The one-sided cycle shuffles in the symmetric group algebra [talk slides]

Darij Grinberg joint work with Nadia Lafrenière

CAP 2022, 2022-11-29

Elements in the group algebra of a symmetric group S_{n} are known to have an interpretation in terms of card shuffling. I will discuss a new family of such elements, recently constructed by Nadia Lafrenière:

Given a positive integer n, we define n elements $t_{1}, t_{2}, \ldots, t_{n}$ in the group algebra of S_{n} by

$$
\begin{aligned}
& t_{i}=\text { the sum of the cycles }(i), \quad(i, i+1), \\
& \qquad(i, i+1, i+2), \ldots,(i, i+1, \ldots, n),
\end{aligned}
$$

where the cycle (i) is the identity permutation. The first of them, t_{1}, is known as the top-to-random shuffle and has been studied by Diaconis, Fill, Pitman (among others).

The n elements $t_{1}, t_{2}, \ldots, t_{n}$ do not commute. However, we show that they can be simultaneously triangularized in an appropriate basis of the group algebra (the "descent-destroying basis"). As a consequence, any rational linear combination of these n elements has rational eigenvalues. The maximum number of possible distinct eigenvalues turns out to be the Fibonacci number f_{n+1}, and underlying this fact is a filtration of the group algebra connected to "lacunar subsets" (i.e., subsets containing no consecutive integers).

This talk will include an overview of other families (both wellknown and exotic) of elements of these group algebras. I will also briefly discuss the probabilistic meaning of these elements as well as some tempting conjectures.

This is joint work with Nadia Lafrenière.

Preprint:

- Darij Grinberg and Nadia Lafrenière, The one-sided cycle shuffles in the symmetric group algebra, preprint, https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b1.pdf

Slides of this talk:

- https://www.cip.ifi.lmu.de/~grinberg/algebra/cap2022.pdf

1. Finite group algebras

- This talk is mainly about a certain family of elements of the group algebra of the symmetric group S_{n}. But I shall begin with some generalities.
* Let \mathbf{k} be any commutative ring (but $\mathbf{k}=\mathbb{Z}$ is enough for most of our results).
* Let G be a finite group. (It will be a symmetric group from the next chapter onwards.)
* Let $\mathbf{k}[G]$ be the group algebra of G over \mathbf{k}. Its elements are formal \mathbf{k}-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.
- Example: Let G be the symmetric group S_{3} on the set $\{1,2,3\}$. For $i \in\{1,2\}$, let $s_{i} \in S_{3}$ be the simple transposition that swaps i with $i+1$. Then, in $\mathbf{k}[G]=\mathbf{k}\left[S_{3}\right]$, we have

$$
\begin{aligned}
\left(1+s_{1}\right)\left(1-s_{1}\right) & =1+s_{1}-s_{1}-s_{1}^{2}=1+s_{1}-s_{1}-1=0 ; \\
\left(1+s_{2}\right)\left(1+s_{1}+s_{1} s_{2}\right) & =1+s_{2}+s_{1}+s_{2} s_{1}+s_{1} s_{2}+s_{2} s_{1} s_{2}=\sum_{w \in s_{3}} w .
\end{aligned}
$$

* For each $u \in \mathbf{k}[G]$, we define two \mathbf{k}-linear maps

$$
L(u): \mathbf{k}[G] \rightarrow \mathbf{k}[G],
$$

$$
x \mapsto u x \quad \text { ("left multiplication by } u \text { ") }
$$

and

$$
\begin{aligned}
& R(u): \mathbf{k}[G] \rightarrow \mathbf{k}[G], \quad(" r i g h t ~ m u l t i p l i c a t i o n ~ b y ~ \\
&u ") .
\end{aligned}
$$

(So $L(u)(x)=u x$ and $R(u)(x)=x u$.)

- Both $L(u)$ and $R(u)$ belong to the endomorphism $\operatorname{ring} \operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$ of the \mathbf{k}-module $\mathbf{k}[G]$. This ring is essentially a $|G| \times|G|$-matrix ring over \mathbf{k}. Thus, $L(u)$ and $R(u)$ can be viewed as $|G| \times|G|-$ matrices.
- Studying $u, L(u)$ and $R(u)$ is often (but not always) equivalent, because the maps

$$
\begin{aligned}
& L: \mathbf{k}[G] \rightarrow \operatorname{End}_{\mathbf{k}}(\mathbf{k}[G]) \quad \text { and } \\
& R: \underbrace{(\mathbf{k}[G])^{\text {op }}}_{\text {opposite ring }} \rightarrow \operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])
\end{aligned}
$$

are two injective \mathbf{k}-algebra morphisms (known as the left and right regular representations of the group G).

