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What is the Schur-Weyl duality for the algebra U(g/(N))? Let V
be the basic space, in which the algebra U(g/(N)) acts. This action
can be extended onto V®* for any integer k > 0 via the coproduct
A U(gl(N)) — U(gl(N))®?, defined on the generators

X; € gl(N), i =1...N in the usual way

A(X,‘)—>X,'®1+1®X,'.

Also, the symmetric group Sy acts onto V®¥ via permuting the
factors by means of the usual flip P : V&2 — V®2_ Namely, we
have the permutations Py, P»3 and so on.

The SW duality states that these actions commute with each other.
Moreover, they are centralizers of each other.
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Also, the following holds

Ve =B vy ® My, (1)
A=k

where A = (A1 > ... > Ap) runs over all partitions of the integer k,
V) is an irreducible U(g/(NV))-module, labeled by the partition A,
and M, is an irreducible S,-module, also labeled by .
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The question is: what is a quantum analog of this SW duality?
The group algebra C[Sk] of the symmetric group can be deformed
into the Hecke algebra H,(q). By what algebra that U(g/(N)) can
be replaced?

In 1986 Jimbo suggested a form of the quantum SW duality, where
the role of the algebra U(gl/(N)) was attributed to the QG
Uq(gl(N)). In 1991 Arum Ram exhibited a g-analog of the
Frobenius formula, based on this duality.

Below, | exhibit another form of the g-duality, in which the role of
the algebra U(g/(N)) plays the so-called Reflection Equation
algebra. Also, a new g-Frobenius formula will be exhibited.

Now, recall the classical Frobenius formula.
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Consider a set of commutative indeterminates x;...xy. To any
partition A - k there are associated some families of symmetric (i.e.
invariant under an action of Sy) polynomials in these
indeterminates. We shall deal with two of them: the power sums
pa(x1...xn) and the Schur functions sy(x;...xy). The famous
Frobenius formula is

pu(x1..xn) = Z Xosa(x1-..xn),
Ak

where X7 is the character of the symmetric group Sy in the
representation M, evaluated on the element whose cyclic type is
v=(v1..un).
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The power sums are defined as follows
ZX y Pu(X) = Pyy---Puy-

The Schur polynomials can be defined in different ways. For
instance, they can be expressed by means of the Jacobi-Trudi
formulae via the elementary symmetric polynomials or the full
symmetric polynomials

Z Xiy - Xipy he(x) = Z Xig oo Xi -

i <...<lg i <...<ig

Now, we say a couple of words on the Hecke algebras and their
representation theory.
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The Artin braid group By is the group generated by the unit e and
N — 1 invertible elements

T1yees TN—1
subject to the following relations
riTp=7mif |i—j|>2and g1 T = Tip1 T Tig1, i SN =2

The last relation is called braid one.

Since there exists natural imbeddings By — By.y1 we can consider
the direct limit of By.

If we impose the condition 72 = e for any i, we get the symmetric

group Sy.
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Also, we consider the following quotients of its group algebra
C[Bp]. Let g € C. Impose the condition

(ri—qe)(ri+q " e)=0, Vi

We get an algebra Hp(q) called lwahori-Hecke algebra. Observe
that for g = +1 we get the algebra C[Sy]. Also, there are of
interest the so-called Birman-Murakami-Wenz| algebras (see articles
by Ogievetsky-Pyatov in ariXiv).

We deal with g generic.
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Now, consider some special reps of the braid groups.

Let V be a vector space over the field C. We say that a linear
invertible operator R : V®2 — V®? is a braiding, if it is subject to
the following relation in V®3

(ReNIR)(RR) = R)(RRI)(I ®R),

where | : V — V is the identity operator.

