A gentle introduction to template games: a homotopy model of linear logic

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Cité & INRIA

Combinatorics and Arithmetic for Physics IHES \pm 28 \longrightarrow 29 November 2022

Understanding logic in space and time

What are the principles at work in a dialogue game?

Understanding logic in space and time

What are the principles at work in a dialogue game?

Understanding logic in space and time

What are the principles at work in a dialogue game?

Purpose of this talk:

Understand how different proofs and programs may be

- combined together in space
- synchronized together in time

in the rich and modular ecosystem provided by game semantics.

Purpose of this talk:

Understand how different proofs and programs may be

- combined together in space
- synchronized together in time

in the rich and modular ecosystem provided by linear logic.

Linear logic

Seen through the lens of game semantics

Starting point: game semantics

Every proof of formula *A* initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages

The formal proof of the drinker's formula

```
\frac{\overline{A(x_0) \vdash A(x_0)}}{A(x_0) \vdash A(x_0), \forall x. A(x)} \quad \begin{array}{l} \text{Axiom} \\ \hline A(x_0) \vdash A(x_0), \forall x. A(x) \\ \hline \vdash A(x_0), A(x_0) \Rightarrow \forall x. A(x) \\ \hline \vdash A(x_0), \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline \vdash \forall x. A(x), \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline A(y_0) \vdash \forall x. A(x), \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline \vdash A(y_0) \Rightarrow \forall x. A(x), \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline \vdash \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline \vdash \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline \vdash \exists y. \{A(y) \Rightarrow \forall x. A(x)\} \\ \hline \end{array} \quad \begin{array}{l} \text{Right} \Rightarrow \\ \text{Right} \Rightarrow \\ \text{Right} \Rightarrow \\ \text{Right} \Rightarrow \\ \hline \text{Right} \Rightarrow \\ \text{Contraction} \end{array}
```

The proof interpreted as a winning strategy

Step 1.

Prover picks randomly a customer *y* in the café,

Step 2.

Refutator contradicts Prover by exhibiting a customer x such that

x is not drinking while y is drinking!

Step 3.

Prover declares that his/her first choice of customer y was indeed wrong... and **picks as new witness** y' = x the customer exhibited by Refutator!

Step 4.

Refutator has to admit defeat and Prover wins the game...

Duality

Proponent Program

plays the game

 \boldsymbol{A}

Opponent Environment

plays the game

 $\neg A$

Negation permutes the rôles of Proponent and Opponent

Duality

Opponent Environment

plays the game

 $\neg A$

Proponent Program

plays the game

 \boldsymbol{A}

Negation permutes the rôles of Opponent and Proponent

Sum

Proponent selects the board which will be played

Sum

A form of constructive disjunction

Product

Opponent selects the board which will be played

Product

A form of constructive conjunction

Tensor product

The two games are played in parallel **Opponent** is allowed to switch board but not Player

Tensor product

A form of classical conjunction

Parallel product

The two games are played in parallel **Player** is allowed to switch board but not Opponent

Parallel product

A form of classical disjunction

The law of excluded middle

Karpov Korchnoi

Player wins by playing Karpov against Korchnoi

The exponential modality

Opponent opens as many copies as necessary to beat Proponent but is not allowed to open an infinite number of copies

Hence, the modality is { coinductive from the point of view of Player, inductive from the point of view of Opponent.

A beautiful isomorphism of linear logic

For every pair of formulas A and B of linear logic

$$!A \otimes !B \cong !(A \& B)$$

reminiscent of the isomorphism

$$\wp A \times \wp B \cong \wp (A + B)$$

This isomorphism is the origin for the name of **exponential** modality

Template games

Categorical combinatorics of synchronization

The category of polarities

We introduce the category

freely generated by the graph

$$\langle \ominus \rangle \xrightarrow{P} \langle \oplus \rangle$$

the category \pm_{game} will play a fundamental role in the talk

Template games

First idea:

Define a **game** as a category A equipped with a functor

to the category \pm_{game} freely generated by the graph

$$\langle \ominus \rangle \xrightarrow{P} \langle \oplus \rangle$$

Inspired by the notion of **coloring** in graph theory

Positions and trajectories

It is convenient to use the following terminology

 $objects \leftrightarrow positions$ $morphisms \leftrightarrow trajectories$

and to see the category A as an **unlabelled** transition system.

The polarity functor

The polarity functor

$$\lambda_A$$
: $A \longrightarrow \pm_{game}$

assigns a polarity \oplus or \ominus to every position of the game A.