* When \mathbf{k} is a field, each $u \in \mathbf{k}[G]$ has a minimal polynomial, i.e., a minimum-degree monic polynomial $P \in \mathbf{k}[X]$ such that $P(u)=0$. This is also the minimal polynomial of the endomorphisms $L(u)$ and $R(u)$.
- Minimal polynomials also exist for $\mathbf{k}=\mathbb{Z}$:
- Proposition 1.1. Let $u \in \mathbb{Z}[G]$. Then, the minimal polynomial of u over \mathbb{Q} is actually in $\mathbb{Z}[X]$.
- Proof: Follow the standard proof that the minimal polynomial of an algebraic number is in $\mathbb{Z}[X]$. (Use Gauss's Lemma.)
- Theorem 1.2. Assume that \mathbf{k} is a field. Let $u \in \mathbf{k}[G]$. Then, $L(u) \sim R(u)$ as endomorphisms of $\mathbf{k}[G]$.
Note: The symbol \sim means "conjugate to". Thinking of these endomorphisms as $|G| \times|G|$-matrices, this is just similarity of matrices.
- We will see a proof of this soon.
- Note: $L(u) \sim R(u)$ would fail if we allowed G to be a monoid.
- The antipode of the group algebra $\mathbf{k}[G]$ is defined to be the k-linear map

$$
\begin{aligned}
S: \mathbf{k}[G] & \rightarrow \mathbf{k}[G], \\
g & \mapsto g^{-1} \quad \text { for each } g \in G .
\end{aligned}
$$

- Proposition 1.3. The antipode S is an involution (that is, $S \circ S=$ id) and a k-algebra anti-automorphism (that is, $S(a b)=S(b)$. $S(a)$ for all $a, b)$.
- Lemma 1.4. Assume that \mathbf{k} is a field. Let $u \in \mathbf{k}[G]$. Then, $L(u) \sim L(S(u))$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrix representing the endomorphism $L(S(u))$ in this basis is the transpose of the matrix representing $L(u)$. But the TausskyZassenhaus theorem says that over a field, each matrix A is similar to its transpose A^{T}.
- Lemma 1.5. Let $u \in \mathbf{k}[G]$. Then, $L(S(u)) \sim R(u)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: We have $R(u)=S \circ L(S(u)) \circ S$ and $S=S^{-1}$.
- Proof of Theorem 1.2: Combine Lemma 1.4 with Lemma 1.5.
- Remark (Martin Lorenz). Theorem 1.2 generalizes to arbitrary Frobenius algebras.
- Remark. The conjugacy $L(u) \sim R(u)$ can fail if \mathbf{k} is not a field (e.g., for $\mathbf{k}=\mathbb{Q}[t]$ and $G=S_{3}$).
- Remark. Let $u \in \mathbf{k}[G]$. Even if $\mathbf{k}=\mathbb{C}$, we don't always have $u \sim S(u)$ in $\mathbf{k}[G]$ (easy counterexample for $G=C_{3}$).

2. The symmetric group algebra

* Let $\mathbb{N}:=\{0,1,2, \ldots\}$.
* Let $[k]:=\{1,2, \ldots, k\}$ for each $k \in \mathbb{N}$.
* Now, fix a positive integer n, and let S_{n} be the n-th symmetric group, i.e., the group of permutations of the set $[n]$.
Multiplication in S_{n} is composition:
$(\alpha \beta)(i)=(\alpha \circ \beta)(i)=\alpha(\beta(i)) \quad$ for all $\alpha, \beta \in S_{n}$ and $i \in[n]$.
(Warning: SageMath has a different opinion!)
- What can we say about the group algebra $\mathbf{k}\left[S_{n}\right]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- There is a classical theory ("Young's seminormal form") of the structure of $\mathbf{k}\left[S_{n}\right]$ when \mathbf{k} has characteristic 0 . Two modern treatments are
- Adriano M. Garsia, Ömer Egecioglu, Lectures in Algebraic Combinatorics, Springer 2020.
- Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure theory for the group algebra of the symmetric group, ..., Commentationes Mathematicae Universitatis Carolinae, 2016.
- Theorem 2.1 (Artin-Wedderburn-Young). If \mathbf{k} is a field of characteristic 0 , then

$$
\mathbf{k}\left[S_{n}\right] \cong \prod_{\lambda \text { is a partition of } n} \underbrace{\mathrm{M}_{f_{\lambda}}(\mathbf{k})}_{\text {matrix ring }} \quad \text { (as k-algebras) }
$$

where f_{λ} is the number of standard Young tableaux of shape λ.

- Proof: This follows from Young's seminormal form. For the shortest readable proof, see Theorem 1.45 in Bremner/Madariaga/Peresi.
* Theorem 2.2. Let \mathbf{k} be a field of characteristic 0 . Let $u \in \mathbf{k}\left[S_{n}\right]$. Then, $u \sim S(u)$ in $\mathbf{k}\left[S_{n}\right]$.
- Proof: Again use Young's seminormal form. Under the isomorphism $\mathbf{k}\left[S_{n}\right] \cong \prod_{\lambda \text { is a partition of } n} \mathrm{M}_{f_{\lambda}}(\mathbf{k})$, the matrices corresponding to $S(u)$ are the transposes of the matrices corresponding to
u (this follows from (2.3.40) in Garsia/Egecioglu). Now, use the Taussky-Zassenhaus theorem again.
- Alternative proof: More generally, let G be an ambivalent finite group (i.e., a finite group in which each $g \in G$ is conjugate to $\left.g^{-1}\right)$. Let $u \in \mathbf{k}[G]$. Then, $u \sim S(u)$ in $\mathbf{k}[G]$. To prove this, pass to the algebraic closure of \mathbf{k}. By Artin-Wedderburn, it suffices to show that u and $S(u)$ act by similar matrices on each irreducible G-module V. But this is easy: Since G is ambivalent, we have $V \cong V^{*}$ and thus

$$
\left(\left.u\right|_{V}\right) \sim\left(\left.u\right|_{V^{*}}\right) \sim\left(\left.S(u)\right|_{V}\right)^{T} \sim\left(\left.S(u)\right|_{V}\right)
$$

(by Taussky-Zassenhaus).

