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What is the Schur-Weyl duality for the algebra U(gl(N))? Let V
be the basic space, in which the algebra U(gl(N)) acts. This action
can be extended onto V⊗k for any integer k > 0 via the coproduct
∆ : U(gl(N))→ U(gl(N))⊗2, de�ned on the generators
Xi ∈ gl(N), i = 1...N in the usual way

∆(Xi )→ Xi ⊗ 1 + 1⊗ Xi .

Also, the symmetric group Sk acts onto V⊗k via permuting the
factors by means of the usual �ip P : V⊗2 → V⊗2. Namely, we
have the permutations P12, P23 and so on.
The SW duality states that these actions commute with each other.
Moreover, they are centralizers of each other.

Dimitry Gurevich IITP New applications of Re�ection Equation Algebras



Also, the following holds

V⊗k =
⊕
λ`k

Vλ ⊗Mλ, (1)

where λ = (λ1 ≥ ... ≥ λN) runs over all partitions of the integer k ,
Vλ is an irreducible U(gl(N))-module, labeled by the partition λ,
and Mλ is an irreducible Sk -module, also labeled by λ.
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The question is: what is a quantum analog of this SW duality?
The group algebra C[Sk ] of the symmetric group can be deformed
into the Hecke algebra Hn(q). By what algebra that U(gl(N)) can
be replaced?
In 1986 Jimbo suggested a form of the quantum SW duality, where
the role of the algebra U(gl(N)) was attributed to the QG
Uq(gl(N)). In 1991 Arum Ram exhibited a q-analog of the
Frobenius formula, based on this duality.
Below, I exhibit another form of the q-duality, in which the role of
the algebra U(gl(N)) plays the so-called Re�ection Equation
algebra. Also, a new q-Frobenius formula will be exhibited.
Now, recall the classical Frobenius formula.
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Consider a set of commutative indeterminates x1...xN . To any
partition λ ` k there are associated some families of symmetric (i.e.
invariant under an action of Sk) polynomials in these
indeterminates. We shall deal with two of them: the power sums
pλ(x1...xN) and the Schur functions sλ(x1...xN). The famous
Frobenius formula is

pν(x1...xN) =
∑
λ`k

χλν sλ(x1...xN),

where χλν is the character of the symmetric group SN in the
representation Mλ evaluated on the element whose cyclic type is
ν = (ν1...νN).
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The power sums are de�ned as follows

pk(x) =
∑
i

xki , pν(x) := pν1 ...pνN .

The Schur polynomials can be de�ned in di�erent ways. For
instance, they can be expressed by means of the Jacobi-Trudi
formulae via the elementary symmetric polynomials or the full
symmetric polynomials

ek(x) =
∑

i1<...<ik

xi1 ...xik , hk(x) =
∑

i1≤...≤ik

xi1 ...xik .

Now, we say a couple of words on the Hecke algebras and their
representation theory.
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The Artin braid group BN is the group generated by the unit e and
N − 1 invertible elements

τ1, ..., τN−1

subject to the following relations

τi τj = τj τi if |i − j | ≥ 2 and τi τi+1 τi = τi+1 τi τi+1, i ≤ N − 2.

The last relation is called braid one.
Since there exists natural imbeddings BN → BN+1 we can consider
the direct limit of BN .
If we impose the condition τ2i = e for any i , we get the symmetric
group SN .
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Also, we consider the following quotients of its group algebra
C[BN ]. Let q ∈ C. Impose the condition

(τi − q e)(τi + q−1 e) = 0, ∀i .

We get an algebra HN(q) called Iwahori-Hecke algebra. Observe
that for q = ±1 we get the algebra C[SN ]. Also, there are of
interest the so-called Birman-Murakami-Wenzl algebras (see articles
by Ogievetsky-Pyatov in ariXiv).
We deal with q generic.
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Now, consider some special reps of the braid groups.
Let V be a vector space over the �eld C. We say that a linear
invertible operator R : V⊗2 → V⊗2 is a braiding, if it is subject to
the following relation in V⊗3

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R),

where I : V → V is the identity operator.
The simplest example is the usual �ip R = P which acts as follows
P(x ⊗ y) = y ⊗ x for any x , y ∈ V , or a super-twist denoted Pm|n.
In order to de�ne it we assume V to be a super-space
V = V0 ⊕ V1. The component V0 is called even and that V1 odd.
We say that x ∈ V0 is of parity 0 and that x ∈ V1 is of parity 1.
The parity is denoted x . Then the super-�ip is de�ned as follows

Pm|n(x ⊗ y) = (−1)x yy ⊗ x .