Definition. A position $a \in A$ is called

Player when its polarity $\lambda_A(a) = \oplus$ is positive **Opponent** when its polarity $\lambda_A(a) = \ominus$ is negative

Opponent moves

Definition. An **Opponent move**

$$m : a^{\oplus} \longrightarrow b^{\ominus}$$

is a trajectory of the game A transported to the edge

$$O: \langle \oplus \rangle \longrightarrow \langle \ominus \rangle$$

of the template category \pm_{game} .

Player moves

Definition. A Player move

$$m : a^{\ominus} \longrightarrow b^{\oplus}$$

is a trajectory of the game A transported to the edge

$$P : \langle \ominus \rangle \longrightarrow \langle \oplus \rangle$$

of the template category \pm_{game} .

Silent trajectories

Definition. A silent move

$$m : a \longrightarrow b$$

is a trajectory of the game A transported to an identity morphism

$$id_{\langle \oplus \rangle} : \langle \oplus \rangle \longrightarrow \langle \oplus \rangle$$

$$id_{\langle \ominus \rangle} : \langle \ominus \rangle \longrightarrow \langle \ominus \rangle$$

of the template category \pm_{game} .

Categorical combinatorics of synchronization

In order to describe the strategies between two games

$$\sigma : A \longrightarrow B$$

we introduce the template of strategies

defined as the category freely generated by the graph

$$\langle \ominus, \ominus \rangle \xrightarrow{P_S} \langle \oplus, \ominus \rangle \xrightarrow{O_t} \langle \oplus, \oplus \rangle$$

Each of the four labels

$$O_s$$
 P_s O_t P_t

describes a specific kind of Opponent and Player move

```
O_s: Opponent move played at the source game P_s: Player move played at the source game O_t: Opponent move played at the target game P_t: Player move played at the target game
```

which may appear on the interactive trajectory played by a strategy

$$\sigma : A \longrightarrow B.$$

The four generators

$$\langle \ominus, \ominus \rangle \xrightarrow{P_S} \langle \oplus, \ominus \rangle \xrightarrow{O_t} \langle \oplus, \oplus \rangle$$

of the category

±strat

may be depicted as follows:

In that graphical notation, the sequence

$$O_t \cdot P_s \cdot O_s \cdot P_t$$

is depicted as

The template of strategies

The category \pm_{strat} comes equipped with a span of functors

$$\pm_{\text{game}} \leftarrow \xrightarrow{s=(1)} \pm_{\text{strat}} \xrightarrow{t=(2)} \pm_{\text{game}}$$

defined as the projection s = (1) on the first component:

$$\langle \ominus, \ominus \rangle \mapsto \langle \ominus \rangle \qquad O_s \mapsto P \qquad P_s \mapsto O$$

$$\langle \oplus, \ominus \rangle, \langle \oplus, \oplus \rangle \mapsto \langle \oplus \rangle \qquad O_t, P_t \mapsto id_{\langle \oplus \rangle}$$

and as the projection t = (2) on the second component:

$$\langle \oplus, \oplus \rangle \mapsto \langle \oplus \rangle \qquad O_t \mapsto O \qquad P_t \mapsto P$$

$$\langle \ominus, \ominus \rangle, \langle \oplus, \ominus \rangle \mapsto \langle \ominus \rangle \qquad O_s, P_s \mapsto id_{\langle \ominus \rangle}$$

The template of strategies

The two functors s and t are illustrated below:

Strategies between games

Second idea:

Define a **strategy** between two games

$$\sigma : A \longrightarrow B$$

as a **span of functors**

$$A \xleftarrow{s} S \xrightarrow{t} B$$

together with a scheduling functor

$$S \xrightarrow{\lambda_{\sigma}} \pm_{\text{strat}}$$

Strategies between games

making the diagram below commute

Key idea:

Every trajectory $s \in S$ induces a pair of trajectories $s_A \in A$ and $s_B \in B$.

The functor λ_{σ} describes how s_A and s_B are scheduled together by σ .