- Note. Characteristic 0 is needed!

3. The Young-Jucys-Murphy elements

- We now go further down the abstraction pole and study concrete elements in $\mathbf{k}\left[S_{n}\right]$.
* For any distinct elements $i_{1}, i_{2}, \ldots, i_{k}$ of $[n]$, let $\operatorname{cyc}_{i_{1}, i_{2}, \ldots, i_{k}}$ be the permutation in S_{n} that cyclically permutes $i_{1} \mapsto i_{2} \mapsto i_{3} \mapsto$ $\cdots \mapsto i_{k} \mapsto i_{1}$ and leaves all other elements of $[n]$ unchanged.
- Note. $\mathrm{cyc}_{i}=\mathrm{id} ; \quad \mathrm{cyc}_{i, j}$ is a transposition.
* For each $k \in[n]$, we define the k-th Young-Jucys-Murphy (YJM) element

$$
m_{k}:=\operatorname{cyc}_{1, k}+\operatorname{cyc}_{2, k}+\cdots+\text { cyc }_{k-1, k} \in \mathbf{k}\left[S_{n}\right] .
$$

- Note. We have $m_{1}=0$. Also, $S\left(m_{k}\right)=m_{k}$ for each $k \in[n]$.
* Theorem 3.1. The YJM elements $m_{1}, m_{2}, \ldots, m_{n}$ commute: We have $m_{i} m_{j}=m_{j} m_{i}$ for all i, j.
- Proof: Easy computational exercise.
* Theorem 3.2. The minimal polynomial of m_{k} over \mathbb{Q} divides

$$
\prod_{i=-k+1}^{k-1}(X-i)=(X-k+1)(X-k+2) \cdots(X+k-1) .
$$

(For $k \leq 3$, some factors here are redundant.)

- First proof: Study the action of m_{k} on each Specht module (simple S_{n}-module). See, e.g., G. E. Murphy, A New Construction of Young's Seminormal Representation ..., 1981 for details.
- Second proof (Igor Makhlin): Some linear algebra does the trick. Induct on k using the facts that m_{k} and m_{k+1} are simultaneously diagonalizable over \mathbb{C} (since they are symmetric as real matrices and commute) and satisfy $s_{k} m_{k+1}=m_{k} s_{k}+1$, where $s_{k}:=\operatorname{cyc}_{k, k+1}$. See https://mathoverflow.net/a/83493/for details.
- More results and context can be found in $\S 3.3$ in CeccheriniSilberstein/Scarabotti/Tolli, Representation Theory of the Symmetric Groups, 2010.
- Question. Is there a self-contained algebraic/combinatorial proof of Theorem 3.2 without linear algebra or representation theory? (Asked on MathOverflow: https://mathoverflow.net/ questions/420318/.)
- Theorem 3.3. For each $k \in\{0,1, \ldots, n\}$, we can evaluate the k-th elementary symmetric polynomial e_{k} at the YJM elements $m_{1}, m_{2}, \ldots, m_{n}$ to obtain

$$
e_{k}\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\sum_{\substack{\sigma \in S_{n} ; \\ \sigma \text { has exactly } n-k \text { cycles }}} \sigma
$$

- Proof: Nice homework exercise (once stripped of the algebra).
- There are formulas for other symmetric polynomials applied to $m_{1}, m_{2}, \ldots, m_{n}$ (see Garsia/Egecioglu).
- Theorem 3.4 (Murphy).

$$
\begin{aligned}
& \left\{f\left(m_{1}, m_{2}, \ldots, m_{n}\right) \mid f \in \mathbf{k}\left[X_{1}, X_{2}, \ldots, X_{n}\right] \text { symmetric }\right\} \\
& =\left(\text { center of the group algebra } \mathbf{k}\left[S_{n}\right]\right) .
\end{aligned}
$$

- Proof: See any of:
- Gadi Moran, The center of $\mathbb{Z}\left[S_{n+1}\right] \ldots, 1992$.
- G. E. Murphy, The Idempotents of the Symmetric Group ..., 1983, Theorem 1.9 (for the case $\mathbf{k}=\mathbb{Z}$, but the general case easily follows).
(For $\mathbf{k}=\mathbf{Q}$, this is Theorem 4.4.5 in $\mathrm{CS} / \mathrm{S} / \mathrm{T}$ as well.)

A. The card shuffling point of view

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2, \ldots, n$.
A permutation $\sigma \in S_{n}$ corresponds to the state in which the cards are arranged $\sigma(1), \sigma(2), \ldots, \sigma(n)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_{n}} a_{\sigma} \sigma$ of $\mathbb{R}\left[S_{n}\right]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1 . This is interpreted as a distribution on the n ! possible states, where a_{σ} is the probability for the deck to be in state σ.
- We drop the "add up to 1 " condition, and only require that $\sum_{\sigma \in S_{n}} a_{\sigma}>0$. The probabilities must then be divided by $\sum_{\sigma \in S_{n}} a_{\sigma}$.
- For instance, $1+\mathrm{cyc}_{1,2,3}$ corresponds to the random state in which the deck is sorted as $1,2,3$ with probability $\frac{1}{2}$ and sorted as $2,3,1$ with probability $\frac{1}{2}$.
- An \mathbb{R}-vector space endomorphism of $\mathbb{R}\left[S_{n}\right]$, such as $L(u)$ or $R(u)$ for some $u \in \mathbb{R}\left[S_{n}\right]$, acts as a (random) shuffle, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.
- For example, if $k>1$, then the right multiplication $R\left(m_{k}\right)$ by the YJM element m_{k} corresponds to swapping the k-th card with some card above it chosen uniformly at random.
- Transposing such a matrix performs a time reversal of a random shuffle.