This notation means that dimV0 = m and dimV1 = n.
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Note that P2

m|n = I . Also, note that the usual �ip P is a particular

case of a super-�ip n = 0. The braidings R subject to the condition
R2 = 1 are called involutive symmetries. The braidings subject to
the Hecke condition

(q I − R)(q−1 I + R) = 0, q ∈ C, q 6= 0, q 6= ±1

are called Hecke symmetries.
For any braiding R we denote Rk : V⊗p → V⊗p, k = 1, ...p− 1 the
operator R acting on the components numbers k and k + 1. Thus,

Rk = I1...k−1 ⊗ R ⊗ Ik+2...p.

Observe that the map

ρR : τk → Rk , k = 1...p − 1

is a representation of the braid group, called R-matrix one.
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Observe a very special property of this representation:

ρR(τ2) = P1 ρR(τ1)P1,

ρR(τ3) = P2 ρR(τ2)P2 = P2 P1 ρR(τ1)P1 P2, ...

In the same way, if R is an involutive symmetry, it de�nes a
representation of the algebra C[SN ], and if R is a Hecke symmetry,
it de�nes a representation of the Hecke algebra.
By �xing in the space V a basis {x1...xN} and the corresponding
basis {xi ⊗ xj} in the space V⊗2 we can represent the operators Ri

by matrices. Let us exhibit two examples of Hecke symmetries
q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

 ,


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 −q−1

 .
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The �rst Hecke symmetry comes from the Quantum Group
Uq(sl(2)), the second one � from Uq(sl(1|1)). For q = 1 we get
respectively a usual �ip and a super-�ip.
Note that if R is a braiding, then the operator R = R P, where P is
the usual �ip, meets the so-called Quantum Yang-Baxter equation

R12R13R23 = R23R13R12.

Note that for q = 1 the matrix R, corresponding to the �rst Hecke
symmetry above, turns into the identity matrix. So by assuming
that q = 1 + ~, we can expand the matrix R as follows

R = I + ~ r + ...

The matrix r meets the so-called classical YB equation
[r12, r13] + [r12, r23] + [r13, r23] = 0.
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However, there exist involutive and Hecke symmetries which are
deformations neither of the usual �ips nor of the super-�ips. So,
the following problem is of interest; what involutive and Hecke
symmetries could be. Consider two related algebras:
"R-symmetric" and "R-skew-symmetric" ones

SymR(V ) = T (V )/〈Im(qI−R)〉,
∧

R
(V ) = T (V )/〈Im(q−1I+R)〉,

where T (V ) =
⊕

V⊗k is the free tensor algebra of V .
Also, consider the corresponding Poincaré-Hilbert series

P+(t) =
∑
k

dim Sym
(k)
R (V )tk , P−(t) =

∑
k

dim
∧(k)

R
(V )tk ,

where the upper index (k) labels the homogenous components.
If R is involutive, we put q = 1 in these formulae.
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Examples. If R is a deformation of the usual �ip P and dimV = N,
then

P−(t) = (1 + t)N .

If R is a deformation of the super-�ip Pm|n, then

P−(t) =
(1 + t)m

(1− t)n
.

Also, there exist "exotic" examples: for any N ≥ 2 there exit
involutive and Hecke symmetries such that

P−(t) = 1 + Nt + t2.

Here dimV = N.
If P−(t) is a polynomial, R is called even.
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Proposition. (G)

For a generic q the following holds P−(−t)P+(t) = 1.

