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What are the principles at work in a dialogue game?
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Understand how different proofs and programs may be

◦ combined together in space
◦ synchronized together in time

in the rich and modular ecosystem provided by game semantics.
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Understand how different proofs and programs may be

◦ combined together in space
◦ synchronized together in time

in the rich and modular ecosystem provided by linear logic.



Linear logic

Seen through the lens of game semantics



Starting point: game semantics

Every proof of formula A initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages



The formal proof of the drinker’s formula

AxiomA(x0) ` A(x0) Right WeakeningA(x0) ` A(x0),∀x.A(x) Right⇒
` A(x0),A(x0)⇒ ∀x.A(x) Right ∃
` A(x0),∃y.{A(y)⇒ ∀x.A(x)}

Right ∀
` ∀x.A(x),∃y.{A(y)⇒ ∀x.A(x)}

Left WeakeningA(y0) ` ∀x.A(x),∃y.{A(y)⇒ ∀x.A(x)}
Right⇒

` A(y0)⇒ ∀x.A(x),∃y.{A(y)⇒ ∀x.A(x)}
Right ∃

` ∃y.{A(y)⇒ ∀x.A(x)},∃y.{A(y)⇒ ∀x.A(x)}
Contraction

` ∃y.{A(y)⇒ ∀x.A(x)}



The proof interpreted as a winning strategy

Step 1.

Prover picks randomly a customer y in the café,

Step 2.

Refutator contradicts Prover by exhibiting a customer x such that

x is not drinking while y is drinking !

Step 3.

Prover declares that his/her first choice of customer y was indeed wrong...

and picks as new witness y′ = x the customer exhibited by Refutator !

Step 4.

Refutator has to admit defeat and Prover wins the game...



Duality

Proponent
Program

plays the game

A

Opponent
Environment

plays the game

¬ A

Negation permutes the rôles of Proponent and Opponent
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Environment

plays the game
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Proponent
Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent



Sum

⊕

Proponent selects the board which will be played



Sum
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A form of constructive disjunction



Product

&

Opponent selects the board which will be played



Product

&

A form of constructive conjunction



Tensor product

⊗

The two games are played in parallel
Opponent is allowed to switch board but not Player



Tensor product

⊗

A form of classical conjunction



Parallel product

M

The two games are played in parallel
Player is allowed to switch board but not Opponent



Parallel product

M

A form of classical disjunction



The law of excluded middle

Karpov Korchnoi

M

Player wins by playing Karpov against Korchnoi



The exponential modality

⊗ ⊗ ⊗ · · ·

Opponent opens as many copies as necessary to beat Proponent
but is not allowed to open an infinite number of copies

Hence, the modality is
{

coinductive from the point of view of Player,
inductive from the point of view of Opponent.



A beautiful isomorphism of linear logic

For every pair of formulas A and B of linear logic

! A ⊗ ! B � ! ( A & B )

reminiscent of the isomorphism

℘A × ℘B � ℘ ( A + B )

This isomorphism is the origin for the name of exponential modality



Template games

Categorical combinatorics of synchronization



The category of polarities

We introduce the category

�game

freely generated by the graph

〈	〉 〈⊕〉
P

O

the category �game will play a fundamental role in the talk



Template games

First idea:

Define a game as a category A equipped with a functor

A

�game

λA

to the category �game freely generated by the graph

〈	〉 〈⊕〉
P

O

Inspired by the notion of coloring in graph theory



Positions and trajectories

It is convenient to use the following terminology

objects ↔ positions
morphisms ↔ trajectories

and to see the category A as an unlabelled transition system.



The polarity functor

The polarity functor

λA : A �game

assigns a polarity ⊕ or 	 to every position of the game A.

Definition. A position a ∈ A is called

Player when its polarity λA(a) = ⊕ is positive
Opponent when its polarity λA(a) = 	 is negative



Opponent moves

Definition. An Opponent move

m : a⊕ b	

is a trajectory of the game A transported to the edge

O : 〈⊕〉 〈	〉

of the template category �game.



Player moves

Definition. A Player move

m : a	 b⊕

is a trajectory of the game A transported to the edge

P : 〈	〉 〈⊕〉

of the template category �game.