Support of a strategy

Terminology. The category *S* defining the span

$$A \leftarrow \xrightarrow{S} S \xrightarrow{t} B$$

is called the **support** of the strategy

$$\sigma : A \longrightarrow B$$

Basic intuition:

" the support S contains the trajectories played by σ "

A typical scheduling $B \cdot A \cdot A \cdot B$

A trajectory $s \in S$ of the strategy σ with schedule

$$\langle \oplus, \oplus \rangle \xrightarrow{O_t} \langle \oplus, \ominus \rangle \xrightarrow{P_s} \langle \ominus, \ominus \rangle \xrightarrow{O_s} \langle \ominus, \oplus \rangle \xrightarrow{P_t} \langle \oplus, \oplus \rangle$$

is traditionally depicted as

	$A \xrightarrow{\sigma} B$
first move m_1 of polarity O_t	m_1
second move n_1 of polarity P_s	n_1
third move m_2 of polarity O_s	m_2
fourth move n_2 of polarity P_t	n_2

A typical scheduling $B \cdot A \cdot A \cdot B$

Thanks to the approach, one gets the more informative picture:

Simulations

Definition: A **simulation** between strategies

$$\theta : \sigma \longrightarrow \tau : A \longrightarrow B$$

is a **functor** from the support of σ to the support of τ

$$\theta : S \longrightarrow T$$

making the three triangles commute

The category of strategies and simulations

Suppose given two games A and B.

The category **Games** (A, B) has **strategies** between A and B

$$\sigma, \tau : A \longrightarrow B$$

as objects and **simulations** between strategies

$$\theta : \sigma \longrightarrow \tau : A \longrightarrow B$$

as morphisms.

The bicategory Games

A bicategory of games, strategies and simulations

The bicategory Games of games and strategies

At this stage, we want to turn the family of categories

Games (A, B)

into a **bicategory**

Games

of games and strategies.

The bicategory Games of games and strategies

To that purpose, we need to define a composition functor

$$\circ_{A,B,C}$$
: Games $(B,C) \times$ Games $(A,B) \longrightarrow$ Games (A,C)

which composes a pair of strategies

$$\sigma : A \longrightarrow B \qquad \tau : B \longrightarrow C$$

into a strategy

$$\sigma \circ_{A,B,C} \tau : A \longrightarrow C$$

Composition of strategies

The construction starts by putting the pair of functorial spans side by side:

Fine, but how shall one carry on and perform the composition?

Third idea:

We define the **template of interactions**

±int

as the category obtained by the pullback diagram below

Somewhat surprisingly, the category

is simple to describe, as the free category generated by the graph

$$\langle \ominus, \ominus, \ominus \rangle \xrightarrow{P_S} \langle \oplus, \ominus, \ominus \rangle \xrightarrow{O|P} \langle \oplus, \oplus, \ominus \rangle \xrightarrow{O_t} \langle \oplus, \oplus, \ominus \rangle$$

with four states or positions.

The six generators

$$\langle \ominus, \ominus, \ominus \rangle \xrightarrow{P_S} \langle \oplus, \ominus, \ominus \rangle \xrightarrow{O|P} \langle \oplus, \oplus, \ominus \rangle \xrightarrow{O_t} \langle \oplus, \oplus, \ominus \rangle$$

may be depicted as follows:

A typical interaction $C \cdot B \cdot A \cdot A \cdot B \cdot C$

This typical sequence of interactions is depicted as follows:

We find illuminating to depict the canonical functor

$$\pm_{\text{int}} \xrightarrow{(1223)} \qquad \pm_{\text{strat}} \times \pm_{\text{strat}}$$

induced by the pullback diagram in the following way:

In order to fully appreciate the diagram, one needs to "fatten" it

in such a way as to recover the template of interactions

$$\langle \ominus, \ominus, \ominus \rangle \xrightarrow{P_S} \langle \oplus, \ominus, \ominus \rangle \xrightarrow{O|P} \langle \oplus, \oplus, \ominus \rangle \xrightarrow{O_t} \langle \oplus, \oplus, \ominus \rangle$$

Key observation

The template \pm_{int} of interactions comes equipped with a functor

$$hide : \pm_{int} \longrightarrow \pm_{strat}$$

which makes the diagram below commute:

and thus defines a map of span.

Key observation

The functor

$$hide : \pm_{int} \longrightarrow \pm_{strat}$$

is defined by **projecting** the positions of the interaction category

$$\langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle$$

on their first and third components:

Illustration

Composition of strategies

Composition of strategies

This definition of composition implements the slogan that

composition = synchronization + hiding

What about identities?

There exists a functor

$$copycat : \pm_{game} \longrightarrow \pm_{strat}$$

which makes the diagram commute:

and thus defines a morphism of spans.

What about identities?