4. Top-to-random and random-to-top shuffles

* Another family of elements of $\mathbf{k}\left[S_{n}\right]$ are the k-top-to-random shuffles

$$
\mathbf{B}_{k}:=\sum_{\substack{\sigma \in S_{n} ; \\ \sigma^{-1}(k+1)<\sigma^{-1}(k+2)<\cdots<\sigma^{-1}(n)}} \sigma
$$

defined for all $k \in\{0,1, \ldots, n\}$. Thus,

$$
\begin{aligned}
\mathbf{B}_{n-1} & =\mathbf{B}_{n}=\sum_{\sigma \in S_{n}} \sigma \\
\mathbf{B}_{1} & =\mathrm{cyc}_{1}+\operatorname{cyc}_{1,2}+\mathrm{cyc}_{1,2,3}+\cdots+\mathrm{cyc}_{1,2, \ldots, n} ; \\
\mathbf{B}_{0} & =\mathrm{id}
\end{aligned}
$$

- As a random shuffle, \mathbf{B}_{k} (to be precise, $R\left(\mathbf{B}_{k}\right)$) takes the top k cards and moves them to random positions.
- \mathbf{B}_{1} is known as the top-to-random shuffle or the Tsetlin library.
- Theorem 4.1 (Diaconis, Fill, Pitman). We have

$$
\mathbf{B}_{k+1}=\left(\mathbf{B}_{1}-k\right) \mathbf{B}_{k} \quad \text { for each } k \in\{0,1, \ldots, n-1\}
$$

- Corollary 4.2. The $n+1$ elements $\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$ commute and are polynomials in \mathbf{B}_{1}.
- Theorem 4.3 (Wallach). The minimal polynomial of \mathbf{B}_{1} over \mathbb{Q} is

$$
\prod_{i \in\{0,1, \ldots, n-2, n\}}(X-i)=(X-n) \prod_{i=0}^{n-2}(X-i)
$$

- These are not hard to prove in this order. See https://mathoverflow. net/questions/308536 for the details.
- More can be said: in particular, the multiplicities of the eigenvalues $0,1, \ldots, n-2, n$ of $R\left(\mathbf{B}_{1}\right)$ over \mathbb{Q} are known.
- The antipodes $S\left(\mathbf{B}_{0}\right), S\left(\mathbf{B}_{1}\right), \ldots, S\left(\mathbf{B}_{n}\right)$ are known as the random-to-top shuffles and have essentially the same properties (since S is an algebra anti-automorphism).
- Main references:
- Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, 1988, Appendix.
- Persi Diaconis, James Allen Fill and Jim Pitman, Analysis of Top to Random Shuffles, 1992.

5. Random-to-random shuffles

- Here is a further family. For each $k \in\{0,1, \ldots, n\}$, we let

$$
\mathbf{R}_{k}:=\sum_{\sigma \in S_{n}} \operatorname{noninv}_{n-k}(\sigma) \cdot \sigma,
$$

where noninv ${ }_{n-k}(\sigma)$ denotes the number of $(n-k)$-element subsets of $[n]$ on which σ is increasing.

- Theorem 5.1 (Reiner, Saliola, Welker). The $n+1$ elements $\mathbf{R}_{0}, \mathbf{R}_{1}, \ldots, \mathbf{R}_{n}$ commute (but are not polynomials in \mathbf{R}_{1} in general).
- Theorem 5.2 (Dieker, Saliola, Lafrenière). The minimal polynomial of each \mathbf{R}_{i} over \mathbb{Q} is a product of $X-i$'s for distinct integers i. For example, the one of \mathbf{R}_{1} divides

$$
\prod_{i=-n^{2}}^{n^{2}}(X-i)
$$

The exact factors can be given in terms of certain statistics on Young diagrams.

- Main references:
- Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of Symmetrized Shuffling Operators, arXiv:1102.2460.
- A.B. Dieker, F.V. Saliola, Spectral analysis of random-to-random Markov chains, 2018.
- Nadia Lafrenière, Valeurs propres des opérateurs de mélanges symétrisés, thesis, 2019.
- Question: Simpler proofs? (Even commutativity takes a dozen pages!)
- Question (Reiner): How big is the subalgebra of $\mathbb{Q}\left[S_{n}\right]$ generated by $\mathbf{R}_{0}, \mathbf{R}_{1}, \ldots, \mathbf{R}_{n}$? Does it have dimension $O\left(n^{2}\right)$? Some small values:

n	1	2	3	4	5	6
$\operatorname{dim}\left(\mathbb{Q}\left[\mathbf{R}_{0}, \mathbf{R}_{1}, \ldots, \mathbf{R}_{n}\right]\right)$	1	2	4	7	15	30

- Remark 5.3. We have

$$
\mathbf{R}_{k}=\frac{1}{k!} \cdot S\left(\mathbf{B}_{k}\right) \cdot \mathbf{B}_{k},
$$

but this isn't all that helpful, since the \mathbf{B}_{k} don't commute with the $S\left(\mathbf{B}_{k}\right)$.