Silent trajectories

Definition. A silent move

m : a b

is a trajectory of the game A transported to an identity morphism

id〈⊕〉 : 〈⊕〉 〈⊕〉

id〈	〉 : 〈	〉 〈	〉

of the template category �game.



The template of strategies

Categorical combinatorics of synchronization



The template of strategies

In order to describe the strategies between two games

σ : A B|

we introduce the template of strategies

�strat

defined as the category freely generated by the graph

〈	,	〉 〈⊕,	〉 〈⊕,⊕〉
Os

Ps

Pt

Ot



The template of strategies

Each of the four labels

Os Ps Ot Pt

describes a specific kind of Opponent and Player move

Os : Opponent move played at the source game
Ps : Player move played at the source game
Ot : Opponent move played at the target game
Pt : Player move played at the target game

which may appear on the interactive trajectory played by a strategy

σ : A B.|



The template of strategies

The four generators

〈	,	〉 〈⊕,	〉 〈⊕,⊕〉
Os

Ps

Pt

Ot

of the category

�strat

may be depicted as follows:

OP O Ps s tt



The template of strategies

In that graphical notation, the sequence

Ot · Ps · Os · Pt

is depicted as

O

P

O

P

s

s

t

t



The template of strategies

The category �strat comes equipped with a span of functors

�game �strat �game
s=(1) t=(2)

defined as the projection s = (1) on the first component:

〈	,	〉 7→ 〈	〉

〈⊕,	〉 , 〈⊕,⊕〉 7→ 〈⊕〉

Os 7→ P Ps 7→ O
Ot , Pt 7→ id〈⊕〉

and as the projection t = (2) on the second component:

〈⊕,⊕〉 7→ 〈⊕〉

〈	,	〉 , 〈⊕,	〉 7→ 〈	〉

Ot 7→ O Pt 7→ P
Os , Ps 7→ id〈	〉



The template of strategies

The two functors s and t are illustrated below:

O

P

O

P

s

s

t

t

O

P

O

P

source target



Strategies between games

Second idea:

Define a strategy between two games

σ : A B|

as a span of functors

A S Bs t

together with a scheduling functor

S �strat
λσ



Strategies between games

making the diagram below commute

A S B

�game �strat �game

λA

s

λσ

t

λB

s t

Key idea:

Every trajectory s ∈ S induces a pair of trajectories sA ∈ A and sB ∈ B.

The functor λσ describes how sA and sB are scheduled together by σ.



Support of a strategy

Terminology. The category S defining the span

A S Bs t

is called the support of the strategy

σ : A B

Basic intuition:

« the support S contains the trajectories played by σ »



A typical scheduling B·A·A·B

A trajectory s ∈ S of the strategy σ with schedule

〈⊕,⊕〉 〈⊕,	〉 〈	,	〉 〈	,⊕〉 〈⊕,⊕〉
Ot Ps Os Pt

is traditionally depicted as

A B

first move m1 of polarity Ot m1

second move n1 of polarity Ps n1

third move m2 of polarity Os m2

fourth move n2 of polarity Pt n2

σ



A typical scheduling B·A·A·B

Thanks to the approach, one gets the more informative picture:

O

P

O

P

s

s

t

t

m :

:

m :

:

n

n



Simulations

Definition: A simulation between strategies

θ : σ τ : A B|

is a functor from the support of σ to the support of τ

θ : S T

making the three triangles commute

S T

A

θ

s s

S T

�strat

θ

λσ λτ

S T

B

θ

t t



The category of strategies and simulations

Suppose given two games A and B.

The category Games (A,B) has strategies between A and B

σ, τ : A B|

as objects and simulations between strategies

θ : σ τ : A B|

as morphisms.



The bicategory Games

A bicategory of games, strategies and simulations



The bicategory Games of games and strategies

At this stage, we want to turn the family of categories

Games (A,B)

into a bicategory

Games

of games and strategies.



