contained in a divi-
sion ring is 63.

Vim
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FINITE SUBGROUPS OF DIVISION RINGS

BY
S. A. AMITSUR

1. Introduction. The problem of determining all finite groups which can
be embedded in the multiplicative group of the nonzero elements of division
rings was first proposed and partially solved in [6] by I. N. Herstein. It was
shown there that the only finite subgroup of division rings of finite character-
istic are cyclic, and that the subgroups of odd order of division rings of char-
acteristic zero are of a very special type [6, Theorem 5)]. In particular, the
odd subgroups of the real quaternions are all cyclic. This brought I. N. Her-
stein to the conjecture that all odd subgroups of division rings are cyclic.

The purpose of the present paper is to determine completely all subgroups
(of even and odd order) of division rings. These groups are classified in five
classes connected in some way to the finite groups of rotations of the 3-
Euclidean sphere. Among others we disprove the conjecture of Herstein and
exhibit infinitely many finite subgroups of division rings of odd order. In
particular the minimal order of an odd noncyclic group contained in a divi-

sion ring is 63.

Lemma 7. Let x, y be two integers and let B=f(g, x—1)=1 (ie., x=1
(mod gq)) and B,=(g, ») =0 for a prime q. Then: (1) if g#2 or 22 (ie.,
x=1 (mod 4) 11 case g=2) then B(gq, x*—1) =p+8,. (2) If g=2 and B=1 then:
By =0 implies that (2, x*—1) =1,and B, Z 1 implies thal B(2, x*—1) =g, +i+1
where x=1+2+ - - - +2i4+2%;, {21,

The proof is by induction on B,. If §,=0, let x=14¢"z, (5, ¢) =1. Then,
(14-¢*2)*=1+4¢*yz+terms with higher powers of g, and this case is proved
since (yz, ¢)=1. Let y=gy'=gMy", (¥", ¢)=1, and B, =1. By induction it
follows that x' =1-+¢**vu, (4, ¢) =1. Hence,

= (L4 PHorly)e =14 Pt +Cpu @Oy ..o,
The highest power of g dividing
Cow &0 e
is ¥(B+B8,—1)+1 if 1Sr<g and it is g(8+8,—1) if »=g. Hence, the excep-
tional case to the proof of this lemma may occur if g(8+8,—1) =1-(8+8,—1)
+1. Equivalently, (¢—1)(8+8,) =¢q. This may happen only if ¢=2 and

B+By=2. This proves the first part of the lemma.
To prove the second part it suffices to show it only for y=2. For, if x is

THEOREM 5. A necessary and sufficient condition that W, is a division alge-
bra is that (3C) or (3D) holds and either:

(1) n=s5=2and r=—1 (mod m) or,

(2) For every prime q]n there exists a prime ?I m such that qln, and that
one of the following holds:

(2a) p=1 (mod 4) or g2 and B(g, s) 2B(q, p—1)+Max; B(q, ¥:).

(2b) p=1+2+ - - - +2¢ (mod 2#%), i>1 and g=2, (3C) holds; and
B(2, ) Zi+1+Max {1,8(2,7:)} if s=0 (mod 4), but if s#0 (mod 4) then all
B(2, 4i) =0; i.e., all v, are odd integers.

(2¢) p=g=2, (3D) holds, m/4 and all ¥, are odd integers.

Proof. Evidently, (1) of Theorem 4 and condition (1) of the present theo-
rem are equivalent. The proof of this theorem will be achieved by showing
that the condition (2a) is equivalent to (1), (2b) is equivalent to (II,) and
that (2c) and (b) of Theorem 4 are equivalent. This will prove the theorem
since it was shown that (I,) and (I3) together are equivalent to (a) of Theorem
4,

Suhetituting (TTLY in (T wa ahtain hy (T that (1) je sanivalant ta the




Towards division algebra

For brewity, we will not discuss classification of of finite subgroups ofdivision rings. Instead, let us talk
about effectiveness of these results.
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Choose a prime number p. Consider the map Visualizing in R2
™, 1 2% — F.