6. Somewhere-to-below shuffles

* In 2021, Nadia Lafrenière defined the somewhere-to-below shuffles $t_{1}, t_{2}, \ldots, t_{n}$ by setting

$$
t_{\ell}:=\operatorname{cyc}_{\ell}+\operatorname{cyc}_{\ell, \ell+1}+\operatorname{cyc}_{\ell, \ell+1, \ell+2}+\cdots+\operatorname{cyc}_{\ell, \ell+1, \ldots, n} \in \mathbf{k}\left[S_{n}\right]
$$

for each $\ell \in[n]$.

* Thus, $t_{1}=\mathbf{B}_{1}$ and $t_{n}=\mathrm{id}$.
- As a card shuffle, t_{ℓ} takes the ℓ-th card from the top and moves it further down the deck.
- Their linear combinations

$$
\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n} \quad \text { with } \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbf{k}
$$

are called one-sided cycle shuffles and also have a probabilistic meaning when $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0$.

- Fact: $t_{1}, t_{2}, \ldots, t_{n}$ do not commute for $n \geq 3$. For $n=3$, we have

$$
\left[t_{1}, t_{2}\right]=\mathrm{cyc}_{1,2}+\mathrm{cyc}_{1,2,3}-\mathrm{cyc}_{1,3,2}-\mathrm{cyc}_{1,3} .
$$

- However, they come pretty close to commuting!
* Theorem 6.1 (Lafreniere, G., 2022+). There exists a basis of the \mathbf{k}-module $\mathbf{k}\left[S_{n}\right]$ in which all of the endomorphisms $R\left(t_{1}\right), R\left(t_{2}\right), \ldots, R\left(t_{n}\right)$ are represented by upper-triangular matrices.

7. The descent-destroying basis

- This basis is not hard to define, but I haven't seen it before.
* For each $w \in S_{n}$, we let

Des $w:=\{i \in[n-1] \mid w(i)>w(i+1)\} \quad$ (the descent set of $w)$.

* For each $i \in[n-1]$, we let $s_{i}:=\operatorname{cyc}_{i, i+1}$.
* For each $I \subseteq[n-1]$, we let

$$
G(I):=\left(\text { the subgroup of } S_{n} \text { generated by the } s_{i} \text { for } i \in I\right) .
$$

* For each $w \in S_{n}$, we let

$$
a_{w}:=\sum_{\sigma \in G(\operatorname{Des} w)} w \sigma \in \mathbf{k}\left[S_{n}\right] .
$$

In other words, you get a_{w} by breaking up the word w into maximal decreasing factors and re-sorting each factor arbitrarily (without mixing different factors).

* The family $\left(a_{w}\right)_{w \in S_{n}}$ is a basis of $\mathbf{k}\left[S_{n}\right]$ (by triangularity).
- For instance, for $n=3$, we have

$$
\begin{aligned}
a_{[123]} & =[123] ; \\
a_{[132]} & =[132]+[123] ; \\
a_{[213]} & =[213]+[123] ; \\
a_{[231]} & =[231]+[213] ; \\
a_{[312]} & =[312]+[132] ; \\
a_{[321]} & =[321]+[312]+[231]+[213]+[132]+[123] .
\end{aligned}
$$

* Theorem 7.1 (Lafrenière, G.). For any $w \in S_{n}$ and $\ell \in[n]$, we have

$$
a_{w v} t_{\ell}=\mu_{w, \ell} a_{w}+\sum_{\substack{v \in S_{n} ; \\ v\langle w}} \lambda_{w, \ell, v} a_{v}
$$

for some nonnegative integer $\mu_{w, \ell}$, some integers $\lambda_{w, \ell, v}$ and a certain partial order \prec on S_{n}.
Thus, the endomorphisms $R\left(t_{1}\right), R\left(t_{2}\right), \ldots, R\left(t_{n}\right)$ are uppertriangular with respect to the basis $\left(a_{w}\right)_{w \in S_{n}}$.

- Examples:
- For $n=4$, we have

$$
a_{[4312]} t_{2}=a_{[4312]}+\underbrace{a_{[4321]}-a_{[4231]}-a_{[3241]}-a_{[2143]}}_{\text {subscripts are }\langle[4312]} .
$$

- For $n=3$, the endomorphism $R\left(t_{1}\right)$ is represented by the matrix

	$a_{[321]}$	$a_{[231]}$	$a_{[132]}$	$a_{[213]}$	$a_{[312]}$	$a_{[123]}$
$a_{[321]}$	3	1	1		1	
$a_{[231]}$				1	-1	1
$a_{[132]}$				1		
$a_{[213]}$				1		
$a_{[312]}$					1	
$a_{[123]}$						1

(empty cells $=$ zero entries). For instance, the last column means $a_{[123]} t_{1}=a_{[123]}+a_{[231]}$.

- Corollary 7.2. The eigenvalues of these endomorphisms $R\left(t_{1}\right), R\left(t_{2}\right), \ldots, R\left(t_{n}\right)$ and of all their linear combinations

$$
R\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}\right)
$$

are integers as long as $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are.

- How many different eigenvalues do they have?
- $R\left(t_{1}\right)=R\left(\mathbf{B}_{1}\right)$ has only n eigenvalues: $0,1, \ldots, n-2, n$, as we have seen before. The other $R\left(t_{\ell}\right)$'s have even fewer.
- But their linear combinations $R\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}\right)$ can have many more. How many?