The functor

$$copycat : \pm_{game} \longrightarrow \pm_{strat}$$

is defined by **duplicating** the positions of the polarity category

$$\langle \varepsilon \rangle$$

in the following way:

$$\begin{array}{cccc} \langle \ominus \rangle & \mapsto & \langle \ominus, \ominus \rangle & & O & \mapsto & O_t \cdot P_s \\ \langle \oplus \rangle & \mapsto & \langle \oplus, \oplus \rangle & & P & \mapsto & O_s \cdot P_t \end{array}$$

A synchronous copycat strategy

The functor

$$copycat : \pm_{game} \longrightarrow \pm_{strat}$$

transports the edge

$$\langle \ominus \rangle \stackrel{O}{\longleftarrow} \langle \ominus \rangle$$

to the trajectory consisting of two moves

$$\langle \ominus, \ominus \rangle \stackrel{P_S}{\longleftarrow} \langle \ominus, \ominus \rangle \stackrel{O_t}{\longleftarrow} \langle \ominus, \ominus \rangle$$

A synchronous copycat strategy

The functor

$$copycat : \pm_{game} \longrightarrow \pm_{strat}$$

transports the edge

$$\langle \ominus \rangle \xrightarrow{P} \langle \oplus \rangle$$

to the trajectory consisting of two moves

$$\langle \ominus,\ominus\rangle \xrightarrow{O_S} \langle \oplus,\ominus\rangle \xrightarrow{P_t} \langle \oplus,\oplus\rangle$$

The identity strategy

Given a game A, the copycat strategy

$$\operatorname{cc}_A : A \longrightarrow A$$

is defined as the functorial span

$$A \leftarrow \stackrel{identity}{\longrightarrow} A \stackrel{identity}{\longrightarrow} A$$

together with the scheduling functor

$$\lambda_{\mathbf{cc}_A} = A \xrightarrow{\lambda_A} \pm_{\mathbf{game}} \xrightarrow{copycat} \pm_{\mathbf{strat}}$$

Identity strategy

Discovery of an unexpected structure

Key observation: the categories

$$\pm [0] = \pm_{\text{game}}$$
 $\pm [1] = \pm_{\text{strat}}$ $\pm [2] = \pm_{\text{int}}$

and the span of functors

$$\pm[0] \xleftarrow{s} \pm[1] \xrightarrow{t} \pm[0]$$

define an **internal category** in Cat with composition and identity

$$\pm[2] \xrightarrow{hide} \pm[1] \qquad \pm[0] \xrightarrow{copycat} \pm[1]$$

As an immediate consequence...

Theorem A. The construction just given defines a **bicategory**

Games

of games, strategies and simulations.

Main technical result of the paper

Theorem B. The bicategory

Games

of games, strategies and simulations is symmetric monoidal.

Main technical result of the paper

Theorem C. The bicategory

Games

of games, strategies and simulations is star-autonomous.

All these results are based on the same recipe!

One constructs an internal category of tensorial schedules

together with a pair of internal functors

where *pick* and *pince* are moreover required to be **acute**.

All these results are based on the same recipe!

One constructs an internal category of cotensorial schedules

together with a pair of internal functors

where *pick* and *pince* are moreover required to be **acute**.

All these results are based on the same recipe!

One constructs an internal functor

$$reverse : \pm^{op} \longrightarrow \pm$$

which reverses the polarity of every position and move

Acute internal functors

Definition An internal functor

$$F : \pm_1 \longrightarrow \pm_2$$

is acute when the two diagrams

are pullback diagrams.

The backward action

Every acute internal functor $F: \pm_1 \rightarrow \pm_2$ induces a homomorphism

$$F^{\triangleleft}$$
: Games(\pm_2) \longrightarrow Games(\pm_1)

defined by **pullback** on games and strategies:

The forward action

Every acute internal functor $F: \pm_1 \rightarrow \pm_2$ induces a homomorphism

$$F^{\triangleright}$$
 : Games(\pm_1) \longrightarrow Games(\pm_2)

defined by **postcomposition** on games and strategies:

$$A \longleftrightarrow S \longrightarrow B$$

$$\lambda_{A} \downarrow \qquad \downarrow \lambda_{\sigma} \qquad \downarrow \lambda_{B}$$

$$\pm_{1}[0] \longleftrightarrow S \longrightarrow \pm_{1}[1] \longrightarrow \pm_{1}[0]$$

$$F[0] \downarrow \qquad \downarrow F[1] \qquad \downarrow F[0]$$

$$\pm_{2}[0] \longleftrightarrow S \longrightarrow \pm_{2}[1] \longrightarrow \pm_{2}[0]$$