Proposition. (Phung Ho Hai)

The HP series P−(t) (and hence P+(t)) is a rational function:

P−(t) =
N(t)

D(t)
=

1 + a1 t + ...+ ar t
r

1− b1 t + ...+ (−1)s bs ts
=

∏r
i=1

(1 + xi t)∏s
j=1

(1− yj t)
,

where ai and bi are positive integers, the polynomials N(t) and

D(t) are coprime, and all the numbers xi and yi are real positive.
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We call the couple (r |s) bi-rank. In this sense all involutive and
Hecke symmetries are similar to super-�ips, for which the role of
the bi-rank is played by the super-dimension (m|n).
Note that all numerical characteristic of the related objects are
expressed via the bi-rank (r |s) of the initial involutive or Hecke
symmetry R .
The bi-rank enters the quantum dimension of V and other spaces
and other numerical characteristics.
Example.
The usual dimension of a super-space V = V0 ⊕ V1 with
super-dimension (m|n) is N = m + n, whereas its quantum
dimension is m − n.
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Let us recall that for a generic q the algebra Hk(q) is semisimple
and isomorphic to the group algebra of the symmetric group Sk .
Then according to the Wedderburn-Artin theorem, the �nite
dimensional semisimple Hecke algebra Hn(q) is isomorphic to a
direct product of matrix algebras over C:

Hn(q) ' Mλ(1)(C)×Mλ(2)(C)× · · · ×Mλ(s)(C), (2)

where {λ(1), λ(2), . . . , λ(s)} is a (unordered) set of all possible
partitions of the integer n: λ(k) ` n. The dimension of the simple
component Mλ is d 2

λ , where dλ is the number of standard Young

tables corresponding to the partition λ.
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In each matrix algebra Mλ, λ ∈ {λ(1)...λ(s)} there exists a basis
Eλi j consisting of the matrix units. Denote by Eλi j the matrix with
all trivial entries apart from that belonging to the row number i and
the column number j , where 1 is placed.

By doing so in each component in the above product, we have a
basis in the Hecke algebra Hn(q), with the following multiplication
table

Eλk i E
µ
r p = δλµ δi r E

λ
k p.

Note that the diagonal elements Eλii , i = 1...dλ are primitive
orthogonal idempotents de�ning a resolution of the unity. Namely,
we have

e =
∑
λ`n

dλ∑
i=1

Eλii , Eλii E
µ
jj = δλµδijE

λ
ii . (3)
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Now, consider the left regular representation π of the Hecke algebra
Hn(q) onto itself in the basis Eλk i . Let z ∈ Hn(q) be an arbitrary
element. Its image π(z) in the basis {Eλk i} for a �xed λ is
represented by a matrix:

π(z)Eλk i =
∑
r

Zλk r E
λ
r i (4)

of dimension dλ × dλ.
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Observe that there exist di�erent ways to construct the matrix unit
Eλi j in terms of the generators τi . In [OP] Lecture on Hecke algebra
there is exhibited a method, using the so-called Jucys-Murphy (JM)
elements, which are de�ned by recursion as follows

J1 = I , J2 = R2

1 , J3 = R2 J2 R2, ...., Jk+1 = Rk Jk Rk .

Note that an analog of this construction in the algebra C[SN ] is
exhibited in the paper
Vershik, Okounkov A new approach to representation theory of
symmetric groups.
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Now, let R be an involutive or Hecke symmetry. Let L be a matrix
subject to

RL1RL1 − L1RL1R = 0, L = (l ji ), 1 ≤ i , j ≤ m.

This algebra is called RE one and denoted L(R).
If L̂ is subject to

RL̂1RL̂1 − L̂1RL̂1R = RL̂1 − L̂1R, L̂ = (l̂ ji ), 1 ≤ i , j ≤ m,

the algebra is called modi�ed RE algebra and denoted L̂(R).
Nevertheless, these algebras are isomorph to each other. Their
isomorphism can be realised via the following relations between the
generating matrices

L = I − (q − q−1) L̂.

Observe that this isomorphism fails if q = ±1.
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Nevertheless, if R → P as q → 1, the RE algebras L(R) tends to
the algebra Sym(gl(N)), whereas the modi�ed RE algebra L̂(R)
tends to that U(gl(N))).

Our next aim is to describe the center of the algebras L(R) and
L̂(R) and to introduce analogs of the symmetric polynomials on
the �rst of them.
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I remind that the center of the algebra U(gl(N)) is generated by the
power sums TrL̂k , where L̂ is the generating matrix of this algebra.

Now, we introduce the so-called R-trace of matrices

TrRM = TrC M,

where the matrix C = (C j
i ) is completely de�ned by a given braiding

R (it can be de�ned for all braidings, which are skew-invertible).
Now, we introduce power sums in the algebras L(R) and L̂(R) as
follows

pk(L) = TrR Lk = Tr C Lk , pk(L̂) = TrR L̂k = Tr C L̂k .