Controlled randomness

Choose a prime number p. Consider the map
mp : 2% — F.

d ; G ; ;
5 \ {0} is a disjoint union of lines.

FEN{0}= || (Fyu\{0})

ve(F\{0})/F;

Visualizing in R?




Controlled randomness

Choose a prime number p. Consider the map Visualizing in R?
mp : 2% — F.

Fﬁ \ {0} is a disjoint union of lines.

FA{0y = [ Eo\{0})

ve(F\{0})/F;
This implies that

7.8 \pZd _ |—| Trp_l(Iva \ {0})

ve(Fo\{0})/F;




Controlled randomness
Choose a prime number p. Consider the map
mp : 2% — F.

l’{ 5 . ¥ 3
5 \ {0} is a disjoint union of lines.

FOA{0} = || (Fv\ {0}

ve (?;f \{0})/F;,

This implies that

zi\pz* = ||

ve(FA\{0})/F;

m (Fpv \ {0})

Visualizing in R?

oo o
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Controlled randomness

Choose a prime number p. Consider the map Visualizing in R?
mp : L — Fo.
F;’ \ {0} is a disjoint union of lines. " ¢ " ¢ . ¢
d . . .
FA{0}= || @v\{0}) . o
ve(Fi\{0})/F;, ° ® @
® @ @
This implies that ° ® @
[ [ @
a — ® @
z'\pz'= || w'(Fv\{0}) . . .
ve(Fp\{0})/F; ° & ”
® @ [ ]
J @ @
[ ] €]
) @ @




Controlled randomness
Choose a prime number p. Consider the map
mp 1 L% — FL.

F;f \ {0} is a disjoint union of lines.

Fi\{0}= || (F,v\{0})

ve(Fi\{0})/F;

This implies that

zi\pz* = ||

ve(F\{0}) /"

77;1 (Fp v \ {0})

Visualizing in R?

oo o0
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Controlled randomness

Choose a prime number p. Consider the map Visualizing in R?
mp : L8 — F2.

d ; v i . : ® ® 2]
5 \ {0} is a disjoint union of lines. " " a
p J @ @
Fi\{0}= || (F,v\{0}) ° o o
ve (BN (0)/5; g g
[ ® @
This implies that . . »
| ® &
z°\pz'= || m'(Fv\{0}) . . e
ve (Fp\{0})/F; ° ® &
e [ ] [
J ® @
@ @ [}
o o




Controlled randomness
Choose a prime number p. Consider the map
mp : 2% — F.

”’ 5 . ¥ 3
5 \ {0} is a disjoint union of lines.

FOA{0} = || (Fv\ {0}

ve(Fi\{0})/F;

This implies that

ve(F\{0})/F;

szl(Fp v\ {0})
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Controlled randomness
Choose a prime number p. Consider the map
mp : 2% — F.

l’{ 5 . ¥ 3
5 \ {0} is a disjoint union of lines.

FOA{0} = || (Fv\ {0}

ve (?;f \{0})/F;,

This implies that

z'\pz'= || m'(Fv\{0})
ve(FE\{0})/F;

Visualizing in R?
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Controlled randomness
Choose a prime number p. Consider the map
mp : 2% — F.

l’{ 5 . ¥ 3
5 \ {0} is a disjoint union of lines.

FOA{0} = || (Fv\ {0}

ve (?;f \{0})/F;,

This implies that

zi\pz* = ||

ve(FA\{0})/F;

Wi;l(Fp v\ {0})

Let us put all these sub-lattices in one set

£, = {m; (F,uv) [0 € F4\ {0}}.

Visualizing in R?

oo o
NN NN NIMNNE KN

3

o



Controlled randomness

Choose a prime number p. Consider the map Visualizing in R?
mp + L% — F2.

d . T, . 5 ® ]
5 \ {0} is a disjoint union of lines. " . .
[ @ ®
FA{}= || (@Fw\{0}) : . s
ve(Fi\{0})/F;, ® ® ®
® ®
This implies that . " ’
P @® ©
z'\pz'= || m'(Fpu\{0}) . . .
ve(Fp\{0})/F; ° @
L @ L ]
Let us put all these sub-lattices in one set b 'S ®
[ ] @ [ ]

E;:{ng(lﬁ’pv) }UEFg\{O}}. B " ‘ -




Controlled randomness
Choose a prime number p. Consider the map
mp 1 L% — FL.