The recipe for the tensor product

We consider the category

$$\pm_{\text{game}}^{\otimes}$$

freely generated by the graph

$$\langle \ominus, \oplus \rangle \xrightarrow{O_l} \langle \oplus, \oplus \rangle \xrightarrow{O_r} \langle \oplus, \ominus \rangle$$

Idea: The three positions

$$\langle \ominus, \ominus \rangle$$
 $\langle \ominus, \ominus \rangle$ $\langle \ominus, \ominus \rangle$

represent the three polarities

$$\langle \varepsilon_1, \varepsilon_2 \rangle$$

possibly reached by a position $a_1 \otimes a_2$ in the game

$$A_1 \otimes A_2$$

obtained by tensoring the games A_1 and A_2 .

The category

is freely generated by the graph

The five positions of the category

$$\langle \ominus, \ominus, \ominus, \ominus \rangle$$
 $\langle \ominus, \ominus, \ominus, \ominus \rangle$ $\langle \ominus, \ominus, \ominus, \ominus, \ominus \rangle$ $\langle \ominus, \ominus, \ominus, \ominus, \ominus \rangle$

describe the five possible sequences of polarities

$$\langle \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4 \rangle$$

reached by a position of the games A_1 , A_2 , A_3 , A_4 in a trajectory of

$$\sigma : A_1 \otimes A_2 \longrightarrow A_3 \otimes A_4$$

Key observation

Theorem. The categories

$$\pm^{\otimes}[0] = \pm_{\text{game}}^{\otimes} \qquad \qquad \pm^{\otimes}[1] = \pm_{\text{sched}}^{\otimes}$$

and the span of functors

$$\pm_{\mathsf{game}}^{\otimes} \longleftarrow \pm_{\mathsf{strat}}^{\otimes} \longrightarrow \pm_{\mathsf{game}}^{\otimes}$$

define an **internal category** \pm^{\otimes} in the category Cat.

A pair of internal functors

The internal category

comes equipped with a pair of internal functors

$$\pm \times \pm \xleftarrow{pick} \pm^{\otimes} \xrightarrow{pince} \pm$$

The pick functor

The internal functor

$$pick : \pm^{\otimes} \longrightarrow \pm \times \pm$$

is defined at dimension 0 by the functor:

The pick functor

The internal functor

$$pick : \pm^{\otimes} \longrightarrow \pm \times \pm$$

is defined at dimension 1 by the functor:

The pince functor

The internal functor

$$pince : \pm^{\otimes} \longrightarrow \pm$$

is defined at dimension 0 by the functor:

The pince functor

The internal functor

$$pince : \pm^{\otimes} \longrightarrow \pm$$

is defined at dimension 1 by the functor:

The tensor product of template games

The tensor product $A \otimes B$ of two template games

$$A \xrightarrow{\lambda_A} \pm_{game} \qquad \qquad B \xrightarrow{\lambda_B} \pm_{game}$$

is computed by pullback along *pick* followed by composition with *pince*:

A categorical version of Milner's idea of synchronization algebra.

The pick functor

The internal functor

$$pick : \pm^{39} \longrightarrow \pm \times \pm$$

is defined at dimension 0 by the functor:

The pick functor

The internal functor

$$pick : \pm^{29} \longrightarrow \pm \times \pm$$

is defined at dimension 1 by the functor:

The pince functor

The internal functor

$$pince : \pm^{2g} \longrightarrow \pm$$

is defined at dimension 0 by the functor:

The pince functor

The internal functor

$$pince : \pm^{29} \longrightarrow \pm$$

is defined at dimension 1 by the functor:

The cotensor product of template games

The cotensor product $A \gg B$ of two template games

$$A \xrightarrow{\lambda_A} \pm_{game} \qquad \qquad B \xrightarrow{\lambda_B} \pm_{game}$$

is computed by pullback along *pick* followed by composition with *pince*:

The distributivity law of linear logic

A game semantics of linear logic

The distributivity law of linear logic

The main ingredient of linear logic

$$\kappa_{A,B,C} : A \otimes (B \Re C) \longrightarrow (A \otimes B) \Re C$$

cannot be interpreted in traditional game semantics.

When one interprets it in template games, here is what one gets...