The simplest example is the usual flip R = P which acts as follows
P(x®y) =y ®x for any x,y € V, or a super-twist denoted P, ,.
In order to define it we assume V to be a super-space

V =V, & Vi. The component V; is called even and that V4 odd.
We say that x € V; is of parity 0 and that x € V; is of parity 1.
The parity is denoted X. Then the super-flip is defined as follows

Poin(x® y) = (-1)"y ® x.

This notation means that dimVy = m and dimV;j = n.
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Note that Pr2n|n = [. Also, note that the usual flip P is a particular
case of a super-flip n = 0. The braidings R subject to the condition
R? =1 are called involutive symmetries. The braidings subject to
the Hecke condition

(gl =R) (@ 'I+R)=0,qgeC, q#0, g#+1

are called Hecke symmetries.
For any braiding R we denote R : V&P — VP k =1,..p—1 the
operator R acting on the components numbers k and k + 1. Thus,

Ri=h.k-1®R® lta. p-
Observe that the map
PR - Tk — Rk, k:]....p*].

is a representation of the braid group, called R-matrix one.
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Observe a very special property of this representation:
pr(72) = P1pr(71) P1,

Pr(73) = P2 pr(7m2) P2 = P> P1 pr(11) P1 P2, ...

In the same way, if R is an involutive symmetry, it defines a
representation of the algebra C[Sy], and if R is a Hecke symmetry,
it defines a representation of the Hecke algebra.

By fixing in the space V a basis {xj...xy} and the corresponding
basis {x; ® x;} in the space V2 we can represent the operators R;
by matrices. Let us exhibit two examples of Hecke symmetries

q 0 00 q 0 0 0
0 g—g 1 10 0 g—qg! 1 0
0 1 00| |o 1 0 0
0 0 0 g 0 0 0 —q!
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The first Hecke symmetry comes from the Quantum Group
Uq(sl(2)), the second one — from Ugy(s/(1]1)). For g = 1 we get
respectively a usual flip and a super-flip.

Note that if R is a braiding, then the operator R = R P, where P is
the usual flip, meets the so-called Quantum Yang-Baxter equation

R12 R13 Ro3 = Rz R13 Rio.

Note that for g = 1 the matrix R, corresponding to the first Hecke
symmetry above, turns into the identity matrix. So by assuming
that g = 1 + h, we can expand the matrix R as follows

R=I1I+hr+..

The matrix r meets the so-called classical YB equation
[r2, 3] + [n2, 23] + [n3, r23] = 0.
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However, there exist involutive and Hecke symmetries which are
deformations neither of the usual flips nor of the super-flips. So,
the following problem is of interest; what involutive and Hecke
symmetries could be. Consider two related algebras:
"R-symmetric" and "R-skew-symmetric" ones

Syme(V) = T(V)/(Im(q=R)), N\ (V)= T(V)/{Im(g"I+R)),

where T(V) = @ V®k is the free tensor algebra of V.
Also, consider the corresponding Poincaré-Hilbert series

Z dim Sym Z dim /\

where the upper index (k) labels the homogenous components.
If R is involutive, we put g = 1 in these formulae.
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Examples. If R is a deformation of the usual flip P and dimV = N,
then
P_(t) = (1+t)".

If R is a deformation of the super-flip Pp,,, then

P1+t)m

P_(t) = a0

Also, there exist "exotic" examples: for any N > 2 there exit
involutive and Hecke symmetries such that

P_(t) =1+ Nt + t.

Here dimV = N.
If P_(t) is a polynomial, R is called even.
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Proposition. (G)

For a generic q the following holds P_(—t)P,(t) = 1.

Proposition. (Phung Ho Hai)
The HP series P_(t) (and hence P (t)) is a rational function:

P(t) = N(t) __ltat+..tatt [T— (1 + xt)
D(t) 1-bit+..+(=1)bsts [[;(1-yt)

where a; and b; are positive integers, the polynomials N(t) and
D(t) are coprime, and all the numbers x; and y; are real positive.

v
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We call the couple (r|s) bi-rank. In this sense all involutive and
Hecke symmetries are similar to super-flips, for which the role of
the bi-rank is played by the super-dimension (m|n).