The bicategory Games of games and strategies

To that purpose, we need to define a composition functor

◦A,B,C : Games (B,C) ×Games (A,B) Games (A,C)

which composes a pair of strategies

σ : A B| τ : B C|

into a strategy

σ ◦A,B,C τ : A C|



Composition of strategies

The construction starts by putting the pair of functorial spans side by side:

S T

A �strat B �strat C

�game �game �game

s
λσ

t s
λτ

t

λA s t
λB s t

λC

Fine, but how shall one carry on and perform the composition?



The template of interactions

Third idea:

We define the template of interactions

�int

as the category obtained by the pullback diagram below

�int

�strat pb �strat

�game �game �game

π1 π2

s
t s

t



The template of interactions

Somewhat surprisingly, the category

�int

is simple to describe, as the free category generated by the graph

〈	,	,	〉 〈⊕,	,	〉 〈⊕,⊕,	〉 〈⊕,⊕,⊕〉
Os P|O

Ps

Pt

O|P Ot

with four states or positions.



The template of interactions

The six generators

〈	,	,	〉 〈⊕,	,	〉 〈⊕,⊕,	〉 〈⊕,⊕,⊕〉
Os P|O

Ps

Pt

O|P Ot

may be depicted as follows:

Ot

Pt

O P

OP

Ps

Os



A typical interaction C·B·A·A·B·C

This typical sequence of interactions is depicted as follows:

Ot

Pt

O P

OP

Ps

Os



The template of interactions

We find illuminating to depict the canonical functor

�int �strat ×�strat
(1223)

induced by the pullback diagram in the following way:

(1223)



The template of interactions

In order to fully appreciate the diagram, one needs to “fatten” it

=

O

tP

sO

sP

P OO P

t

in such a way as to recover the template of interactions

〈	,	,	〉 〈⊕,	,	〉 〈⊕,⊕,	〉 〈⊕,⊕,⊕〉
Os P|O

Ps

Pt

O|P Ot



Key observation

The template �int of interactions comes equipped with a functor

hide : �int �strat

which makes the diagram below commute:

�strat �int �strat

�game �strat �game

(1)

(12) (23)

hide (2)

s=(1) t=(2)

and thus defines a map of span.



Key observation

The functor

hide : �int �strat

is defined by projecting the positions of the interaction category

〈 ε1 , ε2 , ε3 〉

on their first and third components:

〈	,	,	〉 7→ 〈	,	〉 Os 7→ Os Ps 7→ Ps
〈⊕,	,	〉 , 〈⊕,⊕,	〉 7→ 〈⊕,	〉 O|P , P|O 7→ id〈⊕,	〉

〈⊕,⊕,⊕〉 7→ 〈⊕,⊕〉 Os 7→ Os Ps 7→ Ps



Illustration

Ot

Pt

O P

OP

Ps

Os

Ps

Os

O

P

O

P

s

s

t

t

id

id

hide



Composition of strategies

S ×B T

S �int T

A �strat �strat C

�game �strat �game

π1 π2
λσ ‖λτ

π2

s
λσ

π1 π2

hide

λτ
t

λA
s t λC

ts



Composition of strategies

This definition of composition implements the slogan that

composition = synchronization + hiding



What about identities?

There exists a functor

copycat : �game �strat

which makes the diagram commute:

�game

�game �game

�strat

id id

copycat

s=(1) t=(2)

and thus defines a morphism of spans.



What about identities?

The functor

copycat : �game �strat

is defined by duplicating the positions of the polarity category

〈ε〉

in the following way:

〈	〉 7→ 〈	,	〉 O 7→ Ot · Ps
〈⊕〉 7→ 〈⊕,⊕〉 P 7→ Os · Pt



A synchronous copycat strategy

The functor

copycat : �game �strat

transports the edge

〈	〉 〈⊕〉
O

to the trajectory consisting of two moves

〈	,	〉 〈⊕,	〉 〈⊕,⊕〉
Ps Ot



A synchronous copycat strategy

The functor

copycat : �game �strat

transports the edge

〈	〉 〈⊕〉
P

to the trajectory consisting of two moves

〈	,	〉 〈⊕,	〉 〈⊕,⊕〉
Os Pt



The identity strategy

Given a game A, the copycat strategy

ccA : A A

is defined as the functorial span

A A A
identity identity

together with the scheduling functor

λ ccA = A �game �strat
λA copycat



Identity strategy

A

�game

A A

�game �strat �game

identity
λA

identity

copycatid id

λA λA

s t



Discovery of an unexpected structure

Key observation: the categories

�[0] = �game � [1] = �strat � [2] = �int

and the span of functors

�[0] �[1] �[0]s t

define an internal category in Cat with composition and identity

�[2] �[1]hide �[0] �[1]
copycat



As an immediate consequence...