8. Lacunar sets and Fibonacci numbers

* A set S of integers is called lacunar if it contains no two consecutive integers (i.e., we have $s+1 \notin S$ for all $s \in S$).
* Theorem 8.1 (combinatorial interpretation of Fibonacci numbers, folklore). The number of lacunar subsets of $[n-1]$ is the Fibonacci number f_{n+1}.
(Recall: $f_{0}=0, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2}$. .
* Theorem 8.2. When $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ are generic, the number of distinct eigenvalues of $R\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}\right)$ is f_{n+1}. In this case, the endomorphism $R\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}\right)$ is diagonalizable.
- Note that $f_{n+1} \ll n$!.
* One way such a theorem can be proved is by finding a filtration

$$
0=F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{f_{n+1}}=\mathbf{k}\left[S_{n}\right]
$$

of the \mathbf{k}-module $\mathbf{k}\left[S_{n}\right]$ such that each $R\left(t_{\ell}\right)$ acts as a scalar on each of its quotients F_{i} / F_{i-1}. In matrix terms, this means bringing $R\left(t_{\ell}\right)$ to a block-triangular form, with the diagonal blocks being "scalar times I " matrices.

- It is only natural that the quotients should correspond to the lacunar subsets of $[n-1]$.
- Let us approach the construction of this filtration.

9. The $F(I)$ filtration

* For each $I \subseteq[n]$, we set

$$
\operatorname{sum} I:=\sum_{i \in I} i
$$

and

$$
\widehat{I}:=\{0\} \cup I \cup\{n+1\}
$$

and

$$
I^{\prime}:=[n-1] \backslash(I \cup(I-1))
$$

and

$$
F(I):=\left\{q \in \mathbf{k}\left[S_{n}\right] \mid q s_{i}=q \text { for all } i \in I^{\prime}\right\} \subseteq \mathbf{k}\left[S_{n}\right]
$$

In probabilistic terms, $F(I)$ consists of those random states of the deck that do not change if we swap the i-th and $(i+1)$-st cards from the top as long as neither i nor $i+1$ is in I. To put it informally: $F(I)$ consists of those random states that are "fully shuffled" between any two consecutive \widehat{I}-positions.

* For any $\ell \in[n]$, we let $m_{I, \ell}$ be the distance from ℓ to the nexthigher element of \widehat{I}. In other words,

$$
m_{I, \ell}:=(\text { smallest element of } \widehat{I} \text { that is } \geq \ell)-\ell \in\{0,1, \ldots, n\}
$$

For example, if $n=5$ and $I=\{2,3\}$, then $\widehat{I}=\{0,2,3,6\}$ and

$$
\left(m_{I, 1}, m_{I, 2}, m_{I, 3}, m_{I, 4}, m_{I, 5}\right)=(1,0,0,2,1)
$$

We note that, for any $\ell \in[n]$, we have the equivalence

$$
m_{I, \ell}=0 \quad \Longleftrightarrow \quad \ell \in \widehat{I} \quad \Longleftrightarrow \quad \ell \in I
$$

* Crucial Lemma 9.1. Let $I \subseteq[n]$ and $\ell \in[n]$. Then,

$$
q t_{\ell} \in m_{I, \ell} q+\sum_{\substack{J \subseteq[n] ; \\ \operatorname{sum} J<\operatorname{sum} I}} F(J) \quad \text { for each } q \in F(I)
$$

- Proof: Expand $q t_{\ell}$ by the definition of t_{ℓ}, and break up the resulting sum into smaller bunches using the interval decomposition

$$
[\ell, n]=\left[\ell, i_{k}-1\right] \sqcup\left[i_{k}, i_{k+1}-1\right] \sqcup\left[i_{k+1}, i_{k+2}-1\right] \sqcup \cdots \sqcup\left[i_{p}, n\right]
$$

(where $i_{k}<i_{k+1}<\cdots<i_{p}$ are the elements of I larger or equal to ℓ). The $\left[\ell, i_{k}-1\right]$ bunch gives the $m_{I, \ell} q$ term; the others live in appropriate $F(J)$'s.
See the paper for the details.

* Thus, we obtain a filtration of $\mathbf{k}\left[S_{n}\right]$ if we label the subsets I of $[n]$ in the order of increasing sum I and add up the respective $F(I) \mathrm{s}$.
- Unfortunately, this filtration has 2^{n}, not f_{n+1} terms.
* Fortunately, that's because many of its terms are redundant. The ones that aren't correspond precisely to the I's that are lacunar subsets of $[n-1]$:
- Lemma 9.2. Let $k \in \mathbb{N}$. Then,

$$
\sum_{\substack{J \subseteq[n] ; \\ \text { sum } J<k}} F(J)=\sum_{\substack{J \subseteq[n-1] \text { is lacunar; } \\ \text { sum } J<k}} F(J) .
$$

- Proof: If $J \subseteq[n]$ contains n or fails to be lacunar, then $F(J)$ is a submodule of some $F(K)$ with sum $K<\operatorname{sum} J$. (Exercise!)
- Now, we let $Q_{1}, Q_{2}, \ldots, Q_{f_{n+1}}$ be the f_{n+1} lacunar subsets of [$n-1$], listed in such an order that

$$
\operatorname{sum}\left(Q_{1}\right) \leq \operatorname{sum}\left(Q_{2}\right) \leq \cdots \leq \operatorname{sum}\left(Q_{f_{n+1}}\right) .
$$