A homotopy model of differential linear logic

The construction of the exponential modality relies on the fact that

Property. The monad

$$\textbf{Sym} : \textbf{Cat} \longrightarrow \textbf{Cat}$$

which associates to every category

$$\mathscr{C} \in \mathsf{Cat}$$

the freely generated symmetric monoidal category

$$Sym(\mathscr{C}) \in Cat$$

is a cartesian monad.

From this follows that

Corollary. The monad

 $\textbf{Sym} : \textbf{Cat} \longrightarrow \textbf{Cat}$

transports the internal category of polarities

 \pm

into an internal category

Sym(_±)

The objects of

 $\text{Sym}(\pm_{game})$

are the finite words

 $\varepsilon_1 \cdots \varepsilon_n$

on the alphabet with two letters

 \bigoplus

The template of exponential polarities

The category

is defined as a the full subcategory of

$$Sym(\pm_{game})$$

with objects of the form

$$\oplus \cdots \oplus \cdots \oplus$$

containing only positive polarities, and objects of the form

$$\oplus \cdots \ominus \cdots \oplus$$

containing exactly one negative polarity.

The template of exponential schedules

The internal category

走!

is defined by restricting the internal category

to the category of objects $\pm^!_{game}$ using the pullback

A pair of internal functors

The internal category

走!

comes equipped with a pair of internal functors

$$Sym(\pm) \longleftarrow pick \qquad \pm^! \longrightarrow pince \qquad \qquad \downarrow$$

which defines an exponential modality of linear logic.

The exponential of a template game

$$A \xrightarrow{\Lambda_A} \pm_{game}$$

is simply computed by pullback followed by composition:

Main result

Theorem D. The symmetric monoidal category

Games

equipped with the exponential modality

1

defines a bicategorical (homotopy) model of differential linear logic.

Conclusion and perspectives

- games played on categories with synchronous copycats
- games played on 2-categories with asynchronous copycats
- a number of different templates considered already:

±alt ±asynch ±span alternating games and strategies asynchronous games and strategies functorial spans with no scheduling

- a model of differential linear logic based on homotopy theory
- a model of concurrent separation logic based on cobordisms and synchronization on machine states with Léo Stefanesco.

Short selection of related papers

- [1] PAM.
 Categorical Combinatorics of Scheduling and Synchronization in Game Semantics.
 POPL 2019
- [2] PAM.
 Template Games and Differential Linear Logic.
 LICS 2019
- [3] PAM.
 Asynchronous Template Games and the Gray Tensor Product of 2-categories LICS 2021
- [4] Clovis Eberhart, Tom Hirschowitz and Alexis Laouar. Template Games, Simple Games, and Day Convolution. FSCD 2019
- [5] Simon Castellan, Pierre Clairambault and Glynn Winskel.
 Thin games with symmetry and concurrent Hyland-Ong games
 LMCS 2020

Short selection of related papers

- [1] Russ Harmer, Martin Hyland and PAM.
 Categorical Combinatorics for Innocent Strategies.
 LICS 2007
- [2] PAM and Samuel Mimram.
 Asynchronous Games: Innocence Without Alternation.
 CONCUR 2007
- [3] Sylvain Rideau and Glynn Winskel. Concurrent Strategies. LICS 2011
- [4] PAM and Léo Stefanesco.
 An Asynchronous Soundness Theorem for Concurrent Separation Logic.
 LICS 2018
- [5] PAM and Léo Stefanesco. Concurrent Separation Logic Meets Template Games. LICS 2020

Thank you!

The category of asynchronous graphs

A primitive framework for concurrency theory

Asynchronous graphs

Definition. An **asynchronous graph** is defined as a graph

$$G = (V, E)$$

equipped with a set of permutation tiles of the form

between coinitial and cofinal paths of length 2.

— Axiom 1 —All permutations are symmetric

— Axiom 2 —All permutations are deterministic

— Axiom 3 —The cube axiom

The **shuffle tensor product**

$$G \coprod H = (G \coprod H, \diamond_{G \coprod H})$$

of two asynchronous graphs

$$G = (G, \diamond_G)$$
 $H = (H, \diamond_H)$

is the asynchronous graph

whose vertices (x, y) are the pairs of vertices $x \in G$ and $y \in H$,

whose edges are of two kinds: the pairs

$$(x,y) \xrightarrow{(u,y)} (x',y)$$

consisting of an edge in the graph G

$$x \longrightarrow x'$$

and of a vertex $y \in H$; and pairs

$$(x,y) \xrightarrow{(x,v)} (x,y')$$

consisting of an edge in the graph H

$$y \xrightarrow{v} y'$$

and of a vertex $x \in G$.