F;f \ {0} is a disjoint union of lines.

Fi\{0}= || (F,v\{0})

ve(Fa\{0})/F;

This implies that

z*\pz'= ||

ve(F\{0}) /"

7";1 (F, v\ {0})

Let us put all these sub-lattices in one set

L, ={m ' (F,v) |ve F, \ {0}}.

Visualizing in R?

3

o
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However the lattices in LI’Q are not unit covolume. But each one of them has a covolume of p?~1,
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However the lattices in E,’u are not unit covolume. But each one of them has a covolume of p?~1,

So appropriately normalizing, elements of this set become unit covolume lattices.
L, = {Cpmy ' (Fp) | v € Fy \ {03},

1

when C), = p_(l_ﬁ).
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However the lattices in E; are not unit covolume. But each one of them has a covolume of p?~1,

So appropriately normalizing, elements of this set become unit covolume lattices.

L, ={Cpmy ' (Fpv) [v e F, \ {0}},

(11
when C, = p (1 d)_
So £, C Xy is aset of unit covolume lattices, with #L, — coasp — oo.

Now as before let f : R? — R be a compactly supported Riemann integrable function. Let ¢, Xy —R
again be the lattice-sums of f.




Controlled randomness

However the lattices in L;’v are not unit covolume. But each one of them has a covolume of p?~!

So appropriately normalizing, elements of this set become unit covolume lattices.

L, ={Cpmy ' (Fpv) [v e F, \ {0}},

(11
when C, = p (1 d)_
So £, C Xy is aset of unit covolume lattices, with #L, — coasp — oo.

Now as before let f : R? — R be a compactly supported Riemann integrable function. Let ¢;: Xy — R
again be the lattice-sums of f.

What do you expect this quantity to be as p — o0?

Z‘I’f #L > ( > f(v))
p AeL, P AeL, \wveA\{0}
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The answer to this question is very classical.

Theorem (Rogers, 1947)

Let p be an arbitrary prime, IF,, be the field with p elements and let 7, : 7% — IFg be the natural

coordinate-wise projection map. Let £, be the set of sub-lattices of 7% that are pre-images of one-
dimensional subspaces in this projection map scaled to become unit covolume, i.e.

£, = {Cymy () | v € FA\ {03}, G, = p (4.

Consider a compactly supported continuous function f : R? — R and the lattice-sum function
®; : Xy — R.Then the following holds.

. 1
Jim [ n; > % (A)] = [ f(z)dz.

d
P AeL, R




Controlled randomness

The answer to this question is very classical.

Theorem (Rogers, 1947)

Let p be an arbitrary prime, IF,, be the field with p elements and let 7, : 7% — Fﬁ be the natural

coordinate-wise projection map. Let £, be the set of sub-lattices of 7% that are pre-images of one-
dimensional subspaces in this projection map scaled to become unit covolume, i.e.

£, = {Cymy () | v € FA\ {01}, G, = p (4.

Consider a compactly supported continuous function f : R? — R and the lattice-sum function
®; : Xy — R.Then the following holds.

fim, | Y dA)| = [ flz)da

—00 L d
y # P AeL, R

After using the integrality gap lemma, this is a constructive proof of ¢; > 2.
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Controlled randomness

Since we are working with finitely many lattices, we can use this procedure to obtain a probabilistic
algorithm that randomly generates lattices with good packing efficiency

This idea can be generalized to number fields, as was shown by (Moustrou, 2016).
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Since we are working with finitely many lattices, we can use this procedure to obtain a probabilistic
algorithm that randomly generates lattices with good packing efficiency

This idea can be generalized to number fields, as was shown by (Moustrou, 2016).

We can also generalize the proof for division rings. But what are analogue of prime ideals for division
rings?