Then, define a k-submodule

$$
F_{i}:=F\left(Q_{1}\right)+F\left(Q_{2}\right)+\cdots+F\left(Q_{i}\right) \quad \text { of } \mathbf{k}\left[S_{n}\right]
$$

for each $i \in\left[0, f_{n+1}\right]$ (so that $F_{0}=0$). The resulting filtration

$$
0=F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{f_{n+1}}=\mathbf{k}\left[S_{n}\right]
$$

satisfies the properties we need:

- Theorem 9.3. For each $i \in\left[f_{n+1}\right]$ and $\ell \in[n]$, we have F_{i}. $\left(t_{\ell}-m_{Q_{i}, \ell}\right) \subseteq F_{i-1}$ (so that $R\left(t_{\ell}\right)$ acts as multiplication by $m_{Q_{i}, \ell}$ on $\left.F_{i} / F_{i-1}\right)$.
- Proof: Lemma 9.1 + Lemma 9.2.
- Lemma 9.4. The quotients F_{i} / F_{i-1} are nontrivial for all $i \in$ $\left[f_{n+1}\right]$.
- Proof: See below.
* Corollary 9.5. Let \mathbf{k} be a field, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbf{k}$. Then, the eigenvalues of $R\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}\right)$ are the linear combinations

$$
\lambda_{1} m_{I, 1}+\lambda_{2} m_{I, 2}+\cdots+\lambda_{n} m_{I, n} \quad \text { for } I \subseteq[n-1] \text { lacunar. }
$$

- Theorem 8.2 easily follows by some linear algebra.

10. Back to the basis

- The descent-destroying basis $\left(a_{w}\right)_{w \in S_{n}}$ is compatible with our filtration:
* Theorem 10.1. For each $I \subseteq[n]$, the family $\left(a_{w}\right)_{w \in S_{n} ; I^{\prime} \subseteq \operatorname{Des} w}$ is a basis of the \mathbf{k}-module $F(I)$.
* If $w \in S_{n}$ is any permutation, then the Q-index of w is defined to be the smallest $i \in\left[f_{n+1}\right]$ such that $Q_{i}^{\prime} \subseteq \operatorname{Des} w$. We call this Q-index Qind w.
- Proposition 10.2. Let $w \in S_{n}$ and $i \in\left[f_{n+1}\right]$. Then, Qind $w=i$ if and only if $Q_{i}^{\prime} \subseteq \operatorname{Des} w \subseteq[n-1] \backslash Q_{i}$.
* Theorem 10.3. For each $i \in\left[0, f_{n+1}\right]$, the \mathbf{k}-module F_{i} is free with basis $\left(a_{w}\right)_{w \in S_{n} ; \text { Qind } w \leq i}$.
* Corollary 10.4. For each $i \in\left[f_{n+1}\right]$, the \mathbf{k}-module F_{i} / F_{i-1} is free with basis $\left(\overline{a_{w}}\right)_{w \in S_{n} ; \text { Qind } w=i}$.
- This yields Lemma 9.4 and also leads to Theorem 7.1, made precise as follows:
* Theorem 10.5 (Lafrenière, G.). For any $w \in S_{n}$ and $\ell \in[n]$, we have

$$
a_{w} t_{\ell}=\mu_{w, \ell} a_{w}+\sum_{\substack{v \in S_{n} ; \\ \text { Qind } v<\text { Qind } w}} \lambda_{w, \ell, v} a_{v}
$$

for some nonnegative integer $\mu_{w, \ell}$ and some integers $\lambda_{w, \ell, v}$. Thus, the endomorphisms $R\left(t_{1}\right), R\left(t_{2}\right), \ldots, R\left(t_{n}\right)$ are uppertriangular with respect to the basis $\left(a_{w}\right)_{w \in S_{n}}$ as long as the permutations $w \in S_{n}$ are ordered by increasing Q-index.

- Note that the numbering $Q_{1}, Q_{2}, \ldots, Q_{f_{n+1}}$ of the lacunar subsets of $[n-1]$ is not unique; we just picked one. Nevertheless, our construction is "essentially" independent of choices, since Proposition 10.2 describes $Q_{\text {Qind } w}$ independently of this numbering (it is the unique lacunar $L \subseteq[n-1]$ satisfying $L^{\prime} \subseteq$ Des $w \subseteq[n-1] \backslash L)$. To get rid of the dependence on the numbering, we should think of the filtration as being indexed by a poset.