They are central in the corresponding algebras. Note that if
R = P ,then C = I and we get the classical power sums.
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Now, we want to describe other elements of the center of the
algebra L(R).
Below, we use the following notations

L
1

= L1, L2 = R12 L1 R
−1
12
, L

3
= R23 L2 R

−1
23

= R23 R12 L1 R
−1
12

R−1
23
, ...

Also, we use the notation

L
1→k = L

1
L
2
...Lk .

This string of the matrices Li will play an important role in what
follows.
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The following claim can be found in the paper by Isaev-Pyatov.

Proposition.

Let z ∈ Hk(q) be an arbitrary element. Then the element

ch(z) := TrR(1...k) ρR(z)L
1→k

is central in the algebra L(R).

The map
ch : Hk(q)→ L(R), z 7→ ch(z)

is called characteristic.
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Observe that the power sums pk(L) in the algebra L(R) can be
written in this form. Namely, we have

pk(L) = TrR(1...k) ρR(z)L
1→k , z = τk−1 τk−2...τ1.

The element z = τk−1 τk−2...τ1 is called the Coxeter one.

However, in the RE algebras (and only in them) the power sums
pk(L) can be reduced to the form TrRL

k , similar to the classical
one.
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Now, introduce the Schur polynomials (functions) in this algebra.
They are de�ned in the same manner but with z = Eλii , where Eλii is
the above idempotents. Namely, we put

sλ(L) = TrR(1...k) ρR(z)L
1→k , z = Eλii .

Note that this Schur polynomial does not depend on i , though the
idempotents Eλii for di�erent i are not equivalent to each other.
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Now, we exhibit our q-version of the Frobenius formula:

pν(L) =
∑
λ`k

χλν sλ(L),

where χλν is the character of the Hecke algebra Hk(q) in the
representation, labeled by λ, on the element whose cyclic type is
ν = (ν1...νN) and

pν(L) := pν1(L)pν2(L)...pνN (L).
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As for the cyclic type, we de�ne it only for some special elements.
Let us remove some factors from a Coxeter element τk−1 τk−2...τ1
by keeping instead of the removed elements blank spots. Thus, the
element z ∈ Hn(q) obtained in this way consists of a few strings
τk1 τk1−1...τk2 , k2 ≤ k1, separated by blank spots. The remaining
elements z will be called the Coxeter elements with gaps.
Then to each black spot we assign the number 1 and to each string
entering the element z we assign its length plus 1. By the cyclic
type of z we means the family of these numbers νi , ordered
downward.
We say the family ν = (ν1...νk) is the cyclic type of the element z .
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By comparing our construction and that by Arum Ram we want to
observe that in the algebra L(R) the analogs of the symmetric
polynomial are naturally de�ned whereas in the QG it is not so.
Besides, it is not clear how it is possible to generalize his
construction to the cases, related to Hecke symmetries, di�erent
from these coming from the QG.

Now, we want to discuss the question: whether it is possible to
represent the quantum symmetric polynomials via "eigenvalues"?
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Observe that in the algebra L(R) there are analogs of the Newton
identities

pk−qpk−1 e1+(−q)2pk−2 e2+ ...+(−q)k−1p1 ek +(−1)kkqek = 0,

k = 1.2... and the Cayley-Hamilton identity

Lm−q Lm−1 e1+(−q)2Lm−2 e2+...+(−q)m−1L em−1+(−q)m I em = 0,

provided R is even of bi-rank (m|0).
Here, ek = ek(L) are elementary symmetric polynomials
(functions), i.e. particular cases of the Schur polynomials,
respective to one-column diagrams.
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Let µi , i = 1...m be indeterminates meeting the following system∑
i

µi = eq(L),
∑
i<j

µi µj = q2 e2(L), ... , µ1 µ2...µm = qm em(L).

We call µi (quantum) "eigenvalues" of the matrix L. These
indeterminates are assumed to be central in the algebra
L(R)[µ1...µm].
If R is not even and its bi-rank is (m|n), then the eigenvalues can
be de�ned in a similar way. In this case we have two families of
them µ1, ..., µm (even eigenvalues) and ν1, ..., νn (odd eigenvalues)
such that any symmetric polynomial can be expressed via these
quantities.
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For the power sums we have

pk(L) = TrR Lk =
m∑
i

µki di +
n∑
j

νkj d̃j ,

di = q−1
m∏

p=1,p 6=i

µi − q−2µp
µi − µp

n∏
j=1

µi − q2νj
µi − νj

,

d̃j = −q
m∏
i=1

νj − q−2µi
νj − µi

n∏
p=1, p 6=j

νj − q2νp
νj − νp

,

In the limit q = 1 we get the formula, corresponding to the
involutive symmetry R

pk(L) =
m∑
i

µki −
n∑
j

νkj .