- whose permutation tiles are of three kinds:
- 1. two permutation tiles

for every pair of edges

$$x \xrightarrow{u} x' \qquad y \xrightarrow{v} y$$

in the graphs G and H respectively;

2. a permutation tile

for every permutation tile

in the asynchronous graph G and every vertex $y \in H$;

3. a permutation tile

for every permutation tile

in the asynchronous graph H and every vertex $x \in G$.

The category of asynchronous graphs

The category **Asynch** of asynchronous graphs has its morphisms

$$f: (G, \diamond_G) \longrightarrow (H, \diamond_H)$$

graph homomorphisms

$$f : G \longrightarrow H$$

transporting every permutation tile of G to a permutation tile of H.

Theorem. The shuffle tensor product

$$G, H \mapsto G \coprod H : Asynch \times Asynch \longrightarrow Asynch$$

turns the category **Asynch** into a **symmetric monoidal category.**

Basic illustration

For every label *token*, the asynchronous graph

 \pm [token]

has a unique vertex * and a unique edge

 $token : * \longrightarrow *$

together with a unique permutation tile

Asynchronous graphs as 2-categories

A necessary step towards asynchronous template games

Asynchronous graphs seen as 2-categories

We make the basic observation that

every asynchronous graph (G, \diamond_G) generates a 2-category $\langle G, \diamond_G \rangle$

The 2-category $\langle G, \diamond_G \rangle$ is defined in the following way:

- its objects = the vertices of the graph,
- its morphisms = the paths of the graph,
- its 2-cells = the reshufflings induced by the permutation tiles.

Reshufflings between paths

Definition: a **reshuffling** is a **bijective function**

$$\varphi : \{1,...,n\} \longrightarrow \{1,...,n\}$$

which "keeps track" of a sequence of tiles on a path of length n.

Typically, the reshuffling $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \end{pmatrix}$ is associated to any permutation tile:

Reshufflings between paths

Similarly, the reshuffling on three indices

$$\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 2 \\ 3 \mapsto 1 \end{pmatrix} : \{1, 2, 3\} \longrightarrow \{1, 2, 3\}$$

keeps track and identifies the two sequences of tiles:

Related to the braid equation and the Yang-Baxter equation

From asynchronous graphs to 2-categories, functorially...

The translation induces a functor

$$\langle - \rangle$$
 : Asynch \longrightarrow TwoCat

where **TwoCat** is the category of 2-categories and 2-functors.

Key observation:

The functor $\langle - \rangle$ defines in fact a **symmetric monoidal functor**

$$\langle - \rangle$$
 : (Asynch, \sqcup , I) \longrightarrow (TwoCat, \boxtimes , 1)

equipped with a family of isomorphisms

$$\langle G \sqcup H \rangle \cong \langle G \rangle \boxtimes \langle H \rangle \qquad \langle I \rangle \cong 1$$

where we write **Image** for the **Gray tensor product** of 2-categories.

A homotopy structure on functorial spans

A homotopy model of differential linear logic

The natural model structure on Cat

We distinguish three classes of functors

 $F : \mathscr{A} \longrightarrow \mathscr{B}$

between small categories:

- \triangleright the class \mathscr{F} of **isofibrations**

Theorem [Joyal]

The category Cat of small categories and functors equipped with

 \mathscr{C} : cofibrations \mathscr{F} : fibrations \mathscr{W} : weak equivalences defines a Quillen model structure.

The Seely equivalence

The usual Seely isomorphism of linear logic

$$!(A \& B) \cong !A \otimes !B$$

is replaced in the 2-category Cat by a categorical equivalence

$$Sym(A + B) \xrightarrow{deshuffle} Sym A \times Sym B$$

which happens to be an **isofibration** and thus in $\mathscr{F} \cap \mathscr{W}$.

The categorical equivalence in the converse direction

$$Sym A \times Sym B \xrightarrow{concat} Sym (A + B)$$

happens to be a **mono on object** and thus in $\mathscr{C} \cap \mathscr{W}$.