11. The multiplicities

- With Corollary 10.4, we know not only the eigenvalues of the $R\left(t_{\ell}\right)$'s, but also their multiplicities:
* Corollary 11.1. Assume that \mathbf{k} is a field. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbf{k}$. For each $i \in\left[f_{n+1}\right]$, let δ_{i} be the number of all permutations $w \in S_{n}$ satisfying Qind $w=i$, and we let

$$
g_{i}:=\sum_{\ell=1}^{n} \lambda_{\ell} m_{Q_{i}, \ell} \in \mathbf{k} .
$$

Let $\kappa \in \mathbf{k}$. Then, the algebraic multiplicity of κ as an eigenvalue of the endomorphism $R\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}\right)$ equals

$$
\sum_{\substack{i \in\left[f_{n}+1\right] \\ g_{i}=\kappa}} \delta_{i}
$$

- Can we compute the δ_{i} explicitly? Yes!
* Theorem 11.2. Let $i \in\left[f_{n+1}\right]$. Let δ_{i} be the number of all permutations $w \in S_{n}$ satisfying Qind $w=i$. Then:
(a) Write the set Q_{i} in the form $Q_{i}=\left\{i_{1}<i_{2}<\cdots<i_{p}\right\}$, and set $i_{0}=1$ and $i_{p+1}=n+1$. Let $j_{k}=i_{k}-i_{k-1}$ for each $k \in[p+1]$. Then,

$$
\delta_{i}=\underbrace{\binom{n}{j_{1}, j_{2}, \ldots, j_{p+1}}}_{\substack{\text { multinomial } \\ \text { coefficient }}} \cdot \prod_{k=2}^{p+1}\left(j_{k}-1\right) .
$$

(b) We have $\delta_{i} \mid n$!.

- Question. This reminds of the hook-length formula for standard tableaux. Is it connected to Fibonacci tableaux (paths in the Young-Fibonacci lattice)?

12. Variants

- Most of what we said about the somewhere-to-below shuffles t_{ℓ} can be extended to their antipodes $S\left(t_{\ell}\right)$ (the "below-to-somewhere shuffles"). For instance:
- Theorem 12.1. There exists a basis of the \mathbf{k}-module $\mathbf{k}\left[S_{n}\right]$ in which all of the endomorphisms $R\left(S\left(t_{1}\right)\right), R\left(S\left(t_{2}\right)\right), \ldots, R\left(S\left(t_{n}\right)\right)$ are represented by upper-triangular matrices.
- We can also use left instead of right multiplication:
- Theorem 12.2. There exists a basis of the \mathbf{k}-module $\mathbf{k}\left[S_{n}\right]$ in which all of the endomorphisms $L\left(t_{1}\right), L\left(t_{2}\right), \ldots, L\left(t_{n}\right)$ are represented by upper-triangular matrices.
- These follow from Theorem 6.1 using dual bases, transpose matrices and Proposition 1.3. No new combinatorics required!
- Question. Do we have $L\left(t_{\ell}\right) \sim R\left(t_{\ell}\right)$ in $^{\operatorname{End}}{ }_{\mathbf{k}}\left(\mathbf{k}\left[S_{n}\right]\right)$ when \mathbf{k} is not a field?
- Remark. The similarity $t_{\ell} \sim S\left(t_{\ell}\right)$ in $\mathbf{k}\left[S_{n}\right]$ holds when char $\mathbf{k}=$ 0 , but not for general fields \mathbf{k}. (E.g., it fails for $\mathbf{k}=\mathbb{F}_{2}$ and $n=4$ and $\ell=1$.)

13. Conjectures and questions

- The simultaneous trigonalizability of the endomorphisms $R\left(t_{1}\right), R\left(t_{2}\right), \ldots, R\left(t_{n}\right)$ yields that their pairwise commutators are nilpotent. Hence, the pairwise commutators $\left[t_{i}, t_{j}\right]$ are also nilpotent.
- Question. How small an exponent works in $\left[t_{i}, t_{j}\right]^{*}=0$?
* Conjecture 13.1. We have $\left[t_{i}, t_{j}\right]^{j-i+1}=0$ for any $1 \leq i<j \leq n$.
* Conjecture 13.2. We have $\left[t_{i}, t_{j}\right]^{n-j+1}=0$ for any $1 \leq i<j \leq n$.
* Conjecture 13.3. We have $\left[t_{i}, t_{j}\right]^{n-j}=0$ for any $1 \leq i<j<$ $n-1$.
* We can prove Conjecture 13.1 for $j=i+1$ and Conjecture 13.2 for $j=n-1$. We can also show that

$$
\begin{array}{llll}
& t_{n-1}\left[t_{i}, t_{n-1}\right]=0 \\
\text { and } & t_{i+1} t_{i}=\left(t_{i}-1\right) t_{i}
\end{array} \quad \text { and } \quad\left[t_{i}, t_{n-1}\right]\left[t_{j}, t_{n-1}\right]=0
$$

for all i and j.

- Question. What can be said about the \mathbf{k}-subalgebra $\mathbf{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ of $\mathbf{k}\left[S_{n}\right]$? Note:

n	1	2	3	4	5	6	7
$\operatorname{dim}\left(\mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{n}\right]\right)$	1	2	4	9	23	66	212

(this sequence is not in the OEIS as of 2022-11-28).
To answer a question: The Lie subalgebra $\mathcal{L}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ of $\mathbb{Q}\left[S_{n}\right]$ has dimensions

n	1	2	3	4	5	6	7
$\operatorname{dim}\left(\mathcal{L}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)$	1	2	4	8	20	59	196

(also not in the OEIS).

- Question. How do the $F(I)$ and the F_{i} decompose into Specht modules when \mathbf{k} is a field of characteristic 0 ?
- Question. How do $t_{1}, t_{2}, \ldots, t_{n}$ act on a given Specht module?

14. I thank

- Nadia Lafrenière for obvious reasons.
- Martin Lorenz, Franco Saliola, Marcelo Aguiar, Vic Reiner, Travis Scrimshaw for helpful conversations recent and not so recent.
- Gérard Duchamp for the invitation.
- you for your patience.