In the even case these polynomials coincide with the Hall-Littlewood
polynomials up to a numerical factor and identi�cation t = q−2.
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Observe that all these polynomials are super-symmetric in q−1 µi
and q νj .
Recall that by de�nition a polynomial in two sets in indeterminates
µi and νj is called super-symmetric if it is symmetric in µi and νj
separately and the polynomial in which one puts µ1 = ν1 = s does
not depend on s.
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The second application of the RE algebras is a q-analog of the
Capelli formula. In order to introduce it we need the partial
derivative in the generators of the RE algebra. These derivatives
are introduced via the following system

R L1 R L1 = L1 R L1 R,

R−1D1 R
−1D1 = D1 R

−1D1 R
−1,

D1 R M1 R = R M1 R
−1D1 + R.

The �rst line de�nes a RE algebra L(R). The second line de�ne a
RE algebra D(R−1). The third line is the so-called permutation
relations between two algebras.
The entries ∂ji of the matrix D, generating the algebra D(R−1),

play the role of partial derivatives in l ji :

∂ji (l
l
k) = δli δ

j
k .

The action of the partial derivatives on higher degree elements can
be deduced from the permutation relations.
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Note that in the classical limit (that is while R = P) the above
system de�nes Weyl-Heisenberg algebra.

Theorem.

Let L = ‖l ji ‖1≤i ,j≤N be the generating matrix of an algebra L(R)

and D = ‖∂ji ‖1≤i ,j≤N be the matrix composed from the partial

derivatives. Then the matrix

L̂ = LD

generates the modi�ed RE algebra.

This theorem states that in our q-setting, the situation is similar to
the classical one. Recall that in the classical setting the matrix
L̂ = LD, where L is a matrix with commutative entries l ji and D is

the matrix composed from the partial derivatives ∂ji = ∂l ij
,

generates the algebra U(gl(N)).
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Now, exhibit the classical Capelli identity. Let L̂ = LD. Then we
have

rDet(L̂ + K ) = detL detD,

where K is the diagonal matrix diag(0, 1, ..., n − 1) and rDet is the
so-called row-determinant.
Observe that the term rDet(L̂ + K ) in the l.h.s. can be written in
the following form

cDet(L̂ + K ) = detL detD,

where K is the diagonal matrix diag(n − 1, ...1, 0) and cDet is the
so-called column-determinant. Also, the matrix form

Tr1..NA
(N)L̂1 (L̂ + I )2 (L̂ + 2I )3...(L̂ + (N − 1)I )N

is possible.
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Proposition.

In the RE algebra the following holds

TrR(1...m) A
(m) L̂1 (L̂

2
+q I )(L̂

3
+q2 2q I )...(L̂m +qm−1 (m−1)q I ) =

q−m detR L detR−1 D.

Here m is the rank of R . (Note that in the classical case m = N.)

Here, the determinants are the highest elementary polynomials,
which can be de�ned for any even symmetry.
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Observe that there are known numerous attempts to generalize the
classical Capelli identity.
I want to only mention the paper by Noumi, Umeda, Wakayama
(1994). Their construction is related to the RTT algebra. Their R
is the standard Hecke symmetry, i.e., it comes from the QG
Uq(sl(N)). Whereas ours is valid in general situation.
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Also, observe that similarly to the Casimir operators coming from
U(gl(N)) it is possible to de�ne their q-analogs on the algebras
L(R) and L̂(R). Note that the eigenvalues of the operators TrL̂k ,
where L̂ is the generating matrix of U(gl(N)) in irreps of U(gl(N))
were computed by Perelomov-Popov. We have computed the
eigenvalues of the two lowest Casimir operators TrR L̂

k de�ned in
the algebras L̂(R). Also, by using realization L̂ = LD it is possible
to de�ne normal ordering

: TrR L̂
k :=: TrR(LD)k :

These operators are q-analogs of the so-called cut-and-join
operators.
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