Theorem A. The construction just given defines a bicategory

Games

of games, strategies and simulations.



Main technical result of the paper

Theorem B. The bicategory

Games

of games, strategies and simulations is symmetric monoidal.



Main technical result of the paper

Theorem C. The bicategory

Games

of games, strategies and simulations is star-autonomous.



All these results are based on the same recipe!

One constructs an internal category of tensorial schedules

�⊗

together with a pair of internal functors

� ×� �⊗ �
pick pince

where pick and pince are moreover required to be acute.



All these results are based on the same recipe!

One constructs an internal category of cotensorial schedules

�M

together with a pair of internal functors

� ×� �M �
pick pince

where pick and pince are moreover required to be acute.



All these results are based on the same recipe!

One constructs an internal functor

reverse : � op �

which reverses the polarity of every position and move

⊕ 7→ 	 O 7→ P
	 7→ ⊕ P 7→ O



Acute internal functors

Definition An internal functor

F : �1 �2

is acute when the two diagrams

�1[2] �2[2]

�1[1] �2[1]

F[2]

hide1 hide2

F[1]

�1[0] �2[0]

�1[1] �2[1]

F[0]

copycat1 copycat2

F[1]

are pullback diagrams.



The backward action

Every acute internal functor F : �1→ �2 induces a homomorphism

F/ : Games(�2) Games(�1)

defined by pullback on games and strategies:

A S B

�2[0] �2[1] �2[0]

�1[0] �1[1] �1[0]

λA

s

λσ

t

λB

s t

F[0]

s

F[1]

t

F[0]



The forward action

Every acute internal functor F : �1→ �2 induces a homomorphism

F. : Games(�1) Games(�2)

defined by postcomposition on games and strategies:

A S B

�1[0] �1[1] �1[0]

�2[0] �2[1] �2[0]

λA

s

λσ

t

λB

F[0]

s

F[1]

t

F[0]

s t



The template of tensorial schedules

The recipe for the tensor product



The template of tensorial schedules

We consider the category

�⊗game

freely generated by the graph

〈	,⊕〉 〈⊕,⊕〉 〈⊕,	〉
Pl

Ol Or

Pr



The template of tensorial schedules

Idea: The three positions

〈	,⊕〉 〈⊕,⊕〉 〈⊕,	〉

represent the three polarities

〈ε1, ε2〉

possibly reached by a position a1 ⊗ a2 in the game

A1 ⊗ A2

obtained by tensoring the games A1 and A2.



The template of tensorial schedules

The category

�⊗strat

is freely generated by the graph

〈⊕,⊕,⊕,⊕〉

〈⊕,⊕,	,⊕〉 〈⊕,⊕,⊕,	〉

〈	,⊕,	,⊕〉 〈⊕,	,⊕,	〉

Ol,t Or,t

Pl,s

Pl,t

Pr,s

Pr,t

Ol,s Or,s



The template of tensorial schedules

The five positions of the category

〈	,⊕,	,⊕〉 〈⊕,⊕,	,⊕〉 〈⊕,⊕,⊕,⊕〉 〈⊕,⊕,⊕,	〉 〈⊕,	,⊕,	〉

describe the five possible sequences of polarities

〈ε1, ε2, ε3, ε4〉

reached by a position of the games A1, A2, A3, A4 in a trajectory of

σ : A1 ⊗ A2 A3 ⊗ A4



Key observation

Theorem. The categories

�⊗ [0] = �⊗game �⊗ [1] = �⊗sched

and the span of functors

�⊗game �⊗strat �⊗game
s t

define an internal category �⊗ in the category Cat.