Note that all numerical characteristic of the related objects are
expressed via the bi-rank (r|s) of the initial involutive or Hecke
symmetry R.

The bi-rank enters the quantum dimension of V' and other spaces
and other numerical characteristics.

Example.

The usual dimension of a super-space V = Vy & V4 with
super-dimension (m|n) is N = m + n, whereas its quantum
dimension is m — n.
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Let us recall that for a generic g the algebra Hk(q) is semisimple
and isomorphic to the group algebra of the symmetric group Sk.
Then according to the Wedderburn-Artin theorem, the finite
dimensional semisimple Hecke algebra H,(q) is isomorphic to a
direct product of matrix algebras over C:

Hn(q) = Mx1)(C) X M2)(C) x - -+ x Mj(5)(C), (2)

where {A(1), A(2),...,A(s)} is a (unordered) set of all possible
partitions of the integer n: A(k) - n. The dimension of the simple
component M, is d/\2, where d) is the number of standard Young
tables corresponding to the partition .
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In each matrix algebra My, A € {\(1)...A(s)} there exists a basis
E,f} consisting of the matrix units. Denote by E,-))- the matrix with
all trivial entries apart from that belonging to the row number i and
the column number j, where 1 is placed.

By doing so in each component in the above product, we have a
basis in the Hecke algebra H,(g), with the following multiplication
table

EQ EF, = 6% 5;, E},.
Note that the diagonal elements E, i = 1...d) are primitive
orthogonal idempotents defining a resolution of the unity. Namely,

we have ;
A
eSS E)N  EMEL—pE) ®)
Aen i=1
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Now, consider the left regular representation 7 of the Hecke algebra
Hn(q) onto itself in the basis E},. Let z € Hn(q) be an arbitrary
element. Its image 7(z) in the basis {E.} for a fixed A is
represented by a matrix:

Ekl Z Zkr / (4)

of dimension dy x d,.
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Observe that there exist different ways to construct the matrix unit
E2 in terms of the generators 7;. In [OP] Lecture on Hecke algebra
there is exhibited a method, using the so-called Jucys-Murphy (JM)
elements, which are defined by recursion as follows

h=1, k=R k=R bR, ... Jis1 = RiJiRu.

Note that an analog of this construction in the algebra C[Sy] is
exhibited in the paper

Vershik, Okounkov A new approach to representation theory of
symmetric groups.
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Now, let R be an involutive or Hecke symmetry. Let L be a matrix
subject to

RLiRLy — LiRLLR =0, L= (F), 1<i,j<m.

This algebra is called RE one and denoted £(R).
If L is subject to

R[lR[1 — ZlelR: R[l — ZlR, [: (]\IJ), 1 S i,j S m,

the algebra is called modified RE algebra and denoted £(R).
Nevertheless, these algebras are isomorph to each other. Their
isomorphism can be realised via the following relations between the
generating matrices

L=1-(q—q")L

Observe that this isomorphism fails if g = +1.
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Nevertheless, if R — P as ¢ — 1, the RE algebras £(R) tends to
the algebra Sym(g/(N)), whereas the modified RE algebra L(R)
tends to that U(g/(N))).

Our next aim is to describe the center of the algebras £L(R) and
L(R) and to introduce analogs of the symmetric polynomials on
the first of them.
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| remind that the center of the algebra U(g/(/N)) is generated by the
power sums TrL¥, where L is the generating matrix of this algebra.

Now, we introduce the so-called R-trace of matrices
TreM = TrC M,

where the matrix C = (C,J) is completely defined by a given braiding
R (it can be defined for all braidings, which are skew-invertible).
Now, we introduce power sums in the algebras £(R) and £(R) as
follows

pe(L) = Tre LK = Tr C L%, pi(L) = Trr [X = Tr C L*.