Suppose D is a Q-division ring, K be the center of the ring and O be an O -order in D. Let
[D: K] =n?.

A prime ideal of an O is a proper two-sided ideal p in O such that K - p = D and such that for every pair
of two sided ideals S, T in O, we havethat S - T' C pimplies.S C porT C p.

Important property: For all but finitely many primes p of O, the quotient @/pQ is isomorphic to
M, (F,),where O /Og Np = TF,.

Hence we get countably many projection maps 7, : O — M, (F,).




Controlled randomness

Theorem (G., Serban, 2021)

Letd = 2[D : Q]. Letp C O be a prime as above and let m, : O" — M,,(F,)? be the projection
map as above (on two copies of O). Consider the set of sub-lattices of ©? that are pre-images of
M, (FF,)-submodules of F,-dimension n(2n — 1), i.e.

Cy, = {C C M,(F,)? | Cis a M,,(F,)-submodule ~ (F?)®(r-1},

L, ={Bm, (C)|CeC}y By=q /™

Consider a compactly supported continuous function f : R? — R and the lattice-sum function
@, : X4 — R.Then the following holds.

. 1 B
m [#—Ep AE; ®; (A)] — /R f(2)da.

where the dz on the right-hand side is that Lebesgue measure on R¢ that makes
@* C (D ® R)? ~ R of unit covolume.
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We can therefore prove the following from above.

Theorem (G., Serban, 2021)

Let my = [ p<k prime P and setny := 8¢ (my.). Then for any € > 0 there is an effective constant c.
2Hordsp

such that for k > ¢, alattice A in dimension n;, with density

24 - my
2"

A(A) = (1—¢)

can be constructed in ¢57 108()(1+e(1)) hinary operations. This construction leads to the

7/24

3-np(log log ny)
2'llk

asymptotic density of A(A) > (1 — e ™)

The sequence above is actually the sequence of green points mentioned before. This theorem shows that
the construction is also effective.

The condition of 2 { ord,,2 has to do with division ring contructions. Details can be given on request!
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Open problem:

What are explicit descriptions of lattices that prove at least Minkowski's lower bounds as d — 00?
That is, what are the lattices that have the most optimal packing density in large dimensions?

In terms of coding theory, this problem is to find explicitly lattices that achieve "goodness"

Toac(A@)

1 1
A(ADY7 = =,
(A*)a re(A@) 9

for a subsequence of lattices A CR? asd — 0.

This is like the problem of finding hay in a haystack!

Need to decrease the search space to get smaller running times.
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Open questions and ongoing work

Open problem:

Explicitly describe the higher moments of these random lattices.
That is, give a mean value formula for (3°, 4 f(v))z, (X oen f(v))3, ... for any of these random

sets of lattices.

Forthe SL;(R)/SL4(Z) case, we have (Rogers, 1955-56) papers. This created a lower bound of
Cq = % d, which was the best back then.

Such work has not been satisfactorily generalized to SL; (K)/SL;(Ox). This is an ongoing project
jointly with V. Serban and M. Viazovska.
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Open questions and ongoing work

Question:

Do the effective families of lattices equidistribute in the moduli space of lattices? This is a question
of arithmetic dynamics.

For SLq4(R)/SL4(7) and SL;(K)/SLi(Ok), this is known due to the work of Eskin, Oh, Ullmo.

For division rings, this is still open.
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Appendix: How to generate random 2-dimensional lattices

Tothe map ¥ : [w/3,2m/3]x]0, 1] — H given by ¥(a, b) = cos(a) + isin(a)/bis a measure preserving
map!

It maps the rectangle bijectively to a fundamental domain of H/S Lo (7Z).
Using this, the following map randomly generates a lattice.
Yy 0 (0,27 x [7/3,2m/3]x]0,1] — SLy(R)

b1z, y, 2) = {1 cos(y)] (&z(y))g 0 [ cos(z) Sin(x)}

0 1 " ( i) )% — sin(z) cos(x)

This only works for d = 2. It is not known how to generalize this to higher dimensions!