A pair of internal functors

The internal category

�⊗

comes equipped with a pair of internal functors

� ×� �⊗ �
pick pince



The pick functor

The internal functor

pick : �⊗ � ×�

is defined at dimension 0 by the functor:

pick [0]



The pick functor

The internal functor

pick : �⊗ � ×�

is defined at dimension 1 by the functor:

pick [1]



The pince functor

The internal functor

pince : �⊗ �

is defined at dimension 0 by the functor:

pince [0]



The pince functor

The internal functor

pince : �⊗ �

is defined at dimension 1 by the functor:

pince [1]



The tensor product of template games

The tensor product A ⊗ B of two template games

A �game
λA B �game

λB

is computed by pullback along pick followed by composition with pince:

A × B A ⊗ B

�game ×�game �⊗game �game

λA×λB pullback

λA⊗B

pick pince

A categorical version of Milner’s idea of synchronization algebra.



The pick functor

The internal functor

pick : �M � ×�

is defined at dimension 0 by the functor:

pick [0]



The pick functor

The internal functor

pick : �M � ×�

is defined at dimension 1 by the functor:

pick [1]



The pince functor

The internal functor

pince : �M �

is defined at dimension 0 by the functor:

pince [0]



The pince functor

The internal functor

pince : �M �

is defined at dimension 1 by the functor:

pince [1]



The cotensor product of template games

The cotensor product AMB of two template games

A �game
λA B �game

λB

is computed by pullback along pick followed by composition with pince:

A × B AMB

�game ×�game �M �game

λA×λB pullback

λAMB

pick pince



The distributivity law of linear logic

A game semantics of linear logic



The distributivity law of linear logic

The main ingredient of linear logic

κA,B,C : A ⊗ (BMC) (A ⊗ B)MC

cannot be interpreted in traditional game semantics.

When one interprets it in template games, here is what one gets...



A B C

A B C

A B C

A B C( ) A B C( )

linear
distributivity

OA

PA

O
B

P
B

P
C

O
C

OA

PA

OA

PA

O
B

P
B

P
C

O
C

PC

OC

OA

PA

O
B

P
B

P
C

O
C

& &



The exponential modality

A homotopy model of differential linear logic



The exponential modality

The construction of the exponential modality relies on the fact that

Property. The monad

Sym : Cat Cat

which associates to every category

C ∈ Cat

the freely generated symmetric monoidal category

Sym(C ) ∈ Cat

is a cartesian monad.



The exponential modality

From this follows that

Corollary. The monad

Sym : Cat Cat

transports the internal category of polarities

�

into an internal category

Sym(�)



The exponential modality

The objects of

Sym(�game)

are the finite words

ε1 · · · εn

on the alphabet with two letters

⊕ 	



The template of exponential polarities

The category

�!
game

is defined as a the full subcategory of

Sym(�game)

with objects of the form

⊕ · · · ⊕ · · · ⊕

containing only positive polarities, and objects of the form

⊕ · · · 	 · · · ⊕

containing exactly one negative polarity.



The template of exponential schedules

The internal category

�!

is defined by restricting the internal category

Sym(�)

to the category of objects �!
game using the pullback

�!
strat Sym(�strat)

�!
game ×�!

game Sym(�game) × Sym(�game)



A pair of internal functors

The internal category

�!

comes equipped with a pair of internal functors

Sym(�) �! �
pick pince

which defines an exponential modality of linear logic.



The exponential modality

The exponential of a template game

A �game
λA

is simply computed by pullback followed by composition:

Sym(A) !A

Sym(�game) �!
game �game

Sym(λA)

λ!A

pick pince



Main result

Theorem D. The symmetric monoidal category

Games

equipped with the exponential modality

!

defines a bicategorical (homotopy) model of differential linear logic.



Conclusion and perspectives

B games played on categories with synchronous copycats

B games played on 2-categories with asynchronous copycats

B a number of different templates considered already:

�alt alternating games and strategies
�asynch asynchronous games and strategies
�span functorial spans with no scheduling

B a model of differential linear logic based on homotopy theory

B a model of concurrent separation logic based on cobordisms

B and synchronization on machine states with Léo Stefanesco.
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Thank you !