They are central in the corresponding algebras. Note that if
R = P,then C =/ and we get the classical power sums.
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Now, we want to describe other elements of the center of the

algebra L(R).

Below, we use the following notations

Li = L1, Ly = Rio L7 Ry, Ls = Ro3 L3 Ro3' = Roz Rio Ly Ry Ry’ ..
Also, we use the notation

This string of the matrices L: will play an important role in what
follows.
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The following claim can be found in the paper by Isaev-Pyatov.

Proposition.

Let z € H(q) be an arbitrary element. Then the element

ch(z) := Trra..x) PR(Z) L%

is central in the algebra L(R).

The map
ch: He(q) = L(R), z— ch(z)

is called characteristic.
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Observe that the power sums py(L) in the algebra £(R) can be
written in this form. Namely, we have

Px(L) = Trra..k) PR(Z) L5550 Z = The1 Th—2---T1-
The element z = 74_1 Tx_>...71 is called the Coxeter one.

However, in the RE algebras (and only in them) the power sums
px(L) can be reduced to the form TrgrL¥, similar to the classical
one.
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Now, introduce the Schur polynomials (functions) in this algebra.
They are defined in the same manner but with z = E2, where E? is
the above idempotents. Namely, we put

s\(L) = Trra. k) PR(Z) LS5 2 = Ej.

Note that this Schur polynomial does not depend on i, though the
idempotents E2 for different i are not equivalent to each other.
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Now, we exhibit our g-version of the Frobenius formula:

pV(L) = Z XI)/\S)\(L)7

A=k

where x? is the character of the Hecke algebra Hy(q) in the
representation, labeled by A, on the element whose cyclic type is
v = (vy...vn) and

pu(L) := pvl(L)plfz(L)"'puN(L)'
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As for the cyclic type, we define it only for some special elements.
Let us remove some factors from a Coxeter element 741 T_>...71
by keeping instead of the removed elements blank spots. Thus, the
element z € H,(q) obtained in this way consists of a few strings
Thy Thy—1---Tkys ko < ki, separated by blank spots. The remaining
elements z will be called the Coxeter elements with gaps.

Then to each black spot we assign the number 1 and to each string
entering the element z we assign its length plus 1. By the cyclic
type of z we means the family of these numbers v;, ordered
downward.

We say the family v = (v1...vx) is the cyclic type of the element z.
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By comparing our construction and that by Arum Ram we want to
observe that in the algebra £(R) the analogs of the symmetric
polynomial are naturally defined whereas in the QG it is not so.
Besides, it is not clear how it is possible to generalize his
construction to the cases, related to Hecke symmetries, different
from these coming from the QG.

Now, we want to discuss the question: whether it is possible to
represent the quantum symmetric polynomials via "eigenvalues"?
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Observe that in the algebra £(R) there are analogs of the Newton
identities

Pk —apk—1 €1+ (—q)’pk—2 €2+ ...+ (—q) T pr e+ (—1) kqex =0,
k = 1.2... and the Cayley-Hamilton identity
L"—q L™ ey +(—q)°L" 2 er4..4(—q)™ L en_1+(—q)" em = 0,

provided R is even of bi-rank (m|0).

Here, ex = ex(L) are elementary symmetric polynomials
(functions), i.e. particular cases of the Schur polynomials,
respective to one-column diagrams.
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Let p;, i = 1...m be indeterminates meeting the following system

> ni=eq(L), Y pipi=q" e(L), s e pim = 7 em(L).
i i<j

We call u; (quantum) "eigenvalues" of the matrix L. These
indeterminates are assumed to be central in the algebra
L(R)[p-tim].