In the case of distributors

Every functor between small categories

$$F : A \longrightarrow B$$

induces an adjoint pair $L_F \dashv R_F$ of distributors

$$L_F : A \longrightarrow B \qquad R_F : B \longrightarrow A$$

in the bicategory Dist, where the distributors are defined as

$$L_F(b,a) = B(Fb,a) : B^{op} \times A \longrightarrow \mathbf{Set}$$

$$R_F(a,b) = B(a,Fb) : A^{op} \times B \longrightarrow \mathbf{Set}$$

In the case of functorial spans

Similarly, every functor between small categories

$$F : A \longrightarrow B$$

induces an adjoint pair $L_F \dashv R_F$ of categorical spans

$$L_F : A \longrightarrow B \qquad \qquad R_F : B \longrightarrow A$$

in the bicategory **Span**, where the spans L_F and R_F are defined as

$$L_F = A \xleftarrow{id} A \xrightarrow{F} B$$

$$R_F = B \xleftarrow{F} B \xrightarrow{id} A$$

Same recipe for contractions and co-contractions

This enables one to deduce from the monoid structure in Cat

$$\otimes_A : \operatorname{\mathsf{Sym}} A \times \operatorname{\mathsf{Sym}} A \longrightarrow \operatorname{\mathsf{Sym}} A$$

$$I_A : \mathbf{1} \longrightarrow \operatorname{\mathsf{Sym}} A$$

the comonoid structure in **Dist** of the exponential modality

$$d_A = R_{\otimes_A} : \operatorname{Sym} A \longrightarrow \operatorname{Sym} A \otimes \operatorname{Sym} A$$

$$e_A = R_{I_A} : \mathbf{Sym} A \longrightarrow \mathbf{1}$$

as well as its monoid structure coming from the differential structure:

$$m_A = L_{\otimes_A} : \operatorname{Sym} A \otimes \operatorname{Sym} A \longrightarrow \operatorname{Sym} A$$
 $u_A = L_{I_A} : \mathbf{1} \longrightarrow \operatorname{Sym} A$

In the case of distributors

Every natural transformation in Cat

is transported to a pair of 2-cells in Dist

Commutativity up to an invertible 2-cell

The multiplication in Cat is commutative up to an isomorphism

Hence, the comultiplication in **Dist** is commutative up to an isomorphism

An apparent obstruction

In contrast to what happens with **Dist**, a natural transformation in **Cat**

is **not transported** to a pair of 2-cells in the bicategory **Span(Cat)**

However, every natural isomorphism in Cat

is transported to a pair of cospans of simulations

$$L_F \xrightarrow{inl} \widetilde{L}_{\varphi} \xleftarrow{inr} L_G \qquad R_F \xrightarrow{inl} \widetilde{R}_{\varphi} \xleftarrow{inr} R_G$$

each of them defining a cospan of 2-cells in the bicategory SpanCat.

However, every natural isomorphism in Cat

is transported to a pair of cospans of simulations

each of them defining a cospan of 2-cells in the bicategory SpanCat.

These cospans of 2-cells in SpanCat

$$L_F \xrightarrow{inl} \widetilde{L}_{\varphi} \xleftarrow{inr} L_G \qquad R_F \xrightarrow{inl} \widetilde{R}_{\varphi} \xleftarrow{inr} R_G$$

are defined as the following simulations

Here, Cyl(A) denotes the **cylinder category** defined as

$$Cyl(A) = \mathbb{J} \times A$$

where the **interval category J** is the category

$$0 \xrightarrow{j} 1$$

with two objects 0 and 1 and an isomorphism $j: 0 \to 1$ between them.

The category **J** comes equipped with three functors

$$1 \xrightarrow{0} \mathbb{J} \xrightarrow{p} 1$$

The three functors

$$A \not\rightleftharpoons \frac{inl}{inr} Cyl(A) = A \times \mathbb{J} \not\leftarrow \frac{proj}{A}$$

are deduced from the three functors

$$1 \xrightarrow{0} \mathbb{J} \xrightarrow{p} 1$$

in the expected way:

$$inl = 0 \times A$$
 $inr = 1 \times A$ $proj = p \times A$.

The two functorial spans

$$\widetilde{L}_{\varphi}: A \longrightarrow B \qquad \widetilde{R}_{\varphi}: B \longrightarrow A$$

are defined as

$$A \xleftarrow{proj} Cyl(A) \xrightarrow{\varphi} B \qquad B \xleftarrow{\varphi} Cyl(A) \xrightarrow{proj} A$$

where the functor

$$\varphi: Cyl(A) \longrightarrow B$$

internalizes the natural isomorphism $\varphi: F \Rightarrow G: A \rightarrow B$ and thus satisfies:

$$F = \varphi \circ inl$$
 $G = \varphi \circ inr$

required for the functors *inl* and *inr* to define simulations.