The category of asynchronous graphs

A primitive framework for concurrency theory



Asynchronous graphs

Definition. An asynchronous graph is defined as a graph

G = (V,E)

equipped with a set of permutation tiles of the form

between coinitial and cofinal paths of length 2.



— Axiom 1 —
All permutations are symmetric

=⇒



— Axiom 2 —
All permutations are deterministic

and =⇒ n′ ·m′ = n′′ ·m′′



— Axiom 3 —
The cube axiom

⇐⇒



The shuffle tensor product

The shuffle tensor product

G�H = (G�H, �G�H)

of two asynchronous graphs

G = (G, �G) H = (H, �H)

is the asynchronous graph

I whose vertices (x, y) are the pairs of vertices x ∈ G and y ∈ H,



The shuffle tensor product

I whose edges are of two kinds: the pairs

(x, y) (x′, y)
(u,y)

consisting of an edge in the graph G

x x′u

and of a vertex y ∈ H ; and pairs

(x, y) (x, y′)
(x,v)

consisting of an edge in the graph H

y y′v

and of a vertex x ∈ G.



The shuffle tensor product

I whose permutation tiles are of three kinds:

1. two permutation tiles

.

. for every pair of edges

x x′u y y′v

. in the graphs G and H respectively ;



The shuffle tensor product

2. a permutation tile

. for every permutation tile

. in the asynchronous graph G and every vertex y ∈ H ;



The shuffle tensor product

3. a permutation tile

. for every permutation tile

. in the asynchronous graph H and every vertex x ∈ G.



The category of asynchronous graphs

The category Asynch of asynchronous graphs has its morphisms

f : (G, �G) (H, �H)

graph homomorphisms

f : G H

transporting every permutation tile of G to a permutation tile of H.

Theorem. The shuffle tensor product

G,H 7→ G�H : Asynch × Asynch −→ Asynch

turns the category Asynch into a symmetric monoidal category.



Basic illustration

For every label token, the asynchronous graph

�[token]

has a unique vertex ∗ and a unique edge

token : ∗ ∗

together with a unique permutation tile



Asynchronous graphs as 2-categories

A necessary step towards asynchronous template games



Asynchronous graphs seen as 2-categories

We make the basic observation that

every asynchronous graph (G, �G) generates a 2-category 〈G, �G 〉

The 2-category 〈G, �G 〉 is defined in the following way:

I its objects = the vertices of the graph,
I its morphisms = the paths of the graph,
I its 2-cells = the reshufflings induced by the permutation tiles.



Reshufflings between paths

Definition: a reshuffling is a bijective function

ϕ : {1, ...,n} −→ {1, ...,n}

which "keeps track" of a sequence of tiles on a path of length n.

Typically, the reshuffling
(

1 7→ 2
2 7→ 1

)
is associated to any permutation tile:



Reshufflings between paths

Similarly, the reshuffling on three indices 1 7→ 3
2 7→ 2
3 7→ 1

 : {1, 2, 3} −→ {1, 2, 3}

keeps track and identifies the two sequences of tiles:

�

Related to the braid equation and the Yang-Baxter equation



From asynchronous graphs to 2-categories, functorially...

The translation induces a functor

〈−〉 : Asynch TwoCat

where TwoCat is the category of 2-categories and 2-functors.

Key observation:

The functor 〈−〉 defines in fact a symmetric monoidal functor

〈−〉 : (Asynch,�, I) (TwoCat,�,1)

equipped with a family of isomorphisms

〈G�H 〉 � 〈G〉 � 〈H 〉 〈 I〉 � 1

where we write � for the Gray tensor product of 2-categories.



A homotopy structure on functorial spans

A homotopy model of differential linear logic



The natural model structure on Cat

We distinguish three classes of functors
F : A B

between small categories:

B the class C of monos on objects

B the class F of isofibrations

B the class W of categorical equivalences

Theorem [Joyal]

The category Cat of small categories and functors equipped with

C : cofibrations F : fibrations W : weak equivalences

defines a Quillen model structure.



The Seely equivalence

The usual Seely isomorphism of linear logic

! ( A & B ) � ! A⊗ ! B

is replaced in the 2-category Cat by a categorical equivalence

Sym ( A + B ) Sym A × Sym B
deshuf f le

which happens to be an isofibration and thus in F ∩W .