If R is not even and its bi-rank is (m|n), then the eigenvalues can
be defined in a similar way. In this case we have two families of
them g1, ..., um (even eigenvalues) and vy, ..., v, (odd eigenvalues)
such that any symmetric polynomial can be expressed via these
quantities.
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For the power sums we have

pr(L) = Tre LK => " pfdi+ > vf dj,
i J

)

di=gq H Mi— g MPHMI__V'
p=1,p#i =1 BT
vi —q 2 v —q%
dj:—qH Vi—4q “Hi H g p
— Hi _ . Vi—Vp

p=1, p#j

In the limit g = 1 we get the formula, corresponding to the
involutive symmetry R

)

m n
— k k
DTS
i J

In the even case these polynomials coincide with the Hall-Littlewood
polynomials up to a numerical factor and identification t = g—?
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Observe that all these polynomials are super-symmetric in g~1
and qv;.

Recall that by definition a polynomial in two sets in indeterminates
pi and vj is called super-symmetric if it is symmetric in y; and v;
separately and the polynomial in which one puts p; = 11 = s does
not depend on s.
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The second application of the RE algebras is a g-analog of the
Capelli formula. In order to introduce it we need the partial
derivative in the generators of the RE algebra. These derivatives
are introduced via the following system

RLRL=LRLR,
RID,RID =D RID R,
DiRMiR=RM R D +R.
The first line defines a RE algebra £(R). The second line define a
RE algebra D(R™1). The third line is the so-called permutation

relations between two algebras.
The entries & of the matrix D, generating the algebra D(R™!),

play the role of partial derivatives in lf:
- >
01 (l) = 6;0;-

The action of the partial derivatives on higher degree elements can
be deduced from the permutation relations.
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Note that in the classical limit (that is while R = P) the above
system defines Weyl-Heisenberg algebra.

Theorem.

Let L = ||/{"1SIJ§N be the generating matrix of an algebra L(R)
and D = ||@|l1<i j<n be the matrix composed from the partial
derivatives. Then the matrix

[=LD

generates the modified RE algebra.

This theorem states that in our g-setting, the situation is similar to
the classical one. Recall that in the classical setting the matrix
L = LD, where L is a matrix with commutative entries / and D is

the matrix composed from the partial derivatives & = 9,
J

generates the algebra U(gl(N)).
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Now, exhibit the classical Capelli identity. Let L = L D. Then we

have
rDet(L + K) = detL detD,

where K is the diagonal matrix diag(0,1,...,n — 1) and rDet is the
so-called row-determinant.

Observe that the term rDet(L + K) in the l.h.s. can be written in
the following form

cDet(L + K) = detL detD,

where K is the diagonal matrix diag(n —1,...1,0) and cDet is the
so-called column-determinant. Also, the matrix form

TrlnNA(N)[l (I: -+ I)2 ([ + 2/)3([ -+ (N — 1)/)[\/

is possible.
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Proposition.
In the RE algebra the following holds

Trr.my A Ly (L + g (L5 + @ 24 1)L+ g™ (m=1)4 1) =

q " detgr Ldetp-1 D.

Here m is the rank of R. (Note that in the classical case m = N.)

Here, the determinants are the highest elementary polynomials,
which can be defined for any even symmetry.
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Observe that there are known numerous attempts to generalize the
classical Capelli identity.

| want to only mention the paper by Noumi, Umeda, Wakayama
(1994). Their construction is related to the RTT algebra. Their R
is the standard Hecke symmetry, i.e., it comes from the QG
Uq(sI(N)). Whereas ours is valid in general situation.
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Also, observe that similarly to the Casimir operators coming from
U(gl(N)) it is possible to define their g-analogs on the algebras
L(R) and £(R). Note that the eigenvalues of the operators Tri¥,
where [ is the generating matrix of U(gl/(N)) in irreps of U(gl(N))
were computed by Perelomov-Popov. We have computed the
eigenvalues of the two lowest Casimir operators TrrL¥ defined in
the algebras £(R). Also, by using realization [ = L D it is possible
to define normal ordering

. Trrl* :=: Trr(LD)* :

These operators are g-analogs of the so-called cut-and-join
operators.
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