The categorical equivalence in the converse direction

Sym A × Sym B Sym ( A + B )concat

happens to be a mono on object and thus in C ∩W .



In the case of distributors

Every functor between small categories

F : A B

induces an adjoint pair LF a RF of distributors

LF : A B RF : B A| |

in the bicategory Dist, where the distributors are defined as

LF (b, a) = B (Fb, a) : Bop
× A Set

RF (a, b) = B (a,Fb) : Aop
× B Set



In the case of functorial spans

Similarly, every functor between small categories

F : A B

induces an adjoint pair LF a RF of categorical spans

LF : A B RF : B A| |

in the bicategory Span, where the spans LF and RF are defined as

LF = A A B

RF = B B A

Fid

idF



Same recipe for contractions and co-contractions

This enables one to deduce from the monoid structure in Cat

⊗A : Sym A × Sym A Sym A

IA : 1 Sym A

the comonoid structure in Dist of the exponential modality

dA = R⊗A : Sym A Sym A ⊗ Sym A

eA = RIA : Sym A 1

|

|

as well as its monoid structure coming from the differential structure:

mA = L⊗A : Sym A ⊗ Sym A Sym A

uA = LIA : 1 Sym A

|

|



In the case of distributors

Every natural transformation in Cat

A B

F

G

ϕ

is transported to a pair of 2-cells in Dist

A B
|

LF

|

LG

Lϕ B A
|

RF

|

RG

Rϕ



Commutativity up to an invertible 2-cell

The multiplication in Cat is commutative up to an isomorphism

Sym A × Sym A Sym A × Sym A

SymA

(21)

⊗A ⊗A

γ

Hence, the comultiplication in Dist is commutative up to an isomorphism

Sym A

Sym A ⊗ Sym A Sym A ⊗ Sym A

dA dA

(21)

γ



An apparent obstruction

In contrast to what happens with Dist, a natural transformation in Cat

A B

F

G

ϕ

is not transported to a pair of 2-cells in the bicategory Span(Cat)

A B
|

LF

|

LG

Lϕ B A
|

RF

|

RG

Rϕ



Resolving the obstruction up to homotopy

However, every natural isomorphism in Cat

A B

F

G

ϕ

is transported to a pair of cospans of simulations

LF L̃ϕ LG RF R̃ϕ RG
inl inr inl inr

each of them defining a cospan of 2-cells in the bicategory SpanCat.



Resolving the obstruction up to homotopy

However, every natural isomorphism in Cat

A B

F

G

ϕ

is transported to a pair of cospans of simulations

A B

|

LF

|
L̃ϕ

|

LG

inl

inr
B A

|

RF

|
R̃ϕ

|

RG

inl

inr

each of them defining a cospan of 2-cells in the bicategory SpanCat.



Resolving the obstruction up to homotopy

These cospans of 2-cells in SpanCat

LF L̃ϕ LG RF R̃ϕ RG
inl inr inl inr

are defined as the following simulations

A

A Cyl(A) B

A

inl FidA

proj ϕ

inr GidA

A

B Cyl(A) A

A

inl
idAF

ϕ proj

inr
idAG



Resolving the obstruction up to homotopy

Here, Cyl(A) denotes the cylinder category defined as

Cyl(A) = J × A

where the interval category J is the category

0 1
j

with two objects 0 and 1 and an isomorphism j : 0→ 1 between them.

The category J comes equipped with three functors

1 J 1
0

1

p



Resolving the obstruction up to homotopy

The three functors

A Cyl(A) = A × J A
inl

inr

proj

are deduced from the three functors

1 J 1
0

1

p

in the expected way:

inl = 0 × A inr = 1 × A proj = p × A.



Resolving the obstruction up to homotopy

The two functorial spans

L̃ϕ : A B| R̃ϕ : B A|

are defined as

A Cyl(A) B B Cyl(A) A
ϕproj projϕ

where the functor

ϕ : Cyl(A) B

internalizes the natural isomorphism ϕ : F⇒ G : A→ B and thus satisfies:

F = ϕ ◦ inl G = ϕ ◦ inr

required for the functors inl and inr to define simulations.


